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ABSTRACT 

 

In the presented work, a continuous distribution consisting of three-parameters 

is proposed for life-time data called new exponentiated distribution. The 

discussion of some of the distribution’s statistical as well as mathematical 

properties, including the Cumulative Distribution Function (CDF), Probability 

Density function (PDF), quantile function, survival function, hazard rate 

function, kurtosis measures and skewness, is conducted. The estimation of the 

presented distribution’s model parameters is performed using the techniques of 

Cramer-Von-Mises estimation (CVME), least-square estimation (LSE), and 

maximum likelihood estimation (MLE). The evaluation of the proposed 

distribution’s goodness of fit is performed through its fitting in comparison 

with some of the other existing life-time models with the help of a real data set. 

Keywords : CVME, MLE, Model Parameter Estimation, New exponentiated 

distribution, Reliability function 

 

I. INTRODUCTION 

 

Lifetime distributions are generally used to model 

lifetime data of components of a system, a device, and 

in general, reliability and survival analysis. Often we 

see the use of lifetime distributions in fields like 

biological science, information technology, 

engineering, insurance, etc. For lifetime analysis, 

most commonly applicable lifetime distributions are 

exponential distribution, Weibull distribution, and 

Bayesian-Weibull Analysis, Cauchy and Lognormal 

distribution. 

 

For a few decades, it is found that the exponential 

distribution is taken as base distribution to generate a 

new family of distribution. The modifications of the 

exponential distribution were introduced by different 

researchers, some of them are, beta exponential 

(Nadarajah and Kotz, 2006), Gupta and Kundu (2007) 

have presented the generalized exponential (GE) with 

some development, Abouammoh & Alshingiti (2009) 

has introduced the generalized inverted exponential 

distribution's reliability estimation, Exponential 

Extension (EE) distribution (Kumar, 2010), beta GE 

(Barreto-Souza et al., 2010), gamma EE by (Ristic and 

Balakrishnan, 2012), Gomez et al. (2014) have 

presented exponential distribution with a new 

extension, Kumaraswamy transmuted exponential 

(Afify et al., 2016) distributions and exponentiated 

exponential geometric (Louzada et al., 2014). Mahdavi 
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& Kundu (2017) have presented a new method where 

by an application to the exponential distribution a 

new distribution can be generated.  Recently, the 

Alpha power transformed extended exponential 

distribution have introduced by (Hassan et al., 2018). 

Almarashi et al. (2019) have presented exponential 

distribution with a new extension along with its 

statistical properties. Some life-time models that are 

generated from exponential family of distribution and 

able to exhibit more flexibility are listed below 

I. A life-time distribution with three-parameter 

with a decreasing, increasing, upside down 

bathtub-shaped and bathtub failure rate was 

presented by Dimitrakopoulou et al. (2007) This 

distribution's hazard function is expressed as 

( ) ( ) ( )
1

1 1 ; 0, 0h x x x x


   
−

−= +    

As when α = 1, we can see the distribution reduces 

to Weibull, so the distribution is the special case 

of Weibull distribution. 

II. Joshi (2015) has proposed another extension of 

exponential distribution called new extended 

exponential (EEN) distribution having 

monotonically increasing and constant hazard 

rate shapes. With parameters α and λ the 

continuous random variable X trails EEN 

distribution and CDF is given by 

/( ) 1  ; 0, ( , ) 0xh x e x
x


  − 

= +   
 

 

III. Chaudhary et al., (2020) has presented a flexible 

life-time model named truncated Cauchy power–

exponential (TCP-E) distribution which has 

decreasing, increasing, constant and upside-down 

bathtub shaped hazard rate and  the hazard 

function for TCP-E distribution is 

( )
( )

( ) ( )
2

14
; ,

4
1 1 1 arctan 1

; 0, 0, 0

x x

x x

e e
h x

e e

x


 

 
 


 





 

− −

− −

−
=

    + − − −        

  

 

IV. A exponential distribution's generalization was 

presented by Nadarajah & Haghighi (2011) and 

named it as an extension of exponential 

distribution. Its PDF exhibits unimodal and 

decreasing shapes, and the hazard rate shows 

increasing, constant and decreasing shapes. 

( )
1

( ) 1  ; 0, ( , ) 0h x x x


   
−

= +    

V. Lemonte (2013) introduced an exponential type 

family of distribution with three-parameter. It 

exhibits decreasing, increasing, constant and 

upside-down bathtub shaped hazard rate and the 

hazard function is  

( ) ( ) ( ) 
( ) 

1
1

1 exp 1 1 1 exp 1 1
( )  

1 1 exp 1 1

; 0, ( , , ) 0

x x x
h x

x

x


  




  




  

−
−    + − + − − +

   
=

 − − − +
 

 

 

Introduction of a distribution with more flexibility in 

order to achieve better fit for lifetime data is the key 

aim for this paper. The different sections of the 

proposed study are organized as follows. In Section 

2(Three Parameter New Exponentiated Distribution} 

we define a new exponentiated distribution (NED) 

and discuss some mathematical and statistical 

properties. For estimating the proposed distribution's 

parameters we apply the use of Maximum Likelihood 

Estimation (MLE), Cramer-Von-Mises estimation 

(CVME) methods and least-square estimation (LSE). 

With the help of information matrix that was 

observed, asymptotic confidence intervals was built 

for MLEs in section 3(Methods of Parameter 

estimation). In Section 4(Real Data Application), a 

real data set has been evaluated to explore the 

applications and capability of the proposed 

distribution. With a real data set, analysis of proposed 

distribution's goodness of fit is carried out by fitting it 

in contrast with some other existing distributions. 

Conclusion remarks are presented in Section 

5(CONCLUSIONS). 

 

II.  A THREE-PARAMETER NEW 

EXPONENTIATED DISTRIBUTION 

Here in this section, we have defined a three-

parameter new exponentiated distribution (NED). 

The NED is generated using exponentiated approach 

by taking CDF as parent distribution defined by 

(Dimitrakopoulou et al., 2007). A continuous non-
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negative random variable X~NED(α, β, θ)  if its 

cumulative function is in the form of 

( )( ) 1 1   

;0 , ( ) 0

xF x x e

x

 
 



− = − +
 

   
                   (2.1) 

The PDF is expressed as follows 

 

( )
1

2 2 1( ) 1 1  

;( ) 0

x xf x x e x e
  

     



−
− − − = − +

 



 

                                                                                  (2.2) 

The reliability function of NED is expressed as follows, 

( )( ) 1 1 1 ;( ) 0xR x x e
 

  − = − − + 
 

       (2.3) 

Similarly, the hazard rate function (HRF) is 

 

( )

( )

1
2 2 1 1 1

( )

1 1 1

x x

x

x e x e
h x

x e

 




   


 

  



−
− − −

−

 − +
 =

 − − +
 

 

(2.4) 

2.1 Quantile and Generating Functions 

Quantile Function 

In the statistical literature, the quantile function 

related with a probability distribution of a random 

variable, is the distribution function's inverse and it 

provides a broad description of the statistical 

properties pertaining to the random variable. The uth 

quantile value can be acquired by solving the 

following equation 

 ( ) ( )1Q u F u−=  

the quantile function of NED is obtained by inverting 

CDF (2.1) as 

 

( ) ( )1/ln 1 ln 1 0  ;0 1x x u u   + − − − =  

 (2.1.1) 

Generation of the random numbers: 

For the random numbers generation of the NED, we 

simulate values of random variable X with the CDF 

(2.1.1). Let J denote a uniform random variable in (0, 

1), then the simulated values of X can be calculated 

by 

( ) ( )1/ln 1 ln 1 0  ;0 1x x j j   + − − − =    (2.1.2) 

 

2.2 Skewness and Kurtosis 

The Skewness measures on quantiles is Bowley's 

coefficient of skewness and it can be written as 

( )
( ) ( ) ( )

( ) ( )

3 / 4 1/ 4 2 1/ 2
,

3 / 4 1/ 4
k

Q Q Q
S Bowley

Q Q

+ −
=

−
and 

(2.2.1) 

The coefficient of kurtosis based on octiles was 

described by (Moors, 1988) which can be expressed as 

 

( )
( ) ( ) ( ) ( )

( ) ( )

0.875 0.625 0.375 0.125
,

3 / 4 1/ 4
u

Q Q Q Q
K M

Q Q

− + −
=

−

 (2.2.3) 

Plots of PDF and hazard rate function of NED (α, β, θ) 

with various parameter value are shown in Figure 1. 

 
Figure 1. For different values of α, β and θ, graphs of 

hazard function (upper panel) and PDF (lower panel) 
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III.METHOD OF PARAMETER ESTIMATION 

 

In this section, we have employing these estimation 

methods, 

i. Cramer-Von-Mises 

ii. Least square 

iii. Maximum likelihood  

 

3.1. Maximum Likelihood Estimation (MLE) method 

Consider ( )1  , , nx x x=   denote random sample 

with size ‘n’ in NED(α, β, θ) then the log likelihood 

function l(α, β, θ / x̠) can be expressed as, 

( ) ( )

( ) ( )

2

1 1

1

( , , / ) ln 2 1

1 ln 1 1 i

n n

i i

i i

n
x

i

i

l x n x x

x e






      

 

= =

−

=

= + − −

 + − − +
 

 



 

(3.1.1) 

By differentiating (3.1.1) with respect to unknown 

parameters α, β and θ, we obtain, 

 

( )
( )

2

1 1

2
1

1 1

i

i

xn n
i

i
x

i i
i

x el n
x

x e













  

−

−
= =


= − + −

  − +
 

 

 

( )
( )

2 2

1 1

ln( )
2 1

1 1

i

i

xn n
i

i
x

i i
i

x x el n
x

x e












  

−

−
= =


= + + −

  − +
 

 

 

( )
1

ln 1 1 i

n
x

i

i

l n
x e


 

−

=

  = + − +
 

  

After solving for the unknown parameters (α, β, θ) 

and equating these non-linear equations to zero we 

will obtain the ML estimators of the NED. Manually, 

it is difficult to solve hence by add of appropriate 

computer software one can solve these equations. 

Consider the parameter vector by ( , , )   = and 

the corresponding MLE of   as ˆ ˆˆ ˆ( , , )   = , then 

the asymptotic normality gives 

( ) ( )( )
1

3
ˆ 0,N D

−  − → 
 

 here ( )D   is the 

information matrix of Fisher which is expressed as, 

( )

2 2 2

2

2 2 2

2

2 2 2

2

l l l
E E E

l l l
D E E E

l l l
E E E

    

    

    

        
      

          
        
  = −      

          
 

        
                

 

In practice, we don’t know   hence MLE having 

asymptotic variance ( )( )
1

D
−

  is useless. So by filling 

in the estimated value of the parameters we 

approximate the asymptotic variance. The observed 

fisher information matrix ˆ( )O   is used as an 

information matrix ( )D  's estimate which is 

expressed as 

( )

( )
( )ˆ

ˆ ˆˆ , ,

2 2 2

2

2 2 2

2 |

2 2 2

2

|

ˆ( )

l l l

l l l
O H

l l l

  

    

    

    

=

   
 
     

   
 = − = −  

     
   
       

 

where Hessian matrix is denoted by H 

To produce the observed information matrix, we 

bring the use of the Newton-Raphson algorithm for 

likelihood's maximization. Thus, the variance-

covariance matrix is expressed as, 

( )
( )ˆ

1

|

ˆ ˆˆ ˆ ˆvar( ) cov( , ) cov( , )

ˆ ˆ ˆ ˆˆcov( , ) var( ) cov( , )

ˆ ˆ ˆ ˆˆcov( , ) cov( , ) var( )

H

    

    

    
=

−
 
  

−  =   
   

 
 

 

(3.1.2) 

Thus for α, β and θ's approximate 100(1-α) % 

confidence intervals via MLEs' asymptotic normality 

can be constructed as, 

/2
ˆ ˆvar( )Z  , /2

ˆ ˆvar( )Z  and 

/2
ˆ ˆvar( )Z  , 

Here /2Z is the upper percentile of standard normal 

variate. 
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3.2. Method of Least-Square Estimation (LSE) 

For the estimation of Beta distribution's parameters, 

we can use weighted least square estimators and 

ordinary least square estimators as given by Swain et 

al. (1988). In this section NED parameter estimation 

can be done by the same method. The unknown 

parameters α, β and θ of NED's least-square estimators 

can be obtained with minimization of 

( )
2

1

; , , ( )
1

n

i

i

i
B X F X

n
  

=

 
= − + 
                (3.2.1) 

with respect to unknown parameters α, β and θ. 

From a distribution function F(.), let ( )iF X  

represent the distribution function of the ordered 

random variables 
( ) ( ) ( )1 2 n

X  X   X    and  

 1 2, ,  , nX X X  denotes random sample of size n. The 

unknown parameters' (α, β and θ) least-square 

estimators represented as ˆ ˆˆ , ,  and   , can be 

acquired with minimization of, 

 

( ) ( )
2

1

; , , 1 1  
1

; 0, ( ) 0.

i

n
x

i

i

i
B X x e

n

x

 
   



−

=

  = − + −   + 

 

  

(3.2.2) 

with respect to α, β and θ. 

By differentiation (3.2.2) with respect to α, β and θ 

the following can be obtained, 

 

   
12

1

2 ( ) ( )
1

i

n
x

i i i

i

B i
A x x e A x

n

 


−−

=

  
= −  + 

  

   
12 2

1

2 ( ) ln ( )
1

i

n
x

i i i i

i

B i
A x x e x A x

n

  


− −

=

  
= −  + 



 

     
1

2 ( ) ( ) ln ( )
1

n

i i i i

i

B i
x A x A x A x

n

 
 =

  
= −  + 

  

 

Where ( )( ) 1 1 ix

i iA x x e
 −

= − +  

Likewise we can get the weighted least square 

estimators with minimization of, 

 ( ) ( )
1

; , , ( )
1

n

i i
i

i
B X w F X

n
  

=

 
= − + 
  

with respect to α, β and θ. The weights wi are 

( )( )

( ) ( )

2
2 1 1

1 ( )
i

i

n n
w

i n i Var X

+ +
= =

− +
 

Similarly we can get weighted least square estimators 

of α, β and θ correspondingly with minimization of, 

 

( )
( )( )

( )
( )

22

1

2 1
; , , 1 1

1 1
i

n
x

i

i

n n i
B X x e

i n i n

 
    −

=

+ +   = − + −  + − + 


  (3.2.3) 

with respect to α, β and θ. 

 

3.3. Cramer-Von-Mises estimation (CVME) Method  

 

We can get Cramer-Von-Mises estimators of α, β and 

θ with minimization of function 

 

( ) ( )
2

:

1

1 2 1
; , , | , ,

12 2

n

i n

i

i
C X F x

n n
     

=

− 
= + − 

 
  

( )
2

1

1 2 1
1 1

12 2
i

n
x

i

i

i
x e

n n

 
 −

=

−  = + − + −   
  (3.3.1) 

By differentiation of (3.3.1) with respect to α, β and θ 

following can be obtained, 

   
12

1

2 1
2 ( ) ( )

2
i

n
x

i i i

i

C i
A x x e A x

n

 


−−

=

 − 
= −   

  

   
12 2

1

2 1
2 ( ) ln ( )

2
i

n
x

i i i i

i

C i
A x x e x A x

n

  


− −

=

 − 
= −   

  

     
1

2 1
2 ( ) ( ) ln ( )

2

n

i i i i

i

C i
x A x A x A x

n

 
 =

 − 
= −   

  

Where ( )( ) 1 1 ix

i iA x x e
 −

= − +  

We will get the CVM estimators by solving 

= 0, = 0  0
C C C

and
  

  
=

  
 simultaneously 

 

IV. REAL DATA APPLICATION 

In this portion, we demonstrate NED application with 

the help of a real dataset. The data represent the 

waiting times (in minute) of 100 bank customers 

(Ghitany et al., 2008). The data are presented below, 
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0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 

3.3, 3.5, 3.6, 4.0, 4.1, 4.2, 4.2, 4.3, 4.3, 4.4, 4.4, 4.6, 4.7, 

4.7, 4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 

6.3, 6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8.0, 8.2, 8.6, 

8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7, 10.9, 

11.0, 11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 

13.0, 13.1, 13.3, 13.6, 13.7, 13.9, 14.1, 15.4, 15.4, 17.3, 

17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4, 

21.9, 23.0, 27.0, 31.6, 33.1, 38.5 

 

The MLEs of NED are calculated by employing the R 

software' s optim() function (R Core Team, 2020) and 

(Mailund, 2017) with maximization of the likelihood 

function (3.1.1). We have obtained the value of Log-

Likelihood is l = -317.0262. Illustration of the MLE’s 

along with standard errors (SE) for α, β, and θ is 

shown in Table 1. 

 

Table 1. MLE and SE of NED for α, β and θ 

 

Parameter SE MLE 

alpha 0.3430    0.3998      

beta 0.2374    0.8107      

theta 0.9847 1.5490      

 

In Figure 2 we have plotted the Q-Q plot and P-P plot 

and it is observed that proposed distribution fits the 

data very well.  

 

 
Figure 2. The plots of P-P (upper panel) and Q-Q 

(lower panel) of the NED. 

 

Illustration of the plot of the profile log-likelihood 

function of α, β, and θ is done in Figure 3 (Kumar & 

Ligges, 2011) and it is seen that the MLEs are 

uniquely determined. 
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Figure 3. Plots of profile log-likelihood function of α, 

β, and θ. 

 

In Table 2 Illustration of the NED parameters' 

estimated value obtained from LSE, MLE and CVE 

method and their respective negative log-likelihood, 

and AIC criterion.  

 

Table 2 

Estimated parameters, log-likelihood, and AIC 

 

Method 

of 

Estimatio

n 

̂  ̂  ̂  -LL AIC 

MLE 
0.399

8 

0.810

7 

1.549

0 

317.026

2 

640.052

5 

LSE 
0.569

4 

0.706

7 

2.010

5 

317.167

0 

640.334

0 

CVE 
0.454

2 

0.774

1 

1.697

5 

317.039

9 

640.079

9 

 

In Table 3 we have presented The KS, W and A2 

statistics with their corresponding p-value of MLE, 

LSE and CVE estimates. 

Table 3 

The KS, W and A2 statistics with a p-value 

Method 

of 

Estimati

on 

KS(p-value) W(p-value) A2(p-value) 

MLE 0.0361(0.99 0.0176(0.99 0.1280(0.99

95) 88) 96) 

LSE 0.0388(0.99

82) 

0.0171(0.99

90) 

0.1348(0.99

94) 

CVE 0.0363(0.99

94) 

0.0169(0.99

91) 

0.1255(0.99

97) 

 

 
Fig 4. The Histogram and the density function of 

fitted distributions of estimation methods MLE, LSE 

and CVM (upper panel) and KS plot of NED (lower 

panel). 

 

For demonstration of NED's goodness-of-fit, the 

following distributions are used for providing 

comparison 

 

A. Flexible Weibull (FW) distribution: 

 

The density of Flexible Weibull (FW) distribution 

(Bebbington, 2007) with parameters α and β is 
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2
( ) exp exp exp

; 0, 0, 0.

FWf x x x
x xx

x

  
  

 

      
= + − − −     

      

  

 

B. Generalized Rayleigh distribution 

The PDF of Generalized Rayleigh (GR) distribution 

(Kundu & Raqab, 2005) is  

( ) ( )
1

2 2
2 (x; , ) = 2 x e 1 e

0 0

x x
GRf

; ( , ) , x


 

   

 

−
− − 

− 
 

 

Where λ and α are the scale and shape parameters 

correspondingly 

 

C. Exponential Extension (EE) distribution 

The density of exponential extension (EE) 

distribution as given by (Nadarajah & Haghighi, 2011) 

with parameters α and λ is 

( ) ( ) 1
( ) 1 exp 1 1

; 0, 0, 0.

EEf x x x

x

 
   

 

−
= + − +

  

 

D. Extended Exponential New distribution 

The density of EEN distribution (Joshi, 2015) with 

parameters α and λ is 

/ /( ) 1 exp( ); 0x x

EENf x e xe x
x

 
 − − 

= + −  
 

 

For the judgment of potentiality of the proposed 

model we have calculated the Bayesian information 

criterion (BIC), Akaike information criterion (AIC), 

Corrected Akaike information criterion (CAIC) and 

Hannan-Quinn information criterion (HQIC) which 

are displayed in Table 4.  

 

Table 4 

AIC, Log-likelihood (LL), CAIC, BIC and HQIC 

 

Distribut

ion 

AIC -LL CAIC BIC HQIC 

NED 
640.05

25 

317.02

62 

640.30

25 

647.86

80 

643.21

56 

EEN 
639.69

55 

317.84

78 

639.81

92 

644.90

58 

641.80

42 

FW 
646.53

63 

321.26

82 

646.66

00 

651.74

67 

648.64

50 

GR 
647.03

64 

321.51

82 

647.16

01 

652.24

67 

649.14

51 

EE 
650.89

73 

323.44

87 

651.01

85 

656.10

77 

653.00

60 

Figure 5 demonstrates the comparison made between 

the density function of selected distributions. 

 
Fig. 5. Estimated distribution function with 

Empirical distribution function (upper panel) and 

The Histogram and the density function of fitted 

distributions (lower panel). 

 

To evaluate proposed distribution's goodness-of-fit, 

the values of the Cramer-Von Mises (A2) , 

Kolmogorov-Simnorov (KS), and the Anderson-

Darling (W) statistics for the different selected 

distribution in Table 5. It is observed that the NED's 
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test statistic value is the minimum and with higher p-

value thus we can derive the conclusion that NED is 

more consistent while giving better fit for the lifetime 

data also producing consistent results than others 

taken for comparision 

 

Table 5 

The goodness-of-fit statistics and their 

corresponding p-value 

Distribut

ion 

A2(p-

value) 

KS(p-

value) 

W(p-

value) 

NED 

 

0.1280(0.9

996)  

 

0.0361(0.9

995) 

 

0.0176(0.9

988) 

EEN 
0.3465(0.8

993)  

0.0639(0.8

093) 

0.0520(0.8

650) 

FW 
0.7710(0.5

021)  

0.0849(0.4

717) 

0.1116(0.5

316) 

GR 
1.0911(0.3

126)  

0.0945(0.3

337) 

0.2043(0.2

595) 

EE 
1.5539(0.1

642)  

0.1069(0.2

028) 

0.2096(0.2

499) 

 

V. CONCLUSION 

 

We have introduced a new three parameter 

exponentiated distribution along with description of 

some of the statistical properties. Also kurtosis and 

skewness measures along with quantile function are 

derived. For estimation of model parameters, we have 

used LSE, MLE and CVME methods where we found 

that MLE gives better estimation. A real dataset is 

taken to demonstrate proposed distribution's 

application and flexibility and we observed that the 

NED is more consistent while giving better fit for the 

lifetime data also producing consistent results than 

other lifetime distribution used for comparison. In the 

domain of applied statistics and survival analysis, we 

hope that this distribution can be a substitute for the 

distribution in common use. 
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