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ABSTRACT 

 

Discovering people using his face image now a vital research area for the 

researchers. This process is named face recognition. Every organization and not an 

organization even a county’s security system now ejected on a face image 

perception system. To evolve the face identifying complication the Local Binary 

Pattern Histogram (LBPH) is an unchanging way out method. But in the matter of 

illumination diversification, expression variation, and attitude deflection it gives 

less accurate than others. In our work, we have proposed a revised local binary 

pattern histogram (ReLBPH) for the way out of illumination diversification. We 

replace the gray form of LBP with a new threshold value, named instigator-

threshold value instead of the threshold of the centric pixels of the sampled values 

of their neighbourhood sampling points. Using sub-blocks we extracted the features 

and then finally make the statistical histogram of these features. We use the FEI 

Standard database, DRFFI dataset and our constructed dataset for our experiment. 

We find maximum accuracy rate for the datasets.  

Keywords: Face recognition, ReLBPH, instigator-threshold, Statistical histogram 

 

I. INTRODUCTION 

 

Human face authentication for experimentation 

activities from still and audiovisual pictures amplifies 

expressively over the previous 30 years. Customary 

resources of security like ID cards and passwords are 

not consistent or expedient adequate in the present 

day. For that reason, face authentication acquires a 

place as a foremost exploration attention zone of 

security. Face authentication is a key element for 

smart environments.  

 

It is indispensable for inferring facial expressions, 

human feedback, intents, and activities [1], [2]. The 

look is an inbred character of somebody. An organism 

built on facial detection and recognition is 

complementarily applicable for persons who are not 

keen to collaborate with other possessions of 

biological data credentials system such as fingerprint, 

iris, or hand scan [3], [4]. Habitually, the lawbreakers 

get away with their bootee if there is no tracker 

system. It is feasible to isolate somebody compelling a 

crime using the assistance of face authentication. It is 

incrementally getting popularity among scholars 
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around the biosphere in many zones such as security, 

medical, engineering, and so on [5], [6], [7]. Many 

years in a row, numerous scholars have manifested 

distinct types of face recognition algorithms. They are 

working together with Local Binary Pattern (LBP) 

method [8], [9], [10], Sparse Coding(SC) method [11], 

[12], [13], Deep Convolution Network method [14], 

[15], [16] different subfield founded interrelation 

strained faces [17], Histograms of Oriented 

Gradients(HOG) method [18], [19], [20], Gabor 

feature method [21], Laplacian methods to sustain 

native report [22], Linear Discriminant Analysis (LDA) 

method [23]. Aan naked emergence computer library 

that has ternary ingrained face recognition method, 

Fisherfaces [24], Eigenfaces [25], and Local Binary 

Pattern Histogram (LBPH) [26], Modified Local 

Binary Pattern Histogram (MLBPH) [14]. Face 

recognition diagnosis or verifies one or more persons 

in a prospect by associating input faces with face 

images put in storage in a database. The inclusive 

progression for face recognition can be framed by face 

uncovering, feature extraction, and concession. 

Feature vectors in the subordinate dimension of 

feature space typically embody images of human faces. 

Face recognition consists of spotting and verification. 

Face spotting takes a mysterious face as input. Then 

the system reports its identity after checking a known 

database. A pixel’s gray level acquainted by an 

uncertain descriptor, LBP code [27]. Using a 

histogram Binary pattern codes are conserve. A bin in 

the histogram contests up to an exclusive binary code. 

Numerous variants of LBP anticipate expanding upon 

the basic LBP [14]. It embraces variants in 

neighborhood topology and thresholding and/or 

encoding. Some scholars have also anticipated 

substitute manners of exploiting the binary pattern 

codes; for example, “constant” arrangements clutch 

the binary decoration codes by way of the numeral of 

bit changeovers [28]. Linear and non-linear 

dimensional reduction schemes sought to utilize only 

worthwhile pattern codes [29], [30]. In this paper, we 

have proposed a revised LBPH (ReLBPH) to mend the 

vigor of the recognition procedure, founded on a 

newly proposed threshold, instigator-threshold. The 

gray value of the pixel swapped by the instigator-

threshold of its neighborhood sampling value and 

then generating the face database, extracting the LBP 

feature, and ReLBP feature. We exert our method in 

illumination change where we contrivance that our 

algorithm exactly finds the accurate image. In 

addition, we have a device that other algorithms 

cannot recognize images during illumination changes. 

We experiment with our method of the public 

standard FEI image databases.  

 

The organization of this document is as follows. 

Section II presents an overview of the system model 

and defines the problem. It also describes the details 

of the proposed ReLBPH method. Section III 

evaluates the approach by proper analysis and shows 

the experimental results. Section IV summarizes the 

paper.  

 

II.  METHODS AND MATERIALS 

 

The facial recognition system consists of four main 

components: Data wining scruple, feature deduction 

scruple, testing and training classified database 

scruple. The wining scruple will be used as a test 

sample for analysis. In the feature deduction scruple, 

there are several featured features that can present 

human identity information extraction and analysis. 

In the testing and training classified database scruple, 

classifiers are used to classify tests to determine the 

marking report of the parts. The main objective of 

face recognition is to extract and demonstrate the 

inherent features. In this paper, the proposed 

extraction method, namely ReLBPH is used for face 

recognition. This proposed method Fig. 1 is briefly 

discussed in the following subsections. 
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Figure 1 : Proposed image recognition system 

A. Image Dataset of Faces 

We have executed our research using the public FEI 

Face Dataset [31], DRFFI (Discriminate Real and Fake 

Face Images) dataset [32], and the Constructed dataset. 

FEI Face Dataset carts a collection of facial Fig. 2 that 

are captured between June 2006 and March 200 at 

FIIs Artificial Intelligence Laboratory in Sao Paulo, 

Sao Bernardo Campo, and Brazil. The FEI dataset 

divides into various subgroups, where handpicked 

one among many subgroups for the testing. The 

subgroup embraces 14 images with regard to a piece 

of 200 persons, an aggregate of 2800, along with light, 

facial terminologies, and gesture deviations. Entire 

images are colourful and captured contrary to a white 

homogenous contextual in a standing anterior point 

with a sketch whirl of up to about 180 degrees. The 

scale might fluctuate about 10%. The real shape of all 

Figures is 16.93cm by 12.7cm. All the Figures of FEI 

are of its students and staff, ages between 19 and 40 

with an exclusive outlook, haircut, and adorns. The 

amount of male and female Figures is exactly the 

same and it is 100. Fig. 2 shows some examples of face 

images from the FEI face database. Fig. 3 shows some 

examples of face image variations from the FEI face 

database.  

 
Figure 2 :  Face dataset sample of FEI dataset 

 
Figure 3: Image variations of individuals of FEI 

dataset 

 
Figure 4: Face dataset sample of DRFFI dataset 

 

DRFFI dataset holds masterly-created elevated-

standard photographic facial images where the images 

are combined of various faces, differentiated by 

various organs of a face or entire face. It contains 2041 

different facial images of a total where 1081images are 

real images and other 960 images are fake images. Fig. 

4 shows some examples of face images from the 

DRFFI face database.  

 

 
Figure 5: Face dataset sample of constructed dataset 

 

Constructed face dataset our self-facial-images. It is 

constructed using the principle of detection of faces. 

We made various facial vents and poses to identify 

the faces. We put our images in the same file to make 

the constructed face dataset. Fig. 5 shows some 

examples of face image variations from the 

Constructed face dataset. 
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B. Detection of Face Image 

We have used OpenCV for image detection. It serves 

Haar cascade classifier for face detection. This 

classifier applies the AdaBoost method to detect 

different facial parts. To recognize objects Haar-like 

classifiers are good enough. They have concerned 

with their name to their instinctive resemblance with 

Haar wavelets. They also were applied in the first 

actual period facial image locator [33], [34], [35]. 

With reference to past events, performing with mere 

image severities formed the job of feature prediction 

mathematically extravagant. A proclamation by Papa 

Georgiou et al [36] viewed performing with a moving 

feature kit depends on Haar-like wavelets as a 

substitute for the customary image severity [37], [38]. 

It takes the images and changes them to gray form for 

checking either the image is the human face or not 

[39] [40]. 

C. Face Recognition Using Proposed ReLBPH 

Method 

The LBPH algorithm uses a developed rounded LBP 

operator. For the texture spectrum modelling, local 

binary patterns (LBP) can be used as the precise 

instant. In image recognition, we can use this 

algorithm as a visual descriptor for texture 

classification. LBP is used to label the contrast 

information of a pixel to its neighbourhood pixels. 

LBP is used to label the contrast information of a pixel 

to its neighbourhood pixels. The OLBP eigenvalue 

can be described in Fig. 6. 

 

Figure 6 : Original local binary pattern (OLBP) 

operator 

The LBP feature vector is can be made by using the 

following steps: 

1)  Step-1:  Divide the inspected frame into cells 

(original LBP is defined in the window of 3*3). 

2)  Step-2:  Contrast the pixel separately of every one 

of its neighbors in a cell. Track the pixels along a 

circle, i.e. clockwise or counterclockwise. The pixel 

point is noted as 1 if the surroundings pixel value is 

higher than or same as the center pixel value, else 

noted as 0. In this way, the centric pixel points (LBP 

values) of the frame obtained, which used to reflect 

the texture features of the region.  

3)  Step-3:  The frequency of each “number” 

illustrates the histogram above the cell. Each 

grouping determines which pixels are smaller and 

which are larger than the center. This can gained as a 

256-dimensional property vector. Optionally 

normalizes the histogram. The final concatenation 

(normalized) of the histogram of entire cells gives the 

feature vector for the whole frame. 

The eigenvalue of ReLBP describe in Fig. 7.  

 

 

Figure 7: Revised local binary pattern (ReLBP) 

operator. 

The phases of the proposed ReLBPH algorithm are as 

following: 

4)  Step-1:  Divide the inspected frame into cells 

(original LBP is defined in the window of 3*3). 

5)  Step-2:  Replace the central pixels value by the 

newly proposed threshold value, named instigator-

threshold. 

The formula for the threshold value is as follows:  

 (1) 

Where, Γ = instigator-threshold, and β is an accuracy 

gain factor and it ranges from 1.07 to 1.27. Contrast 

the pixel separately of every one of its neighbors in a 

cell. Track the pixels along a circle, i.e. clockwise or 

counterclockwise. The pixel point is noted as 1 if the 

surroundings pixel value is higher than or same as the 



emedianvalu  maxValue)  (minValue ++
=
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center pixel value, else noted as 0. In this way, the 

centric pixel points (LBP values) of the frame 

obtained, which used to reflect the texture features of 

the region. 

6) Step-3:  The frequency of each “number” illustrates 

the histogram above the cell. Each grouping 

determines which pixels are smaller and which are 

larger than the center. This can gain as a 256-

dimensional property vector. Optionally normalizes 

the histogram. The final concatenation (normalized) 

of the histogram of entire cells gives the feature 

vector for the whole frame. 

 

III.RESULTS AND DISCUSSION 

 

We have used Python, an inferred high-level 

programming language, for our experiment. We used 

our proposed Revised Local Binary Pattern Histogram 

to recognize face images and compare its accuracy 

with LBPH, and MLBPH. First of all, we have trained 

the dataset and compost the texture features. Then we 

have classified and recognized the face reports. We 

have shown the accuracy comparison of all classifiers 

for FEI, DRFFI and Constructed dataset. We also have 

presented the graphical representation of our result. 

A. Experimental Results of Proposed ReLBPH 

Classifier 

We have showed the accuracy results of LBPH, 

MLBPH [14] and ReLBPH methods in table I of FEI 

dataset. From the table we can say that the proposed 

ReLBPH achieves better result and higher 

classification accuracy (99.25%) than LBPH (85.714%) 

and MLBPH (85.714%). 

TABLE I 

ACCURACY COMPARISON OF FEI DATASET 

Algorithm Correctly 

Classified 

Incorrectly 

Classified 

Accuracy 

(%) 

LBPH 1029 191 85.71 

MLBPH 1029 171 85.71 

ReLBPH 1191 09 99.25 

 

Fig. 8, 9, 10 shows the recognition result LBPH, 

MLBPH and ReLBPH. From Fig. 11 shows the 

graphical presentation of accuracy. 

 

 
Figure 8: Image recognition result of OLPBH 

 
Figure 9 : Image recognition result of MLPBH 

 

Figure 10 : Image recognition result of ReLPBH 
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Figure 11 : Graphical representation accuracy 

comparison of FEI dataset 

We have showed the accuracy results of LBPH, 

MLBPH and ReLBPH methods in table II of DRFFI 

dataset. From the table we can say that the proposed 

ReLBPH achieves better result and higher 

classification accuracy (83.33%) than LBPH (75.00%) 

and MLBPH (72.22%). From Fig. 12 shows the 

graphical presentation of accuracy. 

TABLE II 

ACCURACY COMPARISON OF DRFFI DATASET 

Algorithm Correctly 

Classified 

Incorrectly 

Classified 

Accuracy 

LBPH 900 300 75.00 

MLBPH 867 333 72.22 

ReLBPH 1000 200 83.33 

 

Figure 12 : Graphical representation Accuracy 

Comparison of DRFFI dataset 

 

 

B. Experimental Results of Illumination Change 

The LBPH algorithm during dull illumination gives a 

poor accuracy rate. Therefore, to remove this matter 

we collect the dull illumination Figures as the testing 

set. In addition, other Figures applied for making the 

training dataset. To sew up the illumination change 

problem, a revised LBPH (ReLBPH) method depends 

on the neighbourhood gray instigator-threshold value 

is applied. Applying the threshold of the instigator-

threshold value, we increase the recognition rate 

during illumination change. 

 

Figure 13: Image recognition result of illumination 

change, (a) Image recognition result of OLPBH, (b) 

Image recognition result of MLPBH, (c) Image 

recognition result of ReLPBH 

From Fig. 13 we can see easily that our proposed 

method recognize the exact image where other 

cannot recognize. We have showed the accuracy 

results of LBPH, MLBPH and ReLBPH methods in 

table III.  
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TABLE III 

ACCURACY COMPARISON OF FEI DATASET 

Algorithm Correctly 

Classified 

Incorrectly 

Classified 

Accuracy 

LBPH 196 404 33.33 

MLBPH 172 428 29.17 

ReLBPH 343 257 58.33 

 

From the table we can say that the proposed ReLBPH 

achieves better result and higher classification 

accuracy (58.33%) than LBPH (33.33%) and MLBPH 

(29.17%). Fig. 14 shows the graphical presentation of 

accuracy.  

 

 
Figure 14: Graphical representation accuracy 

comparison of FEI dataset during illumination change 

 

We have showed the accuracy results of LBPH, 

MLBPH and ReLBPH methods in table IV of DRFFI 

dataset. From the table we can say that the proposed 

ReLBPH achieves better result and higher 

classification accuracy (46.88%) than LBPH (38.74%) 

and LBPH (41.72%). Fig. 15 shows the graphical 

presentation of accuracy. 

TABLE IV 

ACCURACY COMPARISON OF DRFFI DATASET 

Algorithm Correctly 

Classified 

Incorrectly 

Classified 

Accuracy 

LBPH 250 350 38.74 

MLBPH 300 300 41.72 

ReLBPH 350 250 46.88 

 
Figure 15: Graphical representation accuracy 

comparison of DRFFI dataset during illumination 

change 

 

We have showed the accuracy results of LBPH, 

MLBPH and ReLBPH methods in table V of our 

Constructed dataset. 

TABLE V 

ACCURACY COMPARISON OF CONSTRUCTED DATASET 

Algorithm Correctly 

Classified 

Incorrectly 

Classified 

Accuracy 

LBPH 260 339 40.57 

MLBPH 287 313 42.85 

ReLBPH 340 260 43.33 

 

 

Figure 15 : Graphical representation accuracy 

comparison of constructed dataset during 

illumination change 
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We scan the images in low light and take 600 images. 

From the table we can say that the proposed ReLBPH 

achieves better result and higher classification 

accuracy (53.33%) than LBPH (40.57%) and MLBPH 

(42.85%). The recognition result of our constructed 

database shown in Figureure 16. Figureure 17 shows 

the graphical presentation of accuracy. And in all 

cases we find that our proposed algorithm works 

better with higher accuracy rate. 

 

IV. CONCLUSION 

 

The recognition rate of the local binary pattern 

histogram (LBPH) algorithm depends on illumination, 

expression change, and attitude deflection. To solve 

the illumination change problem, a revised LBPH 

(ReLBPH) algorithm based on neighborhood gray 

instigator-threshold recommend here. Using the 

instigator-threshold of the neighborhood sampling 

values as a replacement for intermediate values. 

Experiments carried out on a FEI, DRFFI and 

generated face datasets. In addition, the accuracy 

(99.25%) demonstrated that the ReLBPH algorithm is 

superior to the LBPH (85.714%) and MLBPH 

(85.714%) algorithms in recognition percentage of in 

the case of FEI dataset. For the DRFFI dataset, the 

accuracy of LBPH, MLBPH and ReLBPH is (83.33%) 

than LBPH (75.00%) and MLBPH (72.22%). Using the 

instigator-threshold of the neighborhood sampling 

values as a replacement for intermediate values, 

thereby decreasing the effects of extraction disorders 

on the distinguishing value of illumination. ReLBPH 

with β = 1.67 is affected by best results and 

sensitiveness to illumination changes than MLBP and 

LBPH. For that reason, Proposed ReLBH algorithms 

finds the exact person where the other algorithms 

cannot in FEI dataset. Moreover, ReLBH (58.33%) 

gains the highest accuracy rate instead of LBPH 

(33.33%) and MLBPH (29.16%) in FEI dataset. For 

the DRFFI dataset, the accuracy of LBPH, MLBPH 

and ReLBPH during illumination change is (46.88%) 

than LBPH (38.74%) and MLBPH (41.72%). Finally 

for our Constructed dataset the accuracy (53.33%) 

than LBPH (40.57%) and MLBPH (42.85%). 
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