
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Science, Engineering and Technology

Print ISSN: 2395-1990 | Online ISSN : 2394-4099 (www.ijsrset.com)

doi : https://doi.org/10.32628/IJSRSET2183183

258

Lazy Loading Based with Load On Demand and Currency Support in Web

Browser
1Shamali V. Bire, 2Virendra Pawar

1Post Graduate Student, Master of Technology, Department of Computer Engineering, Vishwakarma Institute

of Technology, Pune, Maharashtra, India
2Assistant Professor, Department of Computer Engineering, Vishwakarma Institute of Technology, Pune,

Maharashtra, India

Article Info

Volume 8, Issue 3

Page Number: 473-478

Publication Issue :

May-June-2021

Article History

Accepted : 12 June 2021

Published: 22 June 2021

ABSTRACT

In this work our goal is to make a Web client application for the Real Estate

Business. We already have a Stand-Alone Application for the same, so we are

migrating from Online Application to the Web Client. Here for this we are

using XPA tool which is a tool to move a project and make changes as per

necessity. During this, we designed the editing function size and position

adjustment, hiding and displaying, style editing, editing by device type etc. for

every device type such that the contents will be dynamically converted

according to resolution or screen-size in step with various devices. To be able

to answer various devices, storing device information in an exceedingly

component is created through editing function. With this, we have worked on

Currency Format support in Web Client application and implemented a

concept of Lazy Loading. Responsive web functionality improve server

throughput that shows the response function of Web Client and therefore the

processing speed is improved. All features can operate in real-time manners

with our software architecture and loading mechanism, called Lazy Loading.

Keywords: Web application, lazy loading, component, load on demand

I. INTRODUCTION

According to the most recent reports, Around

Millions of Euros, Dollars, Rupees were invested in

the real estate market. Current web platforms for real

estate advertise the selling and renting of real estate

assets and provide the means for searching and listing

different categories. By providing all features in a

single centralized aggregating platform, real estate

association management software will be a valuable

tool to help association’s efficiency. In this project we

are migrating software to website. In this we have

used the MagicXPA, DevExtreme tools and Web

technology, which is a form of business process

automation technology.

Along with this, we have worked on supporting

currency format in Web Client Application and

http://www.ijsrset.com/
https://doi.org/10.32628/IJSRSET2183183

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 8 | Issue 3

Shamali Bire et al Int J Sci Res Sci Eng Technol, May-June-2021, 8 (3) : 258-263

474

implemented lazy loading. Lazy Loading describes the

method of dynamically downloading and displaying

content when a user scrolls down or across a sequence

of information on the device screen. When images are

included within the screen, it delivers a really

powerful user experience. There are many factors that

have to be considered, including threading, HTTP

requests, memory management, and caching while

implementing Lazy Loading.

II. PROBLEM DEFINITION

Supporting Numeric Currency specific formats in web

Client Application with the Stand alone system we

can easily define the currency because of the internal

pre-defined Packages of magic. This tool provides all

aspects of the application development and

deployment process within a single end-to-end

platform. It features a ready-made business application

engine that simplifies the code-writing process and

enables you to deploy to market faster, using fewer

resources. Applications developed using this typically

have fewer coding mistakes, undergo more thorough

prototyping, benefit from greater business side input

and optimization, and can be more easily adapted to

changing business needs. The tool we are using

enables us to focus more on the business logic of the

application and less on what is happening behind the

scenes. We have a stand-alone system and migrate it

to the Web Client so some of those internal pre-

defined packages would not support while migrating

the application in to Web Client which we have

solved, similarly we have encountered this currency

format issue in web client and implemented Lazy

Loading.

III. IMPLEMENTATION

Implementation of Lazy Loading and Supporting

Currency format in Web Client is discussed below

with steps of procedure.

A. Implementation of Lazy Loading

Create an app with the name ‘LazyLoadingExample’.

This app contains a header module for navigation, a

dashboard component for the initial route, and two

lazy modules named ‘customer’ and ‘supplier’

respectively. Both lazy modules contain a ‘View’

component in them.

Step 1: Create a new app with Routing

1) ng new LazyLoadingExample --routing

Step 2: Creating modules and components

2) ng g c component/dashboard --spec false --

module=app

2) ng g m header/header --flat --module=app

3) ng g c header/menu --spec false --module=header

4) ng g m customer/customer --flat --routing

5) ng g m supplier/supplier --flat --routing

6) ng g c customer/view-customer --spec false --

module=customer

7) ng g c supplier/view-supplier --spec false --

module=supplier

After generating the modules and components, our

directories look like the image shown in Fig.1.

Code for app.component.html

<app-menu></app-menu>

<router-outlet></router-outlet>

Step 3: Configure routes for lazy modules

Code for customer-routing.module.ts

import { NgModule } from '@angular/core';

import { CommonModule } from '@angular/common';

import {Routes, RouterModule} from

'@angular/router';

import { ViewCustomerComponent } from'./view-

customer/view-customer.component';

const routes: Routes = [{ path:'view',

component:ViewCustomerComponent }];

@NgModule({ declarations: [], imports:

[CommonModule, RouterModule.forChild(routes)],

exports:[RouterModule] })

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 8 | Issue 3

Shamali Bire et al Int J Sci Res Sci Eng Technol, May-June-2021, 8 (3) : 258-263

475

export class CustomerRoutingModule { }

Code for supplier-routing.module.ts.

import { NgModule } from '@angular/core';

import { CommonModule } from '@angular/common';

import { Routes, RouterModule } from

'@angular/router';

import { ViewSupplierComponent } from './view-

supplier/view-supplier.component';

const routes: Routes = [{ path: 'view', component:

ViewSupplierComponent }];

@NgModule({ declarations: [], imports:

[CommonModule, RouterModule.forChild(routes)],

exports:[RouterModule]})

export class SupplierRoutingModule { }

Figure 1: Application directory structure in angular

Step 4: Configure lazy routes for app.

In this step, point the lazy route to the lazy module

from the app router. We are able to do that with the

loadChildren property with the trail to the module

file. Then, reference the module with a hash (#). This

tells Angular to only load LazyModule when the lazy

URL is activated.

Code for app-routing.module.ts

import { NgModule } from '@angular/core';

import { Routes, RouterModule } from

'@angular/router';

import { DashboardComponent } from

'./component/dashboard/dashboard.component';

const routes: Routes = [{ path:'', component:

DashboardComponent },{path:'customer',

loadChildren:'./customer/customer.module#Customer

Module'},

{path:'supplier',

loadChildren:'./supplier/supplier.module#SupplierMo

dule'}];

@NgModule({ imports:

[RouterModule.forRoot(routes)], exports:

[RouterModule] })

export class AppRoutingModule { }

Figure 2 : Application result used to localhost in web

browser

Step 5 – Add the navigation directive to the menu

component.

Code for menu.component.html

<div class = "dropdown-menu" aria-labelledby =

"customerDropdown">

<a class="dropdown-item" routerLink =

"customer/view">View Customer

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 8 | Issue 3

Shamali Bire et al Int J Sci Res Sci Eng Technol, May-June-2021, 8 (3) : 258-263

476

</div>

<div class = "dropdown-menu" aria-labelledby =

"supplierDropdown">

<a class="dropdown-item" routerLink =

"supplier/view">View Supplier

 </div>

Step 6 – Verify Lazy Loading is working.

Let us confirm that whether Lazy Loading is

functioning. In Chrome, open developer tools and

click on the "Network" tab. once you navigate to the

lazy URL ‘customer/view’, you ought to see a

customer-customer-module.js file rendered. During

this demo, you'll be able to see it took 347ms and

supplier-supplier-module.js loaded after you navigated

to the lazy URL ‘supplier/view’.

Implementation of Supporting Currency format in

Web Client

We can use ngx-currency package which supports all

the attributes related to currency that xpa tool uses for

numeric formats:

1. To install ngx-currency use following command :

npm i ngx-currency

2. Add ngx-currency module in the library module

magic-gen.lib.module.ts

import { CurrencyMaskInputMode,

NgxCurrencyModule } from "ngx-currency";

export const customCurrencyMaskConfig = {

 align: "right",

 allowNegative: true,

 allowZero: true,

 decimal: ".",

 precision: 2,

 prefix: "",

 suffix: "",

 thousands: ",",

 nullable: true,

 min: null,

 max: null,

 inputMode: CurrencyMaskInputMode.FINANCIAL

};

@NgModule({

 imports: [

 // Material Modules

 MatTableModule,

 ...

 MagicAngularMaterialModule,

NgxCurrencyModule.forRoot(customCurrencyMaskC

onfig)

],

providers: [ExitMagicService],

})

3. In html, currently numeric field is generated like

this way:

<input

…

type='number'

…

[formControlName]="mgc.V1"

…

>

<mgError [magic]=mgc.V1>

</mgError>

4. Change the numeric field such that it is generated

like this:

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 8 | Issue 3

Shamali Bire et al Int J Sci Res Sci Eng Technol, May-June-2021, 8 (3) : 258-263

477

<input

…

type='number'

...

[formControlName]="mgc.V1"

currencyMask

[options]="mg.getNumericPicture(mg.getV

alue(mgc.V2))"

…

>

Note: Here, type= ‘number’ is deleted.

‘currencyMask’ is directive and [options] is taking

picture string from variable V2’s value.

mg.getNumericPicture() takes picture in string and

returns object which has all the keys needed for

picture i.e. prefix, suffix, allow Negative etc..

IV. RESULT

We have created the above same application without

Lazy Loading, so we are able to easily compare the

finish load time when applying with Lazy Loading

and without Lazy Loading of results.

If you refer both the Fig. 3 and Fig. 4, you may

observe the ‘Finish load time’. Within the case of

‘Without Lazy Loading’, the finish time is 1.9 seconds

and within the case of ‘With Lazy Loading’, the finish

time is 721 microseconds. It clearly shows that Lazy

Loading improves the performance of the application,

you will be able to load feature areas only if requested

by the user, you will be able to speed up load time for

users that only visit certain areas of the application,

you will be able to continue expanding lazy loaded

feature areas without increasing the scale of the initial

load bundle [5].

Figure 3: Application without Lazy Loading

Figure 4: Application with Lazy Loading

V. CONCLUSION

User/Client will not wait around longer than five

seconds for his/her page to load and a few will wait

even less. If the application is too slow to load then

their customers are less likely to remain on their site

which translates into fewer conversions. Lazy

Loading to the system is to boost the performance. It

is recommended to use Lazy Loading if you have got

plenty of routes and components. The new

architecture can improve the performance by 50% on

the average, comparing with stand-alone system

with-out AJAX properties. Our new implementation

can improve the speed and efficiency 38%. In this

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 8 | Issue 3

Shamali Bire et al Int J Sci Res Sci Eng Technol, May-June-2021, 8 (3) : 258-263

478

project, we can add and manage Real-estate details,

manage activities of Clients, their cells details. It is

software which helps the user to work with the team

easily. This portal reduces the efforts of standalone

system and gives greater efficiency.

VI. ACKNOWLEDGEMENT

I would like to take this chance to express my

gratitude to Magic Software Enterprise, Pune for

taking me through this project and I am sincerely

grateful to VIT Pune, Savitribai Phule Pune

University for giving me this opportunity which

made me transcend limitations and improve my

knowledge.

VII. REFERENCES

[1]. B. Marco and P. Fraternali, “Large-scale model-

driven engineering of web user interaction: The

webml and webratio experience,” Science of

Computer Programming, vol. 89, pp. 7187,

2014.

[2]. Stephen Fluin. “Why Developers and

Companies Choose Angular”. Medium, 2017

[Online].

[3]. Available: https://medium.com/angular-japan-

user-group/why-developers-andcompanies-

choose-angular-4c9ba6098e1c

[4]. Sandy Veliz. “Angular + Material Design |

Instalación Angular Material”. Medium, 2019

[Online].

[5]. Available:https://medium.com/@sandy.e.veliz/a

ngular-material-designinstalaci%C3%B3n-

angular-material-790caca5677b

[6]. Kevin Kreuzer. “The ultimate guide to set up

your Angular library project”. Medium, 2019

[Online]. Available:

https://medium.com/angular-in-depth/the-

ultimate-guide-to-setup-your-angular-library-

project-399d95b63500 Alligator [Online].

[7]. Available:https://www.digitalocean.com/comm

unity/tutorials/angular-lazy-loading

Cite this article as :

Shamali Bire, Virendra Pawar, "Lazy Loading Based

with Load On Demand and Currency Support in Web

Browser", International Journal of Scientific Research

in Science, Engineering and Technology (IJSRSET),

Online ISSN : 2394-4099, Print ISSN : 2395-1990,

Volume 8 Issue 3, pp. 473-478, May-June 2021.

Available at

doi : https://doi.org/10.32628/IJSRSET2183183

Journal URL : https://ijsrset.com/IJSRSET2183183

https://doi.org/10.32628/IJSRSET2183183
https://search.crossref.org/?q=10.32628/IJSRSET2183183&from_ui=yes
https://ijsrset.com/IJSRSET2183183

