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ABSTRACT 

 

The task of measuring sentence similarity is defined as determining how similar the meaning of two sentences 

is. The higher the score, the more similar the meaning of the two sentences. The task of identifying similarity is 

not an easy one because of variability in natural language expressions. Hence the similarity metrics give varied 

results in many of the cases and choosing the right measure is crucial to the efficiency of the system. This paper 

compares and analyses three similarity measures: Euclidean Distance, Cosine Similarity and Jaccard Distance 

and points out the usage of each metric. 
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I. INTRODUCTION 

 

The task of measuring sentence similarity is defined 

as determining how similar the meanings of two 

sentences are. Computing sentence similarity is not a 

trivial task, due to the variability of natural language - 

expressions. Measuring semantic similarity of 

sentences is closely related to semantic similarity 

between words. It makes a relationship between a 

word and the sentence through their meanings. The 

intention is to enhance the concepts of semantics 

over the syntactic measures that are able to categorize 

the pair of sentences effectively. Semantic similarity 

plays a vital role in Natural language processing, 

Informational Retrieval, Text Mining, Q & A systems, 

text-related research and application area. 

 

II. The Euclidean distance 

 

In either the plane or 3-dimensional space is simply 

the shortest distance between the two points. It is also 

called Pythagorean metric as it forms a right-angled 

triangle and is used to find the similarity between the 

two points. It helps to identify the sameness of 

vectors and hence find translation pairs in NLP. The 

higher the score, the less similar are the vectors. 

 

In a right-angled triangle, as shown below, the square 

of the hypotenuse (the side denoted by Z) is equal to 

the sum of the squares of the other two sides (Y and 

Z); that is,  𝑍2 = 𝑋2 + 𝑌2. 

 

 
 

The immediate consequence of this is that the 

squared length of a vector  �⃗� = [𝑣1, 𝑣2] is the sum of 

the squares of its coordinates (see triangle OPA in 

Figure 1, or triangle OPB –|𝑂𝑃|2 denotes) 
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Figure 1 Pythagoras’ theorem applied to distances in 

2-D space 

 

the squared length of 𝑣 , that is the distance between 

point O and P); and the squared distance between 

two �⃗⃗� = [𝑢1, 𝑢2]  and �⃗� = [𝑣1, 𝑣2]  is the sum of 

squared differences in their coordinates (see triangle 

PQO’ in Figure 1; |𝑂𝑄|2 denotes the squared distance 

between points P and Q). To denote the distance 

between vectors �⃗⃗� and �⃗� we can use the notation δ𝑢,𝑣 

so that this last result can be written as: 

In rt. Angle triangle ∆ PO’Q  

|𝑃𝑄| =  √𝑂′𝑄2 + 𝑂′𝑃2 

  δ𝑢,𝑣   =  √(𝑢1 − 𝑣1)2 + (𝑣2 − 𝑢2)2 

The distance between points P and O is the distance 

between the vector �⃗⃗� = [𝑢1, 𝑢2] and the zero vector 

0⃗⃗ = [0,0] with coordinates all zero: 

In rt. Angle triangle ∆ OAP  

|𝑂𝑃| =  √𝑂𝐴2 + 𝑂𝐵2 

δ0,𝑣 =  √𝑣1
2 + 𝑣2

2 

In rt. Angle triangle ∆ OCQ  

|𝑂𝑄| =  √𝑂𝐶2 + 𝑂𝐷2 

  δ𝑢,0  =  √𝑢1
2 + 𝑢2

2 

which we could just denote by δ𝑢. The zero vector is 

called the origin of the space. 

 

Figure 2 Pythagoras’ theorem extended into 3-D 

space 

 

We move immediately to a three-dimensional point 

�⃗� = [𝑣1, 𝑣2, 𝑣3] shown in 2. The three coordinates are 

at points A, B and C along the axes, and the angles 

AOB, AOC and COB are all 90° as well as the angle 

OSP at S, where the point P (depicting vector �⃗�) is 

like projection onto the ‘floor’. Using Pythagoras’ 

theorem twice we have: 

|𝑂𝐴|2 =  𝑣1
2 

|𝑂𝐵|2 =  𝑣2
2 

|𝑂𝐶|2 =  𝑣3
2 

In rt. Angle triangle ∆ OSP  

|𝑂𝑃|2 = |𝑂𝑆|2 + |𝑆𝑃|2 − − − −(1) 

In rt. Angle triangle ∆ OAS  

|𝑂𝑆|2 = |𝑂𝐴|2 + |𝐴𝑆|2 − − − − − (2) 

From (1) and (2) we will get 

|𝑂𝑃|2 = |𝑂𝐴|2 + |𝐴𝑆|2 + |𝑆𝑃|2 

|𝑂𝑃|2 =  𝑣1
2 + 𝑣2

2 + 𝑣3
2 

|𝑂𝑃| =  √𝑣1
2 + 𝑣2

2 + 𝑣3
2 

δ𝑣  = √𝑣1
2 + 𝑣2

2 + 𝑣3
2 

It is also clear that placing a point Q in Figure 2.5 to 

depict another vector �⃗⃗�   and going through the 

motions to calculate the distance between �⃗⃗�  and �⃗� 

will lead to 

  δ𝑢,𝑣   =  √(𝑢1 − 𝑣1)2 + (𝑣2 − 𝑢2)2 + (𝑣3 − 𝑢3)2 

 

III. Cosine similarity 

Is a measure of the cosine of the angle between two 

non-zero vectors (arrays of the word count) projected 

in a multi-dimensional space, where both vectors are 
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normalized to 1 and computes the similarity of 

documents independent of the size of the documents. 

The value of cosine of 0 degree is 1 and it is less than 

1 for the angles between (0, pie) radians. The cosine 

similarity is used in positive space, where the output 

is clearly represented in binary forms of zeros and 

one.  

It measures the angle or orientation of the documents 

unlike Euclidean distance which measures the 

magnitude. If the two documents have higher 

distance (means they are far from one another in 

terms of Euclidean distance) still they can have 

smaller angle. There will be a greater number of 

common words in large documents but this doesn’t 

mean they are similar. Cosine similarity is the 

solution to this problem. Two vectors which are 

parallel or oriented in the same direction will have a 

smaller angle and their cosine similarity will be 1, 

means they will be similar; vectors which are 

perpendicular to one another will have larger angle 

and their cosine similarity is 0, means they are 

dissimilar; vectors which are in opposite directions 

will have a cosine similarity of -1, means they are 

similar. It implies that if the vectors are far away from 

one another still they can have a smaller angle and 

prove their similarity in case of cosine similarity. 

In case of information retrieval, the terms are 

characterized by different dimensions and the 

documents are represented in the form of vectors. 

The value of vector is equal to the frequency of the 

times it appears in the document. Cosine similarity 

here measures the similarity of the two documents in 

terms of their content/words. 

The cosine similarity equation is solved as a dot 

product for cos theta.  It generates a metric that says 

how related are two documents by looking at the 

angle instead of magnitude, as shown below as shown 

in Figure 3,  Figure 4 and Figure 5: 

 

1Figure 3 Vectors in the same direction 

(angle between them is nearly 0 degree; cosine of the 

angle is near 1) 

 

2Figure 4 Orthogonal vector 

(angle is nearly 90 degree; cosine of angle is near 0) 

 

3Figure 5 Vectors in opposite direction 

(angle between them is nearly 180 degree; cosine of 

angle is -1) 

Cosine similarity can overcome the problem of higher 

count of terms because even if the vectors points are 

far away from one another, they still can have a small 

angle between them. Let’s say, we have a term which 

 
1 https://blog.christianperone.com/wp-

content/uploads/2013/09/cosinesimilarityfq1.png 

2 https://blog.christianperone.com/wp-

content/uploads/2013/09/cosinesimilarityfq1.png 

3 https://blog.christianperone.com/wp-

content/uploads/2013/09/cosinesimilarityfq1.png 
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occurs 100 times in one document and only 10 times 

in another document, they can have a small angle 

because they point towards the same direction, 

however the Euclidean distance between them will 

be more.  

 

IV. Jaccard Similarity or Jaccard index 

is a measure to find similarity and difference of 

sample sets. Jaccard coefficient finds the similarity 

and is obtained by dividing the intersection by the 

union of the sets. Jaccard distance finds the 

dissimilarity and is obtained by subtracting the 

coefficient from 1. The value of dissimilarity will be 0. 

The Jaccard Index, also known as the Jaccard 

similarity coefficient, measures similarity between 

finite sample sets, and is formally defined as the size 

of the intersection divided by the size of the union 

of the sample sets. The mathematical representation 

of the index is written as: 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝛼, 𝛽) =  
|𝛼 ∩ 𝛽|

|𝛼 ∪ 𝛽|
=  

|𝛼 ∩ 𝛽|

|𝛼| + |𝛽| − |𝛼 ∩ 𝛽|
 

Whereas Jaccard index measures similarity, Jaccard 

distance measures dissimilarity between sample sets. 

It is calculated by finding the Jaccard index and 

subtracting it from 1, or alternatively dividing the 

differences by the intersection of the two sets.  

 To find the Jaccard Index we divide the number in 

both sets by the number in either set, multiplied by 

100. It gives the similarity between the sets in the 

form of percentage.   When we subtract this 

percentage from 1, we get the Jaccard distance. For 

example, if the similarity measurement is 45%, then 

the Jaccard distance (1 - 0.45) is 0.55 or 55%. 

Jaccard similarity is based on set theory so repetition 

of words does not affect it whereas in case of Cosine 

similarity repetition of words affect the calculations. 

 

We will compute similarity between three documents 

to compare the three measures. Suppose we have 

three documents: 

d1 - Music is a universal language 

d2 - Music is a miracle 

d3 - Music is a universal feature of the human 

experience 

 We want to find document Similarity of d3 with 

other two documents d1-d3 and d2-d3 

Jaccard Distance between d1 and d3 – 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑑1, 𝑑3) =  
|𝑑1 ∩ 𝑑3|

|𝑑1 ∪ 𝑑3|
 

J(d1, d3) = 4/10 

              = 0.4 

Jaccard Distance between d2 and d3 – 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑑2, 𝑑3) =  
|𝑑2 ∩ 𝑑3|

|𝑑2 ∪ 𝑑3|
 

J(d2, d3) = 3/10 

              = 0.3 

Euclidean Distance between d1 and d3 using relative 

term frequency values – 

E(d1, d3) = sqrt[ (0.2 - 0.11)^2 + ... + (0 - 0.11)^2 + (0 -

0.11)^2 + (0 - 0.11)^2] 

= sqrt[ 0.0081 + 0.0081 + 0.0081 + 0.0081 + 0.012 + 

0.012 + 0.012 + 0.012 + 0.012] 

= sqrt(0.1329) 

= 0.364554523 

Euclidean Distance between d2 and d3 using relative 

term frequency values – 

E(d2, d3) = sqrt[ (0.25 - 0.11)^2 + (0.25 - 0.11)^2 +  ... 

+ (0 - 0.11)^2 + (0 - 0.11)^2] 

= sqrt[ 0.0196 + 0.0196 + 0.0196 + 0.012 + 0.0625 + 

0.012 + 0.012 + 0.012 + 0.012 + 0.012] 

= sqrt(0.1939) 

= 0.440340777 

Cosine similarity between d1 and d3 – 

num = [0, 0, 0, 0.035, 0.095, 0, 0, 0, 0, 0, 0] * [0, 0, 0, 

0.019, 0, 0, 0.052, 0.052, 0.052, 0.052, 0.052] 

    = 0*0 + 0*0 + 0*0 + 0.035*0.019 + 0.095*0 + 0*0 + 

0*0.052 + 0*0.052 + 0*0.052 + 0*0.052 + 0*0.052  

    = 0.000665 

    den = sqrt[0 + 0 + 0 + 0.0012 + 0.009 + 0 + 0 + 0 + 0 

+ 0 + 0] * sqrt[0 + 0 + 0 + 0.0003 + 0 + 0 + 0.0027 + 

0.0027 + 0.0027 + 0.0027 + 0.0027] 

    = 0.0102 + 0.0138 

    = 0.024 

 cosθ = 0.000665 / 0.024 

     = 0.028 

Cosine similarity between d2 and d3 – 
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num = [0, 0, 0, 0, 0, 0.119, 0, 0, 0, 0, 0] * [0, 0, 0, 0.019, 

0, 0, 0.052, 0.052, 0.052, 0.052, 0.052] 

    = 0*0 + 0*0 + 0*0 + 0*0.019 + 0*0 + 0.119*0 + 0*0.052 

+ 0*0.052 + 0*0.052 + 0*0.052 + 0*0.052  

    = 0 

Thus, cosθ = 0 

We find that d1 and d3 have greater Cosine Similarity 

as is intuitive. Here most accurate document 

similarity is provided by Cosine Similarity. Jaccard 

Distance is fairly accurate as it states that the 

document pair d1 and d3 are more similar as 

compared to d2 and d3. Euclidean Distance, also gives 

fairly accurate value. 

 

V. CONCLUSION 

 

Thus, the effectiveness of the metric depends on the 

task for which they are being used. Some tasks, such 

as preliminary data analysis, benefit from cosine as 

well as Euclidean distance measure; each of them 

allows the extraction of different insights on the 

structure of the data. Text classification, generally 

function better under Euclidean distances. Some 

more, such as retrieval of the most similar texts to a 

given document, generally function better with 

cosine similarity. Cosine similarity is generally used 

for measuring distance when the magnitude of the 

vectors does not matter. This happens for example 

when working with text data represented by word 

counts. We could assume that when a word (e.g. 

science) occurs more frequent in document 1 than it 

does in document 2, that document 1 is more related 

to the topic of science. When we work with 

documents of uneven length, some words occur more 

in a longer document. In such cases cosine similarity 

proves beneficial.  
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