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ABSTRACT 

 

Complex geological characteristics and deepening of the mining depth are the 

difficulties of oil and gas exploration at this stage, so high-resolution processing 

of seismic data is needed to obtain more effective information. Starting from 

the time-frequency analysis method, we propose a time-frequency domain 

dynamic deconvolution based on the Synchrosqueezing generalized S 

transform (SSGST). Combined with spectrum simulation to estimate the 

wavelet amplitude spectrum, the dynamic convolution model is used to 

eliminate the influence of dynamic wavelet on seismic records, and the seismic 

signal with higher time-frequency resolution can be obtained. Through the 

verification of synthetic signals and actual signals, it is concluded that the time-

frequency domain dynamic deconvolution based on the SSGST algorithm has a 

good effect in improving the resolution and vertical resolution of the thin layer 

of seismic data. 

Keywords : Synchrosqueezing Generalized S Transform, Time Frequency 

Analysis, Dynamic Deconvolution 

 

I. INTRODUCTION 

 

In order to obtain more accurate stratum information 

based on limited seismic data, experts and scholars 

have proposed high-resolution seismic data processing. 

Deconvolution is a common method to improve the 

resolution of seismic data. It has the advantages of 

simple processing and good processing effects. In pre-

stack and post-stack seismic data processing. In 1940, 

Ricker first proposed the concept that seismic traces 

are composed of different components, and in 1953 he 

proposed that the presence of seismic wavelets in 

seismic signals affects the resolution of seismic data 

[1,2]. On the basis of Ricker, Robinson proposed a 

convolution model in 1954, which regarded the 

seismic signal as the convolution result of the seismic 

wavelet and the reflection coefficient sequence. He 

assumed that the seismic wavelet has the minimum 

phase and the reflection coefficient sequence satisfies 

the characteristics of Gaussian white noise. According 

to this convolution model, the concept of predictive 

deconvolution is proposed [3]. Since then, more and 

more scientists have proposed different deconvolution 

methods. Robinson proposed predictive 

deconvolution in 1954 and compared its relationship 

with least squares deconvolution. Peacock and Treitel 

http://www.ijsrset.com/
https://doi.org/10.32628/IJSRSET218233


International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 8 | Issue 2 

Shulin Zheng et al Int J Sci Res Sci Eng Technol, March-April-2021, 8 (2) : 148-155 

 

 

 

 
149 

further optimized it in 1969. The predictive 

deconvolution algorithm [4]. Oppenheim proposed 

homomorphic deconvolution in 1975 [5]. Wiggins 

first proposed minimum entropy deconvolution in 

1978 [6]. Gulunay proposed f-x deconvolution in 1986, 

which uses the predictability of the f-x domain to 

attenuate multiple waves [7]. Milton proposed 

frequency domain hybrid phase deconvolution in 

1988 [8]. Researchers such as Sacchi and Wang 

Xiaohua improved the minimum entropy 

deconvolution in 1995 and 1997, and obtained an 

improved frequency domain minimum entropy 

deconvolution [9]. 

 

Clarke first proposed the idea of deconvolution for 

non-stationary signals in 1968. It believed that the 

input of seismic wavelets was non-stationary and 

could not better reflect the changes of seismic signals 

on the time average. Therefore, for non-stationary 

processes, it can be directly passed Average over a 

region centered at time t to obtain some estimate of 

the best linear filter [10]. Gary Margrave proposed 

Gabor deconvolution in 2003, which realized time-

frequency domain deconvolution [11]. And in 2011, 

Gabor deconvolution was improved again, and a time-

frequency domain deconvolution based on the 

dynamic convolution model was proposed [12]. In 

2007, Chen Wenchao and others constructed a 

wavelet transform using MBMSW wavelet as the 

mother wavelet to process actual seismic data [13]. 

Guo Tingchao et al. proposed a time-varying spectral 

simulation deconvolution method based on S 

transform in 2015 [14]. 

 

Based on the assumption that the wavelet shape is a 

smooth unimodal curve, we propose a time-frequency 

domain deconvolution based on the 

Synchrosqueezing Generalized S Transform (SSGST) 

[15], which aims to satisfy the actual seismic wavelet 

The wavelet amplitude is estimated based on the 

characteristics of dynamic changes, and a dynamic 

deconvolution method that conforms to the 

attenuation characteristics of seismic records is 

realized. 

 

II.  METHODS  

 

Affected by attenuated seismic wavelets, seismic 

records are non-stationary signals. Therefore, when 

processing seismic records, traditional Fourier 

transform cannot complete the transformation of 

seismic records. In 1946, Gabor first proposed the 

theory of time-frequency domain analysis. The model 

analyzes non-stationary signals in the time and 

frequency domains, and uses time and frequency to 

describe signal characteristics [16]. In this paper, we 

use SSGST to perform time-frequency analysis on 

seismic records to obtain the time-frequency 

spectrum of seismic records, and then use the spectral 

simulation algorithm to estimate the amplitude 

spectrum of dynamic seismic wavelets from the time-

frequency spectrum. We can obtain the time-

frequency spectrum of dynamic seismic wavelets, 

obtain the deconvolution operator according to the 

principle of dynamic deconvolution in the time-

frequency domain, and perform deconvolution 

processing on the seismic record to obtain the 

processed time-frequency spectrum of the high-

resolution seismic record, finally use iSSGST to obtain 

processed seismic records. The flow chart of the time-

frequency domain dynamic deconvolution algorithm 

based on SSGST is as follows: 

 
Figure 1:  Flow chart of dynamic deconvolution based 

on SSGST 

A. The Synchrosqueezing Generalized S Transform 

SSGST belongs to the post-processing process of 

Generalized S Transform (GST) [17], which 

overcomes the fixed frequency-dependent window 

used in Synchrosqueezing S Transform (SST) [18], 
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which is difficult to meet the actual situation. The 

Gaussian window is improved to a variable function 

containing three parameters, so that the size and 

shape of the window function can be flexibly changed 

to meet the high-resolution time-frequency analysis 

under different frequency conditions. The SSGST 

method compresses and reconstructs the complex 

coefficient spectrum of the GST result along the 

frequency direction, so that the energy distribution 

on the time spectrum is concentrated near the actual 

instantaneous frequency of the signal. Therefore, the 

time-frequency resolution can be improved. 

According to the time-frequency analysis result of the 

GST, we can get the instantaneous frequency 

representation of the original signal: 
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SST is used to compress and reconstruct the time-

frequency spectrum of the GST along the frequency 

direction, so that the energy distribution of the time-

frequency spectrum is concentrated near the actual 

instantaneous frequency, and the time-frequency 

representation of the energy concentration is 

obtained. We reassign its value according to the local 

oscillation represented by time-frequency. Combine 

SST and GST we name it SSGST, which is defined as: 
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Where lf   is the frequency of SSGST results.  fL   is 

the half length of the frequency range centered on 

the frequency point lf  , kf  represents the discrete 

frequency points in the GST frequency range and  

1k k kf f f − = −  [15]. The above formula shows that in 

the frequency range ,l f l ff L f L − +  , the energy is 

superimposed on the frequency point lf , so that 

SSGCST has a higher time-frequency resolution, that 

is, the frequency distribution of SSGST is close to the 

instantaneous frequency of the real signal. Since SST 

and GST can perform lossless inverse transformation, 

the combined SSGST can also perform lossless inverse 

transformation in theory. Therefore, we can deduce 

the generalized inverse S transform of synchronous 

extrusion as: 
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B. Dynamic Deconvolution Based on SSGST 

First, we establish a dynamic convolution model of 

seismic data according to Clarke's [10] non-stationary 

convolution idea: 

( ) ( ) ( ) ( ) ( ) ( ) ( ), * ,nonx t w t r t n t w t r d n t    
+

−
= + = − +     (7) 

Where ( )nonx t  is the attenuated seismic signal, 

( ),t  −  including reflection coefficient ( )t  and 

( ),a f ,   ( ),a f represents the attenuation function of 

the seismic signal, and Q is the quality factor: 

( ), exp
f

a f
Q

 


 −
=  

 
          (8) 

 

Therefore, the frequency domain expression of the 

dynamic convolution model can be expressed as: 

( ) ( ) ( ) ( ) ( ), expnonx w r i d n      
+

−
= − +        (9) 

( ) ( ) ( )( ) *nonx W R n   = +        (10) 

Where  ( )nonx   is the seismic signal spectrum, ( )W   is 

the time-varying seismic wavelet spectrum,  ( )R   is 

the reflection coefficient sequence spectrum, and 

( )n   is the noise spectrum. According to formula (9) 

and formula (10), we conclude that in order to obtain 

the reflection coefficient sequence, the seismic 

wavelet must be estimated first. According to the 

dynamic convolution model, we can conclude that 

the time spectrum of the attenuation seismic record is 

approximately equal to the results of the attenuation 
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function spectrum, the reflection coefficient spectrum, 

and the wavelet spectrum. Therefore, the relationship 

between their amplitudes can be expressed as: 

( ) ( ) ( ) ( ), , ,SSGST f w f a f R f  =       (11) 

Where ( ),SSGST f  is the time spectrum of the 

seismic record, ( )w f is the time spectrum of the 

seismic wavelet, ( ),a f is the time spectrum of the 

attenuation function, and ( ),R f is the time 

spectrum of the reflection coefficient sequence. Rosa 

proposed in the article "Processing via spectral 

modeling" that it can be assumed that the seismic 

wavelet is a single-peak curve with a smooth 

amplitude spectrum, and its amplitude shape is similar 

to the Lake wavelet. The mathematical model is as 

follows [19]: 

( )
0
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 
        (12) 

Where ( )W f  is the amplitude spectrum of the seismic 

record, N is the fitting order, k is a constant, and na is 

the polynomial coefficient of f. The spectral 

simulation algorithm does not require that the 

reflection sequence coefficients meet the Gaussian 

white noise condition, but only needs to assume that 

the seismic wavelet is a zero-phase wavelet, so it has a 

larger application range. 

 

After we estimate the frequency spectrum of the 

time-varying seismic wavelet, in order to restore the 

reflection coefficient sequence in the original seismic 

record, we need to construct an inverse operator to 

deconvolve the seismic record. The basic formula is as 

follows: 
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Where ( ),A f   is the deconvolution operator, ( ),wW f  

is the seismic wavelet amplitude spectrum, maxW  is 

the minimum value added to avoid zero value in the 

denominator,    is a small positive real number, maxW  

is the maximum value of the seismic wavelet 

amplitude spectrum, and ( ),w f  is the seismic 

wavelet Phase spectrum. Multiply the inverse 

operator and the seismic record time spectrum to 

obtain the time spectrum of the reflection coefficient 

sequence, and then perform the iSSGST on the time 

spectrum of the reflection coefficient sequence to 

realize the time-frequency domain dynamics based on 

SSGST The formula for deconvolution is as follows: 

( ) ( ) ( ), , * ,SSGST SSGSTR f X f A f  =       (14) 

( ) ( ), ( , )SSGSTr f iSSGST R f =       (15) 

Where ( ),SSGSTR f  is the time-frequency spectrum of 

the seismic signal processed by deconvolution,  

( ),SSGSTX f  is the time-frequency spectrum of seismic 

recording, ( ),A f  is the deconvolution operator, 

( )iSSGST is the inverse synchrosqueezing 

generalized S transform, and is the seismic signal 

processed by the deconvolution. 

 

III. EXPERIMENTAL IMPLEMENTATION 

 

In this section, we first synthesize a single-channel 

stationary seismic signal by using the minimum phase 

rake wavelet with a dominant frequency of 60 Hz and 

the reflection coefficient sequence. On the basis of 

the stationary signal, we add an attenuation factor of 

60 to synthesize the attenuated seismic signal. The 

simulation method recovers the seismic wavelet 

amplitude spectrum from the synthesized signal, 

compares it with the original seismic wavelet 

amplitude spectrum, and deconvolves the seismic 

signal by calculating the inverse operator. The 

experimental results are shown in the figure below: 
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Figure 2:  Synthetic seismic record (a. seismic wavelet b. 

reflection coefficient sequence c. stationary seismic 

signal d. attenuated seismic signal) 

 
Figure 3: Attenuated seismic signal extracts seismic 

wavelet amplitude spectrum at different moments 

(a.200ms b.500ms) 

 
Figure 4:  Time-frequency domain spectrum simulation 

deconvolution results (a. Reflection coefficient sequence 

b. Stationary seismic record c. Attenuation seismic 

record d. Seismic record after deconvolution) 

Figure 2(a) and figure 2(b) respectively show the 

zero-phase rake wavelet and reflection coefficient 

sequence, and Figure 2(c) and figure 2(d) show the 

steady seismic record and attenuated earthquake 

using the combination of wavelet and reflection 

coefficient Record. Figure 3 is the amplitude spectrum 

of the seismic wavelet at 200ms and 500ms estimated 

by the time-frequency domain spectrum simulation 

algorithm. As time increases, the recovered seismic 

wavelet amplitude is also attenuated, which means 

that we can use the spectral simulation method to 

recover the time-varying seismic wavelet. According 

to the time-frequency spectrum dynamic 

deconvolution model, we use the estimated 

attenuation seismic wavelet to design a deconvolution 

operator, and perform deconvolution processing on 

the attenuation seismic record. The result is shown in 

Figure 4(d). Comparing Figure 4(b), Figure 4(c) and 

Figure 4(d), we can find that the attenuated seismic 

signal after deconvolution in the time-frequency 

domain can recover energy, distinguish thin layers, 

Eliminate the influence of part of the sub-wave side 

lobes on the reflection coefficient, so that the 

processed seismic record can more clearly reflect the 

specific characteristics of the reflection coefficient 

sequence. Therefore, we can consider that the 

dynamic deconvolution based on the simultaneous 

extrusion generalized S-transform has certain 

application value in identifying thin layers and 

restoring seismic energy attenuation. 

 

In the previous section, we used synthetic seismic 

signals to verify that dynamic deconvolution based on 

SSGST can improve resolution, compensate for 

amplitude attenuation, and reduce the impact of 

seismic wavelets on seismic data when processing 

seismic records. In this section, we use actual seismic 

signals. Verify the performance of the algorithm again. 

This section first uses actual seismic signals from a 

certain area in the Ordos Basin as data samples. The 

geological characteristics of this area are thin 

reservoirs, rapid thickness changes and strong 



International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 8 | Issue 2 

Shulin Zheng et al Int J Sci Res Sci Eng Technol, March-April-2021, 8 (2) : 148-155 

 

 

 

 
153 

heterogeneity. The analysis sampling time is 1000ms 

for a single seismic signal. The effect comparison 

before and after treatment is shown in the figure 

below: 

 

Figure 5: Original seismic signal and seismic signal 

after deconvolution 

 

 

Figure 6:  The spectrum of original seismic signal and 

The spectrum of seismic signal after deconvolution 

Figure 5 is the time domain diagram of the original 

actual seismic signal and the signal after dynamic 

deconvolution based on SSGST. Figure 6 is the 

frequency spectrum of the two signals. By comparing 

the amplitude spectrum and frequency spectrum of 

the two signals, we It can be seen that the seismic 

signal after dynamic deconvolution is more obviously 

compensated in amplitude. In some parts where the 

change is not obvious, such as 240ms and 320ms, the 

processed signal changes more obviously, and it can 

be seen that the original signal is not displayed. The 

fluctuations that come out. And with the increase of 

time, the effect of compensation becomes more 

obvious. In terms of frequency spectrum, the 

amplitude of the processed signal in the main 

frequency part is increased obviously, and the 

effective bandwidth of the signal has been broadened, 

achieving the purpose of amplitude compensation and 

frequency compensation. Next, select a total of 500 

channels of data in the same area, and the seismic 

section formed by seismic records with each data 

length of 1000ms for processing: 

 

Figure 7:  Original seismic section 

 

Figure 8:  Seismic profile after dynamic deconvolution 

in time-frequency domain based on SSGST 

Figure 7 is the original seismic section, and Figure 8 is 

the seismic section after SSGST-based dynamic 

deconvolution in the time-frequency domain. 

Comparing the two figures, we can see that the 

amplitude of the processed seismic profile has been 

significantly improved, especially at the position of 

800ms-1000ms. The original actual profile is affected 

by attenuation and the stratum distribution is not 
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clear, but after deconvolution processing The 

maximum amplitudes of the sections have been 

improved, the stratification between the various 

strata has become more obvious, and the resolution 

has been improved. Especially in the circled part of 

the black circle, we can see that the resolution 

improvement effect of the signal processed by 

dynamic deconvolution based on SSGST is obvious. 

Part of the original hidden detail information can be 

restored, and the layering is not displayed in the 

original section. The conditions of the faults are 

shown in Figures 8, and the thin-layer resolution has 

been significantly improved 

 

IV. CONCLUSION 

 

This paper mainly combines the time-frequency 

analysis method with deconvolution, and proposes a 

time-frequency domain dynamic deconvolution based 

on Synchrosqueezing generalized S transform. This 

method mainly uses the characteristics of SSGST with 

high time-frequency resolution and high-energy 

focusing. The time-frequency spectrum of each 

moment can be obtained more accurately from the 

attenuation seismic record, and then the amplitude of 

each moment is fitted by the spectral simulation 

method. Obtain the time-varying amplitude spectrum 

of the seismic wavelet, obtain the wavelet time 

spectrum based on the zero phase assumption of the 

wavelet, estimate the attenuated seismic wavelet 

closer to the actual situation, and obtain the inverse 

operator in the deconvolution, according to Rick's 

proposal Dynamic deconvolution of the dynamic 

convolution model, which deconvolves seismic 

records in the time-frequency domain, reduces the 

impact of seismic wavelets on seismic records and 

improves the resolution of seismic data. Through the 

verification of synthetic seismic data and actual 

seismic data, we can conclude that the time-

frequency domain dynamic deconvolution based on 

SSGST is better than traditional static deconvolution 

in improving the longitudinal resolution of seismic 

data and improving the resolution of thin layers. 

Effect. And because SSGST has strict mathematical 

reasoning and can process signals of different 

frequencies, the dynamic convolution model is more 

in line with the actual signal model, so the time-

frequency domain dynamic deconvolution based on 

SSGST is a practical and extensive High-resolution 

processing method of seismic data. 
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