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In the present section we discuss separation axioms for bitopological spaces and study their behaviour under 

continuity and compactness. 

First of all we give definitions of different types of pairwise (To)- axioms. 

Definition (2.1) : A bitopological space (X, T1, T2) is said to be pairwise (T0) – space if for every pair of distinct points 

of X, there exists either a T1, - openset or a T2 – open set containing one of them but not the other. 

Definition (2.2) : A bitopological space (X, T1, T2) is said to be strictly pairwise (To) – space [stp- (To)] if neither (X,T1) 

nor (X, T2) is To – space but for every pair of distinct points of X, there exists either a T1- open set or a T2 – open set 

containing one of them but not the other. 

Definition (2.3) : A bitopological space (X, T1, T2) is said to be quasi pairwise (To)- space if for every pair of distinct 

point of X, there exists a quasi open set which contains one of them but not the other. 

Definition (2.4) : A bitopological space (X, T1, T2) is said to be- * - pairwise (To) – space if for every pair of distinct point 

of X, there exists either a 12- pre open set or a 21 – pre open set which contains one of them but not the other. 

NOTE (2.1) : From the definitions it is clear that bitopological space (X, T1, T2) is pairwise (To) space if it is either Stp 

(To) – space or quasi pairwise (To) space or * - pairwise (To) space.  

NOTE (2.2) : From examples it can be seen that definitions (2.2), (2.3) and (2.4) are independent concepts. 

 The concepts of different types of pairwise (T1) spaces are given below: 

Definition (2.5) : A bitopological space (X, T1, T2) is said to be pairwise (T1) – space (p – (T1) – space) if for every pair 

of distinct point x and y of X, there exist G ∈ T1 and  H ∈ T2 such that  

 X ∈ G, y G and y ∈ H, X   H, .................. (2.1) 

Definition (2.6) : A bitopological space (X, T1, T2) is said to be strictly pairwise (T1) space (stp – (T1) – space) if neither 

(X, T1) nor (X, T2) is (T1) – space but the condition of definition (2.5) are satisfied. 

Definition (2.7) : A bitopological space (X, T1, T2) is said to be week pairwise (T1) – space (wp – (T1) – space) if for every 

pair of distinct points x and y of X there exist sets G and H, open either in T1 or in T2 satisfying condition (2.1). 
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Definition (2.8) : A bitopological space (X, T1, T2) is said to be weak* pairwise (T1) (w* p- (T1) – space) if each singlet in 

X is either T1 – closed or T2 – closed. 

Definition (2.9) : A bitopological space (X, T1, T1) is said to be quasi pairwise (T1) space if for each pair of distinct points 

x and y of X there exist quasi open sets G and H satisfying condition (2.1). 

Definition (2.10) : A bitopological space (X, T1, T2) is said to be quasi* pairwise (T1) if each singlet of X is quasi – closed. 

Definition (2.11) : A bitopological space (X, P1, P2) is said to be ij- almost T1 if for any two distinct points x and y of X 

there exists an ij- roset U such that y ∈ U and x   U. 

 Now we mention an important result which appears in [Nandi, 1994]. 

THEOREM (2.1) : If any function f from (X, Q1, Q2) onto (Y, P1, P2) has ij 2  -  closed graph then (Y, P1, P2) is ij- 

almost T1. 

Nandi (1994) proves the following characterization of ij – nearly compactness for an ij – almost T1 – space. 

THEOREM (2.2) : An ij- almost T1 – space (Y, P1, P2) is ij – nearly compact if each function f from any space (X, Q1, 

Q2) into (Y, P1, P2) with ij- 2  - closed graph is ij- almost continuous. 

THEOREM (2.3) : An ij- almost T1 – space (Y, P1, P2) is ij – nearly compact if for any space (X, Q1, Q2) and any functions 

f, g from X into Y with if - 2  - closed graph, the set  

 A = {x ∈ X : f (x) = g (x)} ,............................... )2.2) 

is Q1 – closed subset of X.  
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