

Dissociation Energy of Ground State of GaCl Molecule

Suchita Deshmukh¹

¹Department of Physics, Indraraj Arts, Commerce and Science College, Sillod, Dist. Aurangabad, Maharashtra, India

ABSTRACT

Article Info Volume 9, Issue 5 Page Number: 132-136 Publication Issue : July-August-2021 Article History Accepted : 02July2021 Published:25 July, 2021 The dissociation energy of a diatomic molecule is an important constant. There are various methods to determine this constant. A method of potential energy curves using correlation coefficient is one of them. This method is employed in present paper to calculate the dissociation energy of diatomic Gallium chloride using the Hulber- Hirschfelder potential function.

I. INTRODUCTION

The importance of diatomic molecular spectroscopy is well-known in Physical sciences, Chemical physics, Thermodynamics, Molecular physics and Astrophysics. In general, the studies in above branches need spectroscopic information like molecular constants, dissociation energies, bond lengths etc. [1-3].In the present work the Dissocition energy of GaCl is estimated using the latest constants and the method of correlation coefficients.

Group IIIA halides are of great interest to the molecular spectroscopists as few of them show the potential laser transitions [4,5]. Under optimal experimental conditions GaCl, GaBr, InBretc molecules shows strong emission bands in visible region. There are some bound free transitions in these molecules and therefore the situation is favorable for lasing action. Besides these few band systems like $A^{3}\Pi_{0} - X^{-1}\Sigma^{+}$ and $B^{3}\Pi_{1} - X^{-1}\Sigma^{+}$ show intense bands. Many workers [6,7] and the references therein have

studied the band spectra of GaCl in emission as well as in absorption. The emission band spectra of GaCl, especially in UV region consisting of two overlapping violet degraded band systems namely $A^{3}\Pi_{0}$ - X $^{1}\Sigma^{+}$ and $B^{3} \Pi_{1}$ - X $^{1}\Sigma^{+}$. The spectra of GaCl in the region 28,000 to 30,000 cm⁻¹ was obtained using a Fourier Transform Spectrometer BOMEM DA 8 with an apodized resolution of 0.035 cm⁻¹ [8].. The molecular constants derived by them are used in the present work and are reported in Table 1.

II. DISSOCIATION ENERGY OF DIATOMIC MOLECULES

The height of an asymptote of a potential energy curve, above the lowest vibrational level is equal to the work that must be done in order to dissociate that molecule, which is called the heat of dissociation or dissociation energy D^0 . Another constant D_e is also the dissociation energy but it is taken as a height of an asymptote from x-axis or measured from minima of

Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

the potential energy curve. The relation between $D^{0} \text{and} \ D_{e} \, \text{is}$

Where

 $D_{e}=D^{0}+G(0) \qquad(1)$ Where $G(0)=\omega_{e}/2-\omega_{e}x_{e}/4+\omega_{e}y_{e}/8+....$ (2)

Since no distinguishable vibrational level lies above the asymptote, D_e is also defined as the maximum value of G(v)

 $D_e = \Delta G_{max}(v) \qquad \dots \dots (3)$

Another relation in defining the dissociation energy De in terms of molecular constants is

 $D_{e} = \omega_{e^2}/4\omega_{ex_e}$

There are various ways to determine the D^{0,} namely

1) Band convergence limit

2)Extrapolation to convergence limit,

3) Long wavelength limit of an absorption continuum,

4) Predissociation limit,

5) Excitation of atomic fluorescence,

6) photodissociation

7) chemiluminescence etc.

The extrapolation to convergence limit is also known as Birge and Sponer's linear extrapolation method.[1] This method is frequently employed to determine the dissociation energy from experimentally observed vibrational quanta ΔG , which is plotted against v. The area under curve gives the D⁰ many a times experimentally observed vibrational levels are few in number and since cubic and quartic and higher order terms in the potential function are neglected, the curve drawn between ΔG versus v appears like a straight line. The detailed discussion on D⁰ could be found in texts [1-3] and a specific monograph by Gaydon [9]. This method gives D_e 20% higher than the actual value.

III. DISSOCIATION ENERGY FROM THE POTENTIAL ENERGY CURVES

As discussed earlier the potential energy functions could be employed to calculate the dissociation energy. By comparing the potential energies at different r values from the RKR curves and using a particular potential function, dissociation energy can be estimated. For example, the potential energy at r using RKR curves is say, $U_{RKR}(r)$. At the same r value, say potential function under study gives the value $U_{poten} = D_{e}.F(r)$. The F(r) part can be evaluated at that r .The fitting or matching of U_{RKR} and U_{Poten} demands $U_{RKR}(r) = D_{e} F(r)$ (4)

As mentioned before many popular potential functions are employed for this purpose.

IV. THE H – H POTENTIAL FUNCTION

This function is defined as follows. $U_{H-H}(r) = D_e \{ [1 - exp \{-a (r - r_e)\}]^2 + cx^3 (1 + bx) exp (-a (r - r_e)) \} \}$ 2x)} ----(5) where De is dissociation energy $a = \omega_e / [2(B_e D_e)^{1/2} r_e]$ ----(6) $c = 1 + a_1 (D_e/a_0)^2$ ----(7) $b = 2 - \{ [(7/12) - (D_{e.} a_2)/a_0] / c \}$ -----(8) $a_0 = \omega_e^2 / 4B_e$ ----- (9) $a_1 = -1 - [\omega_e \alpha_e / 6B_e^2]$ ----- (10) $a_2 = [5/4]a_{1^2} - [2/3][\omega_{exe}/B_{e}]$ ----(11) All constants have their usual meanings. a0, a1 and a2

All constants have their usual meanings. a0, a1 and a2 are known as Dunham coefficients.

V. THE METHOD OF CORRELATION COEFFICIENTS

Rao et al [10-12] have suggested a statistical method to calculate D_e using calculations of correlation coefficients. This method is applied to calculate the dissociation energies of HgCl, HgBr and HgI [13],CrF [14], ScO, YO, and LaO [15] molecules by different workers.

Many a times the potentials match to RKR curves in the vicinity of r_e , i.e., at low quantum numbers or in the harmonic part of an oscillator. But at higher v , i.e for anharmonic parts the U values of the potential

curves don't tally to RKR and the curves can fit along Y coordinate passing through $r = r_e$. The systematic deviations still show best fits, if the average of U values for r_{min} and r_{max} are taken. In order to overcome such difficulties the correlation coefficient parameter is used. The correlation coefficient 'r' between two variables Xiand Y_i is defined as

r=

Where N is total number of observations, i.e i = 1 to N . It is clear that

 ΣX_i^2 differs from $(\Sigma X_i)^2$ and $\Sigma X_i Y_i$ differs from $\Sigma X_i \Sigma Y_i$ The two sets Xi and Yi correlate with each other maximum when $r \rightarrow 1$. Now suppose a potential function under study is $U = D_e F(r)$. One can assign certain value to D_e, say 1ev and by substituting various rmin and rmax values obtained from RKRV curves one can evaluate U values. These U values and U values calculated using RKR form the two sets i.e Xi and Yi. Thus.a correlation coefficient can be calculated for De = 1ev. Now change the values of De and repeat the same procedure and get correlation coefficient. Normally the dissociation energies of diatomic molecules range from 1ev to 10 ev. The D_e for maximum values of correlation coefficient should be selected, say it is 5 ev then in the next trial range of the D_e 's from 4.5 to 5.5 ev is chosen varying by 0.1 ev. If suppose the maximum correlation coefficient appears to 5.3 ev than repeat the procedure for getting 0.001 ev accuracy and thus the D_e value giving maximum correlation can be obtained.

The dissociation energy for various diatomic molecules are calculated using H-H function, Lippincott function & electronegativity potential function. In many cases the H-H function gives best correlation as the coefficient approaches to 1. However the correlation is poor in case of Lippincott and electronegativity potential functions. In case of the other potential functions the correlation coefficient can be calculated but it is quite cumbersome.

VI. DISCUSSION AND CONCLUSIONS

In the present study, the Hulbert Hirschfelder potential is used to determine dissociation energy using correlation coefficient method. Using the, most recent vibrational and rotational constants which are based on experimental studies the RKRV curves are constructed. The H-H function is used to calculate dissociation energy for this molecule. The correlation coefficient method gives $D_e = 4.5$ eV for GaCl molecule. This value is in good agreement with the value 4.9eV, and also in the agreement Huber and Hertzberg . The correlation coefficients are given in table 2 and the comparative P.E.curves are shown in fig 2.

Finally the conclusion is that the dissociation energy calculated using H-H potential function and the method of correlation coefficients gives good agreement to experimental value.

Table 1. Mol	ecular cons	stants of GaCl

Molecular Constants	GaCl
μ	23.199015
ωe	365.668
ωexe	5.910
Ве	0.149913
αe	0.0007936
De	39865
re	2.20178

All the constants are in cm $^{-1}$ except r_{e} which is in A^{0} and μ which is in amu

Table 2 : Correlation between Hulbert-Hirschfelderfunction and RKR potential energy curves of GaClmolecule.

De	Correlation	
(eV)	Coefficient	
1	0.546369	
2	0.778833	
3	0.951897	
4	0.99609	
4.3	0.998693	
4.4	0.999016	
4.45	0.999095	
4.46	0.999105	
4.47	0.999113	
4.48	0.999119	
4.49	0.999123	
4.5	0.999126	
4.51	0.999126	
4.52	0.999124	
4.53	0.999121	
4.54	0.999116	
4.6	0.999051	
4.7	0.998817	
4.8	0.998445	
4.9	0.997956	
5	0.997365	
5.1	0.996689	
6	0.988403	
7	0.977979	
8	0.968259	
1		
0.999 -		
t		
<u> </u>	\mathbf{k}	
0.996 -		
0.995 -		
0.994		
3.5 3.8 4.1	4.4 4.7 5 5.3 D _e (eV)	

Fig. 2 RKR and H-H Potential energy curves for the ground state of GaClr (A0)

VII.REFERENCES

- G.Herzberg Spectra of diatomic molecules, Van Nostrand Reinhold Company NewYork (1950).
- [2]. J. P Graybeal., Molecular Spectroscopy, McGraw Hill (1988)
- [3]. K.P.Huber and G. Herzberg Constants of diatomic molecules, Van Nostrand Reinhold Company, New York (1979)
- [4]. M. Singh, G.S. Ghodgaonkar, M.D. Saksena, J. Quant. Spectrosc. Radiat. Transfer 46 (6) (1991) 583-586.
- [5]. R. Venkatasubramanian, M.D. Saksena, M. Singh, Chem. Phys. Lett. 210 (1993) 367-372
- [6]. R. Venkatasubramanian, M.D. Saksena, M. Singh, J. Mol. Spectrosc. 168 (1994) 290-300.
- [7]. M.D. Saksena, R. Venkatasubramanian, M. Singh, Can. J. Phys. 75 (1997) 191-196.
- [8]. M.D. Saksena, M.N.Deo, K. Sunanda, H.A. Khan J. Mol. Spectrosc. 235 (2006) 166-175.
- [9]. Gaydon A G "Dissociation Energies and Spectra of Diatomic molecules", Chapman and Hall Ltd. London
- [10]. Rao V M, Rao M L P & Rao P T, Acta Phys Acad Sci Hungarica, 46, 153 (1979).
- [11]. Rao V M, Rao M L P & Rao P T, JQSRT, 25, 547 (1981).

135

- [12]. Rao V M, Rao M L P & Rao P T, Phys Rev, 26, 1765 (1982).
- [13]. Bhartiya J B, Behere S H & Rao M L P, JQSRT, 43, 95 (1990)
- [14]. Bhartiya J B, Behere S H , Indian J Phys, 64B, 129 (1990)
- [15]. Bhartiya J B, Behere S H, Acta Phys Slov, 5, 274 (1992)

