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ABSTRACT 

 

In the present paper FEM and FDM analysis is made to analyze the effect of 

Dufour number variation on unsteady free convection flow of an electrically 

conducting, viscous fluid past an infinite vertical porous plate embedded in 

porous medium. Magnetic field is applied normal to the flow. The governing 

non-linear coupled partial differential equations with boundary conditions are 

solved using  Galerkin finite element and Crank-Nicholson methods. Graphical 

results for velocity, temperature and concentration fields and tabular values of 

Skin-friction and Nusselt numbers are presented and discussed. It is observed 

that the velocity and Temperature, Skin–friction and Nusselt number increase 

in the presence of viscous dissipation and for the increasing values of Dufour 

number.  

Keywords : MHD Flow, Vertical Plate, Dufour, Viscous Dissipation, Galerkin 

Finite Element Method , Crank-Nicholson Method. 

 

I. INTRODUCTION 

 

In industries, many transport processes exist in which, 

heat and mass transfer takes place, simultaneously, as 

a result of combined buoyancy effect of thermal 

diffusion of chemical species. The phenomenon of 

heat and mass transfer has been the object of wide 

research due to its applications in science and 

technology. Such phenomenon is observed in 

buoyancy-induced motions in the atmosphere, in 

bodies of water, quasi- solid bodies such as earth so on. 

Unsteady oscillatory free connective flows play a 

significant role in chemical engineering, turbo 

machinery and aerospace technology. Such flows 

arise owing to unsteady motion of a boundary or 

boundary temperature. Besides, unsteadiness may also 

be owing to oscillatory free stream velocity and 

temperature. In the past decades an intensive research 

effort has been devoted to problems on heat and mass 

transfer in consideration of their application to 

astrophysics, geophysics and engineering.  

 

II. LITERATURE REVIEW 

 

Eckert et al [1] have done establish work on heat and 

mass transfer. The equations governing the mass 

transfer phenomenon are complicated. However, 

Gebhart [2] simplified these equations by assuming 

http://www.ijsrset.com/
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the presence of species concentration at very low 

levels and made wide studies on combined heat and 

mass transfer flow, to highlight the insight of the 

phenomenon. Due to importance of these flows, 

several authors [3-11] have studied the problems on 

free convection and mass transfer flow of a viscous 

fluid through porous medium. In these studies, the 

permeability of the porous medium is imagined to be 

constant. However, a porous material containing the 

fluid is a non-homogeneous medium and the porosity 

of the medium may not essentially be constant. 

Shreekanth et al[13] studied the effect of permeability 

variation on free convective flow past a vertical 

porous wall in a porous medium when the 

permeability varies with time. Singh et al [14] 

considered hydro magnetic free convection and mass 

transfer flow of a viscous stratified fluid considering 

variation in permeability with direction. Acharya et 

al [12] conferred magnetic field effects on the free-

convection flow through porous medium with 

constant suction and constant heat flux.  

 

Singh et al [15] considered the effects of permeability 

variation and oscillatory suction velocity on free 

convection and mass transfer flow of a viscous fluid 

past an infinite vertical porous plate to a porous 

medium when the plate is subjected to a time 

dependent suction velocity perpendicular to the plate 

in the presence of magnetic field. The permeability of 

the porous medium is considered to be

)1()( 0

tnieKtK


+=  and the suction velocity is 

supposed to be )1()( 0

tnieVtV


+=  where Vo>0 and 

ε<<1 is a positive constant. 

 

In all the above stated problems, the effect of Soret 

and Dufour on the flow field has not been considered. 

Such effect is important when density differences 

exist in the flow regime. For example when species 

are initiated at a surface in fluid domain, with 

different (lower) density than the surrounding fluid, 

both Soret and Dufour effects can be considerable. 

Also, when heat and mass transfer arise 

simultaneously in a moving fluid, the relations 

between the fluxes and the driving potentials are of 

more complicated nature. It has been found that an 

energy flux can be created not only by temperature 

gradients but also by composition gradients. The mass 

fluxes can be created by temperature gradients is 

called the Soret effect. The thermal-diffusion (Soret) 

effect, for instance, has been utilized for isotope 

separation and in mixture between gases with very 

light molecular weight (H2, He) and of medium 

molecular weight (N2, air). The thermal-diffusion 

effect was found to be of a significant magnitude such 

that it cannot be ignored (Eckert and Drake [1]). In 

view of the significance of this effect, Jha and Singh 

[18] studied the free-convection and mass transfer 

flow about an infinite vertical flat plate moving 

impulsively in its own plane, taking into account the 

Soret effects. Kafoussias [19] studied the same 

problem in the case of MHD flow. Srihari et al[20] 

analyzed the Soret number variation on free 

convection hydro-magnetic flow of a viscous, 

electrically conducting fluid, past an infinite vertical 

porous plate with oscillatory suction velocity with 

heat sink.Anand Rao et al. [21] analyzed the effect of 

Soret number on an unsteady two-dimensional 

laminar mixed convective boundary layer flow of a 

chemically reactingfluid, along a semi-infinite vertical 

permeable moving plate with viscous dissipation. 

Srihari and Kesavareddy [22] have made the 

investigation to study the effects of Soret and 

Magnetic field on unsteady laminar boundary layer 

flow of a radiating and chemically reacting 

incompressible viscous fluid along a semi-infinite 

vertical plate. 

 

In most of the previous studies analytical or 

perturbation methods were applied to obtain the 

solution of the non linear problem. However, in the 

present paper Galerkin finite element and Finite 

difference analysis is made to study the effect of 
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Dufour in the presence of viscous dissipation on free 

convection flow of an incompressible fluid past an 

infinite vertical porous pate. A magnetic field is 

applied normal to the fluid flow. To obtain the 

solution and to explain the physics of the problem, 

the present non-linear boundary value problem is 

solved numerically using Galerkin finite element and 

Crank-Nicholson methods.  

 

III. MATHEMATICAL FORMULATION OF THE 

PROBLEM   

 

Unsteady free-convection flow of an incompressible, 

electrically conducting viscous fluid, past an infinite 

vertical plate embedded with porous medium is 

considered. In Cartesian coordinate system, let x'-

axis be along the plate in the direction of the flow 

and y'-axis normal to it. A uniform magnetic field is 

introduced normal to the direction of the flow. In 

addition, the analysis is based on the assumptions. (i) 

the plate temperature and species concentration are 

instantly raised to   )1( tni

w eTT


+=  and 

)1( tni

w eCC


+=  are maintained as such; (ii) the 

fluid properties are not affected by the temperature 

differences except that of the density in the body 

force term; (iii) the influence of density variations 

in other terms of the momentum, energy and 

concentration equations and the variation of the 

expansion coefficient with temperature is 

negligible;(iv) the magnetic Reynolds number is 

much less than unity so that, the induced magnetic 

field is neglected; (v) the plate is electrically non 

conducting so that, the equation of conservation of 

electric charge 0. = J


given by yJ  =constant = 0, 

everywhere in the flow; (vi) the joule heating effect 

and viscous dissipation terms have been neglected. 

 

Within the abovementioned framework, under usual 

Boussinesq’s approximation,     the equations relevant 

to the problem are:  
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The relevant boundary conditions in 

dimensionless form are: 

 u = 0, 𝝷 = 1 + tnie , Φ = 1 + tnie at y = 0  (4) 

u→0,  𝝷→0, Φ→0 as y → . 

The non-dimensional quantities introduced in the 

above equations are defined as: 
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IV. METHOD OF SOLUTION  

 

The finite element method has been implemented to obtain numerical solutions of equationss. (1–3) under 

boundary conditions (4). The fundamental steps comprising the method are now summarized.  

 

Step 1: Discretization of the domain into elements 

Step 2: Derivation of the element equations 

The derivation of finite element equations i.e., algebraic equations among the unknown parameters of the 

finiteelement approximation, involves the following three steps. 

• Construct the variational formulation of the differential equation. 

• Assume the form of the approximate solution over a typical finite element. 

• Derive the finite element equations by substituting the approximate solution into the variational 

formulation. 

Step 3: Assembly of element equations. 

Step 4: Impositions of Boundary Conditions. 

Step 5: Solution of the assembled equations. 

By implementing the step (1-3) to the nonlinear differential equation(1), the assembled element equations for 

two consecutive elements iyyiy −1  and 1+ iyyiy put row corresponding to the node ‘ i ’ to zero, with 

the difference schemes by taking  h
e

l =
)(  the following is obtained  
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Applying the trapezoidal rule, following the system of equations in Crank-Nicholson method are obtained 
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Apply the same strategy, the following is obtained    
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 Here, 2/hkr = and kh, are mesh size along the y direction and the time direction respectively. Index i  refers 

to space and j   refers to the time. In the Equations (5) – (7), taking ni ...,1= and using boundary conditions 

(4), the following system of equations are obtained: 

          iii BXA = 3)1(1=i                                                                                          (8) 

    Where iA ’s are the matrix of order n  and ii BX , ’s column matrices having n  components. The solutions of 

the above systems of equations are obtained by using the Thomas algorithm for velocity, temperature, and 

concentration. Also, the numerical solutions are obtained by executing the MATLAB program with the smaller 

values of h  and k . No significant change was observed in 𝑢, and 𝜃 then the Galerkin finite element method is 

stable and convergent. 

 

Finite difference Method  

Using Finite difference formulae in equations (1) to (4) and simplifying implicitly according to the Crank-

Nicholson method, the following system of equations are obtained  
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  And 2)/( ytr = , tniep +=1 , Δy and Δt are mesh sizes along space and time direction respectively. 

To obtain the difference equations, the region of the 

flow is divided into a grid or mesh of lines parallel to 

y and t  axes. Solutions of difference equations are 

obtained at the intersection of these mesh lines called 
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nodes. The finite-difference equations at every 

internal nodal point on a particular n-level constitute 

a tri-diagonal system of equations. These equations are 

solved by using the Thomas algorithm [17]. To prove 

the convergence of finite difference scheme, the 

computation is carried out for slightly changed values 

of  and t , running same program. Negligible 

change is observed.  

 

V. RESULTS AND DISCUSSION 

 

Inherent physics of the problem of investigation is 

analyzed with suitable CFD tools namely, Finite 

difference and Finite element techniques. Impact of 

different physical parameters of the flow involved is 

investigated by taking the consideration of their 

graphical representations  

 

The effect of Dufour number variation on velocity and 

temperature field is shown in figures (1) and (5) 

respectively. Dufour number signifies the contribution 

of the concentration gradients to the thermal energy 

flux in the flow. From these figures, it is observed that 

velocity and temperature of the fluid increase for the 

increasing values of Dufour number as raising of Dufuor 

affects on concentration gradients to thermal energy 

fluxes.  

      . 

The analysis of figure (2) and (6) reveal that velocity and 

temperature of the fluid rise for increasing values of 

Eckert number (Ec). This is physically true owing to the 

fact that rising value of Ec produces the viscous 

dissipation heating within in the system in such way 

that temperature of the fluid increases with increase in 

Ec. Consequently, the velocity of the fluid increases for 

the increasing values of Ec. Fig(3) shows the effect of 

magnetic parameter M on velocity field u. It is observed 

from figure that velocity of the flow reduces in the 

presence magnetic parameter as Lorentz resistive type 

body force suppress the flow thus reduces the velocity of 

the fluid flow. Figure (4) show that an increase in Gr and 

Gm leads to increase in the velocity of the flow. This is 

due to the fact that with the increasing values of thermal 

Grashof number and mass Grashof number has the 

tendency to increase the thermal and mass buoyancy 

effect. This gives rise to an increase in the induced flow. 

 

Skin-friction coefficient )(  values are shown in table 

(1) for different values of  Du,  Ec, M, Sc, Pr, and K0, in 

the case of cooling of the plate. From this table it is 

observed that an increase in Du, Ec, and K0 leads to 

enhance in the Skin-friction but an   increase in M, Pr, 

and Sc leads to decrease in the Skin-friction. Table (2) 

shows the Nusselt number (Nu). From this table it is 

noted that an increase in source parameter Ec and Du, 

leads to increase in the the Nusselt number. But an 

enhance in Pr reduces the Nusselt number (Nu). 

 

VI. CONCLUSION 

 

(1) Temperature and Nusselt number increase as the 

value of Eckert number increases due to the 

frictional heating between fluid and plate. Therefore 

Velocity, Skin–friction and Nusselt number increase 

in the presence viscous dissipation. 

(2) for increasing values of Dufour parameter, there is 

a considerable enhancement in the velocity of the 

fluid is observed. 

 

Nomenclature 

 

u velocity along the x-axis 

 KT Thermal conductivity 

 υ kinematic coefficient of viscosity 

  coefficient of volume expansion for the 

heat transfer 
*  

volumetric coefficient of expansion 

with species concentration 

T  
fluid temperature at infinity 

C  
species concentration at infinity, 
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D chemical molecular diffusivity 

0K  constant permeability of the medium 

μ
 

coefficient of viscosity 

Cp specific heat at constant pressure 

n frequency of oscillation 

ρ density of the fluid 

 

Fig1: Effect of Dufour Du on velocity field u             
(Gr=5.0,Gm=5.0, M=0.5,Sc=0.22,Pr=0.71,Ko=1.0,Ec=0.5,  ε =0.005 and 

nt=π/2) 

                            

 
 

Fig 2: Effect of viscous dissipation on velocity 

field u             
(Gr=5.0,Gm=5.0, M=0.5,Sc=0.22,Pr=0.71,Ko=1.0,Du=1.0, ε =0.005 and 

nt=π/2) 

 

 

 

                              

 
Fig 3: Effect of Magnetic parameter M on 

velocity field u 
(Gr=5.0,Gm=5.0, Sc=0.22,Pr=0.71, Du=1.0, Ko=1.0, Ec=0.5,  ε =0.005 and 

nt=π/2) 

 

 Fig 4: Effect of Gr and Gm on velocity field u             
(M=1.0, Du=1.0,Sc=0.22,Pr=0.71,Ko=1.0,Ec=0.5, ε =0.005 and nt=π/2) 
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Fig 5: Effect Dufour Du on temperature field 𝝷 
(Gr=5.0, Gm=5.0, Pr=0.71, M=1.0, Ec=0.5, Ko=1.0,ε=0.005 and nt 

=π/2) 

                                                                                        

 
Fig 6: Effect of viscous dissipation Ec on 

temperature field 𝝷 
(Gr=5.0, Gm=5.0, Pr=0.71, M=1.0, Du=1.0, Ko=1.0,ε=0.005 and nt 

=π/2) 

 

 

 

 

 

 

 

 

 

 

 

Table 1 : Skin-friction coefficient (  ) 

 

 

Table 2:  Nusselt number Nufor Gr=5.0,Gm=5.0,M=1.0, 

K0=1.0 
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