

Pairwise Normal in Bitopological Spaces

Dr. Sanjay Kumar Roy, Shankar Bigha Jehanbad, Bihar, India

Now we discuss different types of pairwise normal spaces.

Definition (1) : A bitopological spaces (X, P, Q) is said to be pairwise normal if for every pair of Pclosed set A and Q- closed set B with $A \cap B$, there exist as pair of disjoint sets G and H such that G is P-open, H is Q-open, and $A \supseteq G$ and $B \supseteq H$.

We prove the above definition in term of 12- pre open (pre closed) 21- pre open (pre closed) sets.

Definition (2) : A bitopological space (X, T₁, T₂) is said to be pairwise *- normal if for each pair of 12pre closed set A and 21- pre closed set B with A \cap B - ϕ , there exist a pair of disjoint sets G and H such that G is 12- pre open, H is 21- pre open, A \subseteq G and B \subseteq H.

Now we obtain the following characteristic properties for pairwise * - normal spaces.

Theorem : Let (X, T₁, T₂) be a bitopological space. Then the following conditions are equivalents.

(i). (X, T₁, T₂) is pairwise *- normal.

(ii). For every 12- pre closed set A and every 21-pre open set V containing A, there exist 12- pre open set V and 21- pre closed Set L Such that $A \subset W \subset L \subset V$. (iii). For every 21- pre closed set B and every 12- pre open set H containing B, there exist 21 – pre

open set \bigcup and 12- pre closed set N such that $B \subset U \subset N \subset M$. Proof. (i) \rightarrow (ii)

Suppose that (X, T₁, T₂) is pairwise *- normal bitopological space. Let A be a 12- pre closed set in X and Let V be a 21- pre open set containing A. Then V^{C} is 21- pre closed and A $\cap V^{C} = \phi$. So according to our assumption there exist 12- pre open set V and 21- pre open set \bigcup Such that

$$A \subset W, V^{C} \subset \bigcup$$
 and $V \cap U = \phi$.

This means that $A \subset W \subset U^{C} \subset V$. If we put $U^{C} = L$ then we see that L is 21- pre closed and satisfy $A \subset W \subset L \subset V$. (ii) \rightarrow (iii)

Suppose that (X, T₁, T₂) is a bitopological space satisfying condition (ii). Let B be a 21- pre closed set and Let N be 12- pre open set containing B, i.e., $B \subset N$. Then $M^{\overset{C}{C}} \subset B^{\overset{C}{C}}$ where $N^{\overset{C}{C}}$ is 12- pre closed and $B^{\overset{C}{C}}$ is 21- pre open. So according to our assumption there exist 12- pre open set W and 21- pre closed set L such that

 $M^{c} \subset W \subset L \subset B^{c}.$

This gives $B \subset L^{c} \subset W^{c} \subset M$.

If we put $L^c = U$ and $W^c = N$ then $B \subset U \subset N \subset N-M$ where U is 21- pre open and N is 12- pre closed. (iii) \Rightarrow (i)

Suppose that (X, T₁, T₂) is a bitopological space satisfying the condition (iii). Let A and B be two disjoint subsets of X such that A is 12- pre closed and B is 21- pre closed. Then A^c is 12- pre open and $B \subset A^c$. So according to our assumption there exist 21- pre open set U and 12- pre closed set N such that –

 $B \subset U \subset N \subset A^{C}$.

This gives $B \subset U$ and $A \subset N^c$. Since N^c is 12- pre open and U is 21- pre open with $U \cap N^c = \phi$, we see that (X, T_1, T_2) is pairwise *- normal.

References:

- 1. Saegrove, M. J., parwise com, plete regularity and compactification in bitopolotical spaces, J. London Math. Soc. 7 (1973) P. P. 286-290.
- 2. SINHA, S.K. A Study to the pariwise properties in bitopological spaces, Ph.D. Thesis submitted to Magadh University, 1998.
- 3. Singal, A.R. and Arya, S.P. (1971) : On pairwise almost regular spaces, Glosnik mat. 6 (26), 335.

4. Singal, M.K. and Mathur, A. (1969) : On nearly compact spaces, Bull.V.M.1.4 (6), 702.