Pairwise Normal in Bitopological Spaces

Dr. Sanjay Kumar Roy,
Shankar Bigha
Jehanbad, Bihar, India

Now we discuss different types of pairwise normal spaces.

Definition (1) : A bitopological spaces ($\mathrm{X}, \mathrm{P}, \mathrm{Q}$) is said to be pairwise normal if for every pair of P closed set A and Q - closed set B with $\mathrm{A} \cap \mathrm{B}$, there exist as pair of disjoint sets G and H such that G is P -open, H is Q -open, and $\mathrm{A} \supseteq \mathrm{G}$ and $\mathrm{B} \supseteq \mathrm{H}$.

We prove the above definition in term of 12- pre open (pre closed) 21- pre open (pre closed) sets.

Definition (2) : A bitopological space ($\mathrm{X}, \mathrm{T}_{1}, \mathrm{~T}_{2}$) is said to be pairwise *- normal if for each pair of 12pre closed set A and 21- pre closed set B with $A \cap B-\phi$, there exist a pair of disjoint sets G and H such that G is 12 - pre open, H is 21 - pre open, $\mathrm{A} \subseteq \mathrm{G}$ and $\mathrm{B} \subseteq \mathrm{H}$.

Now we obtain the following characteristic properties for pairwise * - normal spaces.

Theorem : Let ($\mathrm{X}, \mathrm{T}_{1}, \mathrm{~T}_{2}$) be a bitopological space. Then the following conditions are equivalents.
(i). $\left(\mathrm{X}, \mathrm{T}_{1}, \mathrm{~T}_{2}\right)$ is pairwise ${ }^{*}$ - normal.
(ii). For every 12- pre closed set A and every 21-pre open set V containing A , there exist 12- pre open set V and 21- pre closed Set L Such that $\mathrm{A} \subset \mathrm{W} \subset \mathrm{L} \subset \mathrm{V}$.
(iii). For every 21- pre closed set B and every 12- pre open set H containing B, there exist 21 - pre open set U and 12- pre closed set N such that $\mathrm{B} \subset \mathrm{U} \subset \mathrm{N} \subset \mathrm{M}$.
Proof. (i) \rightarrow (ii)

Suppose that $\left(X, T_{1}, T_{2}\right)$ is pairwise *- normal bitopological space. Let A be a 12- pre closed set in X and Let V be a 21- pre open set containing A. Then V^{C} is 21- pre closed and $A \cap V^{C}=\phi$. So according to our assumption there exist 12- pre open set V and 21- pre open set U Such that

$$
\mathrm{A} \subset \mathrm{~W}, \mathrm{~V}^{\mathrm{C}} \subset \mathrm{U} \text { and } \mathrm{V} \cap \mathrm{U}=\phi .
$$

This means that $A \subset W \subset U^{C} \subset V$. If we put $U^{C}=L$ then we see that L is 21 - pre closed and satisfy

$$
\mathrm{A} \subset \mathrm{~W} \subset \mathrm{~L} \subset \mathrm{~V}
$$

$$
\text { (ii) } \Rightarrow \text { (iii) }
$$

Suppose that ($\mathrm{X}, \mathrm{T}_{1}, \mathrm{~T}_{2}$) is a bitopological space satisfying condition (ii). Let B be a 21- pre closed set and Let N be 12- pre open set containing B, i.e., $B \subset N$. Then $M^{C} \subset B^{C}{ }^{C}$ where N^{C} is 12 - pre closed and $B^{C}{ }^{C}$ is 21 - pre open. So according to our assumption there exist 12 - pre open set W and 21 - pre closed set L such that
$\mathrm{M}^{\mathrm{C}} \subset \mathrm{W} \subset \mathrm{L} \subset \mathrm{B}^{\mathrm{C}}$.

This gives $\mathrm{B} \subset \mathrm{L}^{\mathrm{C}} \subset \mathrm{W}^{\mathrm{C}} \subset \mathrm{M}$.

If we put $\mathrm{L}^{\mathrm{C}}=\mathrm{U}$ and $\mathrm{W}^{\mathrm{C}}=\mathrm{N}$ then

$$
\mathrm{B} \subset \mathrm{U} \subset \mathrm{~N} \subset \mathrm{~N}-\mathrm{M}
$$

where U is 21- pre open and N is 12- pre closed.

$$
(\mathrm{iii}) \Rightarrow(\mathrm{i})
$$

Suppose that ($\mathrm{X}, \mathrm{T}_{1}, \mathrm{~T}_{2}$) is a bitopological space satisfying the condition (iii). Let A and B be two disjoint subsets of X such that A is $12-$ pre closed and B is 21 - pre closed. Then A^{C} is $12-$ pre open and $B \subset A^{C}$. So according to our assumption there exist 21-pre open set U and 12- pre closed set N such that -

$$
\mathrm{B} \subset \mathrm{U} \subset \mathrm{~N} \subset \mathrm{~A}^{\mathrm{C}} .
$$

This gives $B \subset U$ and $A \subset N^{C}$. Since N^{C} is 12- pre open and U is 21- pre open with $U \cap N^{C}=\phi$, we see that $\left(X, T_{1}, T_{2}\right)$ is pairwise *- normal.

References :

1. Saegrove, M. J., parwise com,plete regularity and compactification in bitopolotical spaces, J. London Math. Soc. 7 (1973) P. P. 286-290.
2. SINHA, S.K. A Study to the pariwise properties in bitopological spaces, Ph.D. Thesis submitted to Magadh University, 1998.
3. Singal, A.R. and Arya, S.P. (1971) : On pairwise almost regular spaces, Glosnik mat. 6 (26), 335.
4. Singal, M.K. and Mathur, A. (1969) : On nearly compact spaces, Bull.V.M.1.4 (6), 702.
