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ABSTRACT 

 

In this present paper, the role of fractional analytic function in local 

fractional calculus is studied. Some important properties and theorems in 

local fractional calculus are discussed, such as product rule, quotient rule, 

chain rule, fundamental theorem of local fractional calculus, change of 

variable, integration by parts and so on. In addition, we propose several 

examples and formulas of local fractional calculus. 
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I. INTRODUCTION 

 

The importance of studying continuous but nowhere 

differentiable functions was emphasized a long time 

ago by Perrin, Poincare and others [1-2]. Local 

fractional calculus is a theory to study continuous 

non-differentiable functions and describe the 

mechanical behaviour in fractal space. It has 

developed for more than twenty years since 

Kolwankar and Gangal [3-4] used Riemann-Liouville 

definition of fractional derivative to obtain local 

fractional derivative operators. The local fractional 

derivative and integrals was broadly applied in the 

field of mathematics, applied science and engineering 

[5-16]. 

The purpose of the current paper is to study the role 

of fractional analytic functions in local fractional 

calculus. In Section II, we first give the definition of 

local fractional derivative, and we discuss some local 

fractional derivative properties, for example, product 

rule, Leibniz rule, quotient rule, chain rule and so on. 

Furthermore, we introduce some fractional functions 

and take them as examples. In Section III, the 

modified Riemann-Liouville fractional derivative of 

Jumarie type is introduced, and we provide several 

properties of this type of fractional derivative. In 

Section IV, we study fractional analytic functions and 

its role in local fractional derivative. In Section V, we 

give the definition of fractional Riemann integral (or 

called local fractional integral), and prove some 

important theorem such as fundamental theorem of 

local fractional calculus, change of variable, 

integration by parts. In Section VI, the conclusion is 

given.  

http://www.ijsrset.com/
https://doi.org/10.32628/IJSRSET218482
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II.  LOCAL FRACTIONAL DERIVATIVE   

The purpose of this section is to state the definition 

and also introduce the properties of local fractional 

derivative. 

Definition 2.1([16]): Let 0 < 𝛼 < 1,  (−1)𝛼 = −1, 

𝑓: [𝑎, 𝑏]  → 𝑅  and  𝑥0 ∈ (𝑎, 𝑏) . 𝑓  is called local 𝛼 -

fractional differentiable at  𝑥0  if lim
𝑥→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

(𝑥−𝑥0)
𝛼  exists. 

And the 𝛼 -fractional derivative of 𝑓(𝑥)  at  𝑥0  is 

denoted by  

𝑓(𝛼)(𝑥0) = Γ(𝛼 + 1) ∙ lim
𝑥→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

(𝑥−𝑥0)
𝛼 ,     (1) 

where Γ( ) is the gamma function. If 𝑓  is local 𝛼-

fractional differentiable at any point in open interval 

(𝑎, 𝑏) , then we say that 𝑓  is a local 𝛼 -fractional 

differentiable function on (𝑎, 𝑏). In addition, the 𝑛-th 

order local 𝛼-fractional derivative of 𝑓(𝑥) is denoted 

by 𝑓(𝑛𝛼)(𝑥) = (𝑓(𝛼))(𝑓(𝛼))⋯ (𝑓(𝛼))(𝑥), where 𝑛 is a 

positive integer, and 𝑓(0)(𝑥) = 𝑓(𝑥). 

Theorem 2.2: Assume that 0 < 𝛼 < 1 , (−1)𝛼 = −1 

and  𝑥0 ∈ (𝑎, 𝑏).  If  𝑓: [𝑎, 𝑏] → 𝑅  is local 𝛼 -fractional 

differentiable at 𝑥0, then 𝑓 is continuous at 𝑥0.  

Proof  lim
𝑥→𝑥0

𝑓(𝑥) 

    = lim
𝑥→𝑥0

[𝑓(𝑥) − 𝑓(𝑥0) + 𝑓(𝑥0)] 

    = lim
𝑥→𝑥0

[𝑓(𝑥) − 𝑓(𝑥0)] + 𝑓(𝑥0) 

= lim
𝑥→𝑥0

𝑓(𝑥) − 𝑓(𝑥0)

(𝑥 − 𝑥0)
𝛼

∙ lim
𝑥→𝑥0

(𝑥 − 𝑥0)
𝛼 + 𝑓(𝑥0) 

    =
𝑓(𝛼)(𝑥0)

Γ(𝛼 + 1)
∙ 0 + 𝑓(𝑥0) 

    = 𝑓(𝑥0). 

Q.e.d. 

Proposition 2.3: Let 0 < 𝛼 < 1,(−1)𝛼 = −1, and 𝜆 be 

a real number, If 𝑓, 𝑔: [𝑎, 𝑏] → 𝑅 are local 𝛼-fractional 

differentiable at 𝑥 ∈ (𝑎, 𝑏), then  

(i) (𝑓 + 𝑔)(𝛼)(𝑥) = 𝑓(𝛼)(𝑥) + 𝑔(𝛼)(𝑥).       (2) 

(ii)  (𝑓 − 𝑔)(𝛼)(𝑥) = 𝑓(𝛼)(𝑥) − 𝑔(𝛼)(𝑥).      (3) 

(iii)        (𝜆𝑓)(𝛼)(𝑥) = 𝜆𝑓(𝛼)(𝑥).          (4) 

Proposition 2.4 (product rule for local fractional 

derivative): 

(𝑓 ∙ 𝑔)(𝛼)(𝑥) = 𝑓(𝛼)(𝑥) ∙ 𝑔(𝑥) + 𝑓(𝑥) ∙ 𝑔(𝛼)(𝑥)  (5) 

Proposition 2.5 (Leibniz rule for local fractional 

derivative): 

(𝑓 ∙ 𝑔)(𝑛𝛼)(𝑥) = ∑ (
𝑛
𝑘
)𝑓((𝑛−𝑘)𝛼)(𝑥) ∙𝑛

𝑘=0 𝑔(𝑘𝛼)(𝑥).  

(6) 

Proposition 2.6 (quotient rule for local fractional 

derivative): 

(
𝑓

𝑔
)
(𝛼)
(𝑥) =

𝑓(𝛼)(𝑥)∙𝑔(𝑥)−𝑓(𝑥)∙𝑔(𝛼)(𝑥)

𝑔2
.     (7) 

 

In the following, some fractional functions are 

introduced.  

Definition 2.7 ([22]):  The Mittag-Leffler function is 

defined by 

𝐸𝛼(𝑧) = ∑
𝑧𝑘

Γ(𝑘𝛼+1)
∞
𝑘=0 ,            (8) 

where  𝛼  is a real number, α > 0, and 𝑧 is a complex 

variable. 

Definition 2.8 ([17]): 𝐸𝛼(𝑥
𝛼) is called 𝛼-fractional 

exponential function, and the 𝛼-fractional cosine and 

sine function are defined as follows: 

𝑐𝑜𝑠𝛼(𝑥
𝛼) = ∑

(−1)𝑘𝑥2𝑘𝛼

Γ(2𝑘𝛼+1)
∞
𝑘=0 ,          (9) 

and 

𝑠𝑖𝑛𝛼(𝑥
𝛼) = ∑

(−1)𝑘𝑥(2𝑘+1)𝛼

Γ((2𝑘+1)𝛼+1)
∞
𝑘=0 ,        (10) 

where 0 < α < 1, and 𝑥 is a real variable. 

Example 2.9：We have the following local fractional 

derivative formulas: 

𝐸𝛼(𝑥
𝛼)(𝛼) = 𝐸𝛼(𝑥

𝛼),             (11) 

 𝑠𝑖𝑛𝛼(𝑥
𝛼)(𝛼) = 𝑐𝑜𝑠𝛼(𝑥

𝛼),           (12) 

and 

𝑐𝑜𝑠𝛼(𝑥
𝛼)(𝛼) = −𝑠𝑖𝑛𝛼(𝑥

𝛼).         (13) 

Therefore, 

(𝑠𝑖𝑛𝛼(𝑥
𝛼) + 𝑐𝑜𝑠𝛼(𝑥

𝛼))
(𝛼)

= 𝑐𝑜𝑠𝛼(𝑥
𝛼) − 𝑠𝑖𝑛𝛼(𝑥

𝛼), 

(14) 

(𝑠𝑖𝑛𝛼(𝑥
𝛼) − 𝑐𝑜𝑠𝛼(𝑥

𝛼))
(𝛼)

= 𝑐𝑜𝑠𝛼(𝑥
𝛼) + 𝑠𝑖𝑛𝛼(𝑥

𝛼), 

(15) 

(𝑠𝑖𝑛𝛼(𝑥
𝛼) ∙ 𝑐𝑜𝑠𝛼(𝑥

𝛼))
(𝛼)

= [𝑐𝑜𝑠𝛼(𝑥
𝛼)]2 −

[𝑠𝑖𝑛𝛼(𝑥
𝛼)]2, 

(16) 
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      (
𝑠𝑖𝑛𝛼(𝑥

𝛼)

𝑐𝑜𝑠𝛼(𝑥
𝛼)
)
(𝛼)

=
[𝑐𝑜𝑠𝛼(𝑥

𝛼)]2+[𝑠𝑖𝑛𝛼(𝑥
𝛼)]2

[𝑐𝑜𝑠𝛼(𝑥
𝛼)]2

.    (17) 

We note that 

[𝑐𝑜𝑠𝛼(𝑥
𝛼)]2 + [𝑠𝑖𝑛𝛼(𝑥

𝛼)]2 ≠ 1,      (18) 

and 

[𝑐𝑜𝑠𝛼(𝑥
𝛼)]2 − [𝑠𝑖𝑛𝛼(𝑥

𝛼)]2 ≠ 𝑐𝑜𝑠𝛼(2𝑥
𝛼)   (19) 

for 0 < α < 1. 

Remark 2.10: The followings are some local 𝛼 -

fractional differentials. 

𝑑𝛼𝑓 = 𝑓
(𝛼)𝑑𝑥𝛼.             (20) 

𝑑𝛼(𝑓 + 𝑔) = 𝑑𝛼𝑓 + 𝑑𝛼𝑔.           (21) 

𝑑𝛼(𝑓 − 𝑔) = 𝑑𝛼𝑓 − 𝑑𝛼𝑔.           (22) 

𝑑𝛼(𝜆𝑓) = 𝜆𝑑𝛼𝑓,               (23) 

where 𝜆 is a constant. 

𝑑𝛼(𝑓𝑔) = 𝑑𝛼𝑓 ∙ 𝑔 + 𝑓 ∙ 𝑑𝛼𝑔.         (24) 

𝑑𝛼 (
𝑓

𝑔
) =

𝑑𝛼𝑓∙𝑔−𝑓∙𝑑𝛼𝑔

𝑔2
.             (25) 

Proposition 2.11 (chain rule for local fractional 

derivative): If 𝑓 is 𝛼-fractional differentiable at 𝑢(𝑥0), 

and 𝑢  is differentiable at 𝑥0 , then 𝑓(𝑢(𝑥))  is 𝛼 -

fractional differentiable at 𝑥0 and  

(𝑓 ∘ 𝑢)(𝛼)(𝑥0) = 𝑓
(𝛼)(𝑢(𝑥0)) ∙ (

𝑑𝑢

𝑑𝑥
(𝑥0))

𝛼

.   (26) 

Proof  (𝑓 ∘ 𝑢)(𝛼)(𝑥0) 

= lim
𝑥→𝑥0

𝑓(𝑢(𝑥))−𝑓(𝑢(𝑥0))

(𝑥−𝑥0)
𝛼   

= lim
𝑥→𝑥0

𝑓(𝑢(𝑥))−𝑓(𝑢(𝑥0))

(𝑢(𝑥)−𝑢(𝑥0))
𝛼 ∙

(𝑢(𝑥)−𝑢(𝑥0))
𝛼

(𝑥−𝑥0)
𝛼   

= lim
𝑥→𝑥0

𝑓(𝑢(𝑥))−𝑓(𝑢(𝑥0))

(𝑢(𝑥)−𝑢(𝑥0))
𝛼 ∙ lim

𝑥→𝑥0
(
𝑢(𝑥)−𝑢(𝑥0)

𝑥−𝑥0
)
𝛼

  

= 𝑓(𝛼)(𝑢(𝑥0)) ∙ (
𝑑𝑢

𝑑𝑥
(𝑥0))

𝛼

 .          Q.e.d. 

 

III. JUMARIE TYPE OF RIEMANN-LIOUVILLE 

FRACTIONAL DERIVATIVE 

In the following, we first give the definition of 

Jumarie type of fractional derivative.  

Definition 3.1: Let 𝛼  be a real number and 𝑝  be a 

positive integer. The modified Riemann-Liouville 

fractional derivative of Jumarie type ([17]) is defined 

by 

( 𝐷𝑥0 𝑥
𝛼)[𝑓(𝑥)] =  

{
 
 

 
 

1

Γ(−𝛼)
∫ (𝑥 − 𝜏)−𝛼−1𝑓(𝜏)𝑑𝜏,     if 𝛼 < 0
𝑥

𝑥0
1

Γ(1−𝛼)

𝑑

𝑑𝑥
∫ (𝑥 − 𝜏)−𝛼[𝑓(𝜏) − 𝑓(𝑎)]
𝑥

𝑥0
𝑑𝜏  if 0 ≤ 𝛼 < 1  

𝑑𝑝

𝑑𝑥𝑝
( 𝐷𝑥0 𝑥

𝛼−𝑝
)[𝑓(𝑥)],        if 𝑝 ≤ 𝛼 < 𝑝 + 1

                          (27) 

In addition, if ( 𝐷𝑥0 𝑥
𝛼)
𝑛
[𝑓(𝑥)] = ( 𝐷𝑥0 𝑥

𝛼)( 𝐷𝑥0 𝑥
𝛼) ∙∙∙

( 𝐷𝑥0 𝑥
𝛼)[𝑓(𝑥)] exists, then 𝑓(𝑥) is called 𝑛-th order 𝛼-

fractional differentiable function, and 

( 𝐷𝑥0 𝑥
𝛼)

𝑛
[𝑓(𝑥)] is the  𝑛 -th order 𝛼 -fractional 

derivative of 𝑓(𝑥). We note that ( 𝐷𝑥0 𝑥
𝛼)

𝑛
≠ 𝐷𝑥0 𝑥

𝑛𝛼 in 

general. On the other hand, we define the 𝛼 -

fractional integral of 𝑓(𝑥),   ( 𝐼𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

( 𝐷𝑥0 𝑥
−𝛼)[𝑓(𝑥)], where 𝛼 > 0 . And 𝑓(𝑥) is called 𝛼 

-fractional integrable function. We have the 

following property.  

Proposition 3.2 ([18]):  Let 𝛼, 𝛽, 𝑐 be real numbers and 

𝛽 ≥ 𝛼 > 0, then 

( 𝐷0 𝑥
𝛼)[𝑥𝛽] =

Γ(𝛽+1)

Γ(𝛽−𝛼+1)
𝑥𝛽−𝛼,        (28) 

                 𝐷0 𝑥
𝛼[𝑐] = 0               (29) 

( 𝐷0 𝑥
𝛼)[𝐸𝛼(𝑥

𝛼)] = 𝐸𝛼(𝑥
𝛼).         (30) 

( 𝐷0 𝑥
𝛼)[𝑠𝑖𝑛𝛼(𝑥

𝛼)] = 𝑐𝑜𝑠𝛼(𝑥
𝛼).        (31) 

( 𝐷0 𝑥
𝛼)[𝑐𝑜𝑠𝛼(𝑥

𝛼)] = −𝑠𝑖𝑛𝛼(𝑥
𝛼).       (32) 

 

IV. FRACTIONAL ANALYTIC FUNCTIONS 

 

Definition 4.1:  Assume that 𝑥, 𝑥0  and  𝑎𝑛  are real 

numbers, 𝑥0 ∈ (𝑎, 𝑏), and 0 < 𝛼 < 1. If the function 

𝑓: [𝑎, 𝑏] → 𝑅 can be expressed as a 𝛼-fractional power 

series, that is, 𝑓(𝑥) = ∑ 𝑎𝑛(𝑥 − 𝑥0)
𝑛𝛼∞

𝑛=0  on some 

open interval (𝑥0 − 𝑟, 𝑥0 + 𝑟), then we say that 𝑓(𝑥) 

is 𝛼-fractional analytic at 𝑥0, where 𝑟 is the radius of 

convergence about 𝑥0 . If 𝑓: [𝑎, 𝑏] → 𝑅  is continuous 

on closed interval [𝑎, 𝑏] and is 𝛼-fractional analytic at 

every point in open interval (𝑎, 𝑏), then 𝑓  is called 

a 𝛼-fractional analytic function on [𝑎, 𝑏]. 

Proposition 4.2：Assume that 0 < 𝛼 < 1,  (−1)𝛼 =

−1, 𝑎 < 𝑏, 𝑝 ≠ 0, 𝑐 ∈ (𝑎, 𝑏), and let 𝑓(𝑥) = (𝑥 − 𝑐)𝑝 

defined on [𝑎, 𝑏].  
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Case 1. If 𝑝 ≠ 𝛼, then 𝑓(𝑥) is not 𝛼-fractional analytic 

at all points in (𝑎, 𝑏).  

Case 2. If 𝑝 = 𝛼 , then 𝑓(𝑥)  is  𝛼 -fractional analytic 

only at 𝑥 = 𝑐.  

Proof If 𝑝 > 𝛼. Since 𝑓(𝛼)(𝑥) = 0 for all 𝑥 ∈ (𝑎, 𝑏).  It 

follows that for any positive integer 𝑛, 𝑓(𝑛𝛼)(𝑥) = 0 

for all 𝑥 ∈ (𝑎, 𝑏). And hence, 𝑓(𝑥) is not 𝛼-fractional 

analytic at all points in (𝑎, 𝑏) . Since if (𝑥) is 𝛼 -

fractional analytic at some point 𝜂 ∈ (𝑎, 𝑏), then 𝑓(𝑥) 

is a constant function, which is a contradiction. 

If 𝑝 < 𝛼. We have 

𝑓(𝛼)(𝑥) = {
0        if 𝑥 ≠ 𝑐 

nonexist   if 𝑥 = 𝑐.
  (33) 

Thus,  

𝑓(𝑛𝛼)(𝑥) = {
0        if 𝑥 ≠ 𝑐 

nonexist   if 𝑥 = 𝑐.
  (34) 

for all positive integers 𝑛 and all 𝑥 ∈ (𝑎, 𝑏). 

And hence,  𝑓(𝑥) is not 𝛼 -fractional analytic at all 

points in (𝑎, 𝑏). 

If 𝑝 = 𝛼. Then 

𝑓(𝛼)(𝑥) = {
0        if 𝑥 ≠ 𝑐 

Γ(𝛼 + 1)   if 𝑥 = 𝑐.
  (35) 

Therefore, 𝑓(𝑛𝛼)(𝑥) = 0  for all 𝑛 ≥ 2  and all 𝑥 ∈

(𝑎, 𝑏). So, 𝑓(𝑥) is 𝛼-fractional analytic only at 𝑥 = 𝑐.  

Q.e.d. 

Theorem 4.3: Suppose that 0 < 𝛼 < 1  and (−1)𝛼 =

−1 . If  𝑓: [𝑎, 𝑏] → 𝑅  is 𝛼 -fractional analytic at  𝑥0 ∈

(𝑎, 𝑏), then 

𝑓(𝛼)(𝑥0) = ( 𝐷𝑥0 𝑡
𝛼)[𝑓(𝑡)](𝑥0).      (36) 

Proof  By Theorem 2.9 in [19], we can immediately 

obtain this result.                       Q.e.d. 

Corollary 4.4: Let 0 < 𝛼 < 1  and (−1)𝛼 = −1 . 

If 𝑓: [𝑎, 𝑏] → 𝑅 is 𝛼-fractional analytic on [𝑎, 𝑏], then 

𝑓(𝑛)(𝑥) = ( 𝐷𝑥 𝑡
𝛼)
𝑛
[𝑓(𝑡)](𝑥)       (37) 

for all positive integers 𝑛 and all points 𝑥 ∈ (𝑎, 𝑏). 

Proof  Using Theorem 4.3 and by induction, we can 

easily obtain the result.                      Q.e.d. 

Theorem 4.5: Let 0 < 𝛼 < 1. If 𝑓(𝑥) = ∑ 𝑎𝑛(𝑥 −
∞
𝑛=0

𝑥0)
𝑛𝛼, then 

  𝑓(𝑥) = ∑
 𝑓(𝑛𝛼)(𝑥0)

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)

𝑛𝛼∞
𝑛=0 .    (38) 

Proof  By Theorem 2.11 in [20] and the above 

Corollary 4.4, the desired result holds.               Q.e.d.  

Theorem 4.6 (mean value theorem for local fractional 

derivative):  Suppose that 0 < 𝛼 < 1 and (−1)𝛼 = −1. 

If 𝑓 is 𝛼-fractional analytic on [𝑎, 𝑏], then there exists 

𝜉 ∈ (𝑎, 𝑏) such that  

𝑓(𝑏) − 𝑓(𝑎) =
𝑓(𝛼)(𝜉)

Γ(𝛼+1)
(𝑏 − 𝑎)𝛼.        (39) 

Proof Using Theorem 2.12 in [19] and the above 

Theorem 4.3, we obtain the desired result.     Q.e.d. 

Theorem 4.7: Let 0 < 𝛼 < 1 and (−1)𝛼 = −1. If 𝑓 is 

𝛼-fractional analytic on [𝑎, 𝑏] and 𝑓(𝛼)(𝑥) = 0 for all 

𝑥 ∈ (𝑎, 𝑏), then 𝑓 is a constant function on [𝑎, 𝑏]. 

Proof  Using mean value theorem for local fractional 

derivative yields 𝑓(𝑥) = 𝑓(𝑎) for all  𝑥 ∈ [𝑎, 𝑏]. And 

hence, the desired result holds.              Q.e.d. 

 

V. FRACTIONAL RIEMANN INTEGRAL 

 

Definition 5.1: Let 0 < 𝛼 < 1, and 𝑓: [𝑎, 𝑏] → 𝑅. If  

𝑙𝑖𝑚
‖𝛥‖→0

∑ 𝑓(𝜉𝑘)
𝑛
𝑘=1 (𝑥𝑘 − 𝑥𝑘−1)

𝛼  

exists, where the partitions of the interval [𝑎, 𝑏] are 

denoted by [𝑥𝑘−1, 𝑥𝑘] , 𝑘 = 1,⋯ , 𝑛 , 𝑥0 = 𝑎, 𝑥𝑛 = 𝑏 , 

𝜉𝑘 ∈ [𝑥𝑘−1, 𝑥𝑘]  , ∆𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘−1 , and ‖∆‖ =

max
𝑘=1,⋯,𝑛

{∆𝑥𝑘} . Then we say 𝑓  is a 𝛼 -fractional 

Riemann integrable function on [𝑎, 𝑏] . And we 

denoted as 

lim
‖Δ‖→0

∑ 𝑓(𝜉𝑘)
𝑛
𝑘=1 (𝑥𝑘 − 𝑥𝑘−1)

𝛼 = ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥𝛼,  (40) 

which is called the 𝛼-fractional Riemann integral (or  

local 𝛼-fractional integral) of 𝑓 on [𝑎, 𝑏]. 

Proposition 5.2: Assume that 0 < 𝛼 < 1 and 𝜆 is a real 

number. If  𝑓, 𝑔: [𝑎, 𝑏] → 𝑅  are 𝛼 -fractional Riemann 

integrable functions on [𝑎, 𝑏], then  

(i) ∫ [𝑓(𝑥) + 𝑔(𝑥)]
𝑏

𝑎
𝑑𝑥𝛼 = ∫ 𝑓(𝑥)𝑑𝑥𝛼 + ∫ 𝑔(𝑥)𝑑𝑥𝛼

𝑏

𝑎

𝑏

𝑎
.  

(41) 
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(ii) ∫ [𝑓(𝑥) − 𝑔(𝑥)]
𝑏

𝑎
𝑑𝑥𝛼 = ∫ 𝑓(𝑥)𝑑𝑥𝛼 −

𝑏

𝑎

∫ 𝑔(𝑥)𝑑𝑥𝛼
𝑏

𝑎
.  

(42) 

(iii) ∫ 𝜆𝑓(𝑥)𝑑𝑥𝛼 = 𝜆
𝑏

𝑎 ∫ 𝑓(𝑥)𝑑𝑥𝛼
𝑏

𝑎
.          (43) 

(iv) If 𝑐 ∈ (𝑎, 𝑏), then 

 ∫ 𝑓(𝑥)𝑑𝑥𝛼 + ∫ 𝑓(𝑥)𝑑𝑥𝛼 = ∫ 𝑓(𝑥)𝑑𝑥𝛼
𝑏

𝑎

𝑏

𝑐

𝑐

𝑎
.    (44) 

(v) If 𝑓 ≥ 0, then ∫ 𝑓(𝑥)𝑑𝑥𝛼
𝑏

𝑎
≥ 0.        (45) 

(vi) If 𝑓 ≤ 𝑔, then ∫ 𝑓(𝑥)𝑑𝑥𝛼
𝑏

𝑎
≤ ∫ 𝑔(𝑥)𝑑𝑥𝛼

𝑏

𝑎
.  

 (46) 

Proposition 5.3: If  𝑓 is 𝛼 -fractional Riemann 

integrable on [𝑎, 𝑏], then 𝑓 is bounded on [𝑎, 𝑏]. 

Proof  If 𝑓  is not bounded on [𝑎, 𝑏] , then for any 

partition P of [𝑎, 𝑏], the function 𝑓 is not bounded on 

some interval [𝑥𝑘−1, 𝑥𝑘] of P. By choosing the point 

𝜉𝑘 ∈ [𝑥𝑘−1, 𝑥𝑘] in different ways, we can make the 

quantity |𝑓(𝜉𝑘)(𝑥𝑘 − 𝑥𝑘−1)
𝛼| as large as desired. Thus, 

the 𝛼 -fractional Riemann sum ∑ 𝑓(𝜉𝑘)
𝑛
𝑘=1 (𝑥𝑘 −

𝑥𝑘−1)
𝛼  can also be made as large as desired in 

absolute value by changing only the point 𝜉𝑘 in this 

interval. That is, 𝑓  is not 𝛼 -fractional Riemann 

integrable on [𝑎, 𝑏]. 

Q.e.d. 

Theorem 5.4 (fundamental theorem of local fractional 

calculus): Let 0 < 𝛼 < 1,  (−1)𝛼 = −1 . If 𝐹: [𝑎, 𝑏] →

𝑅 satisfies 𝐹(𝛼)(𝑥) = 𝑓(𝑥) for all 𝑥 ∈ (𝑎, 𝑏), then 

∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥𝛼 = Γ(𝛼 + 1)(𝐹(𝑏) − 𝐹(𝑎)).  (47) 

Proof  Let {[𝑥𝑘−1, 𝑥𝑘]}𝑘=1,…,𝑛 be any partition of the 

interval [𝑎, 𝑏], then by mean value theorem for local 

fractional derivative and the definition of fractional 

Riemann integral, we obtain 

  Γ(𝛼 + 1)(𝐹(𝑏) − 𝐹(𝑎)) 

= Γ(𝛼 + 1)[(𝐹(𝑥0) − 𝐹(𝑥1)) + (𝐹(𝑥1) − 𝐹(𝑥2)) + ⋯ 

  +(𝐹(𝑥𝑛−1) − 𝐹(𝑥𝑛)) 

= Γ(𝛼 + 1) [(
𝐹(𝑥0)−𝐹(𝑥1)

(𝑥0−𝑥1)
𝛼 ∙ (𝑥0 − 𝑥1)

𝛼)  

  + (
𝐹(𝑥1)−𝐹(𝑥2)

(𝑥1−𝑥2)
𝛼 ∙ (𝑥1 − 𝑥2)

𝛼) +⋯  

+(
𝐹(𝑥𝑛−1)−𝐹(𝑥𝑛)

(𝑥𝑛−1−𝑥𝑛)
𝛼 ∙ (𝑥𝑛−1 − 𝑥𝑛)

𝛼)]  

= [(𝑓(𝛼)(𝜉1) ∙ (𝑥0 − 𝑥1)
𝛼) + (𝑓(𝛼)(𝜉2) ∙ (𝑥1 − 𝑥2)

𝛼) 

  +⋯+ (𝑓(𝛼)(𝜉𝑛) ∙ (𝑥𝑛−1 − 𝑥𝑛)
𝛼)] 

= ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥𝛼 .                       Q.e.d. 

Remark 5.5: If 𝑓: [𝑎, 𝑏] → 𝑅 is a 𝛼-fractional analytic 

function on [𝑎, 𝑏], then by fundamental theorem of 

local fractional calculus, we have  
𝑑

𝑑𝑥𝛼
∫ 𝑓(𝑡)
𝑥

𝑎
𝑑𝑡𝛼 = Γ(𝛼 + 1)𝑓(𝑥)       (48) 

for all 𝑥 ∈ (𝑎, 𝑏). 

On the other hand, if 𝐹: [𝑎, 𝑏] → 𝑅 is  𝛼 -fractional 

analytic on [𝑎, 𝑏], then 

∫ 𝐹(𝛼)(𝑥)
𝑏

𝑎
𝑑𝑥𝛼 = Γ(𝛼 + 1)(𝐹(𝑏) − 𝐹(𝑎)).   (49) 

Remark 5.6: Fundamental theorem of local fractional 

calculus cannot hold for non-fractional analytic 

functions. For example, by Proposition 4.2, we know 

that 𝐹(𝑥) = 𝑥2  defined on [0,1] , is not 
1

2
-fractional 

analytic function at all points in [0,1]. And by the 

definition of local fractional derivative, we know that 

𝐹(
1
2⁄ )(𝑥) = 0 for all points 𝑥 ∈ [0,1]. Therefore, 

 ∫ 𝐹(
1
2⁄ )(𝑥)

1

0
𝑑𝑥

1
2⁄ ≠ Γ (

3

2
) ∙ (𝐹(1) − 𝐹(0)).   (50) 

Theorem 5.7: Suppose that 𝑓 is a 𝛼-fractional analytic 

function, and 𝑢(𝑥), 𝑤(𝑥) are differentiable functions, 

then 
𝑑

𝑑𝑥𝛼
∫ 𝑓(𝑡)𝑑𝑡𝛼
𝑢(𝑥)

𝑤(𝑥)
  

= 𝑓(𝑢(𝑥)) ∙ (
𝑑𝑢

𝑑𝑥
)
𝛼
− 𝑓(𝑤(𝑥)) ∙ (

𝑑𝑤

𝑑𝑥
)
𝛼

.   (51) 

Proof  Taking a point 𝑐 contained in the domain of 𝑓. 

Let 𝐹(𝑥) = ∫ 𝑓(𝑡)
𝑥

𝑎
𝑑𝑡𝛼, then 

 𝐹(𝑢(𝑥)) = ∫ 𝑓(𝑡)
𝑢(𝑥)

𝑎
𝑑𝑡𝛼,         (52) 

and 

𝐹(𝑤(𝑥)) = ∫ 𝑓(𝑡)
𝑤(𝑥)

𝑎
𝑑𝑡𝛼.         (53) 

Thus, 

∫ 𝑓(𝑡)𝑑𝑡𝛼 =
𝑢(𝑥)

𝑤(𝑥)
𝐹(𝑢(𝑥)) − 𝐹(𝑤(𝑥)) .   (54) 

Therefore, using chain rule for local fractional 

derivative yields 

  
𝑑

𝑑𝑥𝛼
∫ 𝑓(𝑡)𝑑𝑡𝛼
𝑢(𝑥)

𝑤(𝑥)
  



International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 8 | Issue 5 

Chii-Huei Yu Int J Sci Res Sci Eng Technol, September-October-2021, 8 (5) : 39-46 

 

 

 

 
44 

=
𝑑

𝑑𝑥𝛼
𝐹(𝑢(𝑥)) −

𝑑

𝑑𝑥𝛼
𝐹(𝑤(𝑥))  

= 𝐹(𝛼)(𝑢(𝑥)) ∙ (
𝑑𝑢

𝑑𝑥
(𝑥))

𝛼

− 𝐹(𝛼)(𝑤(𝑥)) ∙ (
𝑑𝑤

𝑑𝑥
(𝑥))

𝛼

  

= 𝑓(𝑢(𝑥)) ∙ (
𝑑𝑢

𝑑𝑥
(𝑥))

𝛼

− 𝑓(𝑤(𝑥)) ∙ (
𝑑𝑤

𝑑𝑥
(𝑥))

𝛼

 . 

Q.e.d. 

Theorem 5.8 (change of variable for local fractional 

integral): Suppose that 0 < 𝛼 < 1,  (−1)𝛼 = −1 , 

𝑓: [𝑎, 𝑏] → 𝑅  is a 𝛼-fractional analytic function, and 

𝑢: [𝑐, 𝑑] → [𝑎, 𝑏]  is a differentiable function with 

𝑢(𝑐) = 𝑎 , 𝑢(𝑑) = 𝑏 . If 𝑓(𝑢(𝑥)) (
𝑑𝑢

𝑑𝑥
)
𝛼

is 𝛼 -fractional 

analytic on [𝑐, 𝑑], then 

∫ 𝑓(𝑢(𝑥))
𝑑

𝑐
(
𝑑𝑢

𝑑𝑥
)
𝛼
𝑑𝑥𝛼 = ∫ 𝑓(𝑢)

𝑏

𝑎
𝑑𝑢𝛼.    (55) 

Proof  Fix 𝑥0 ∈ [𝑎, 𝑏]  and let 𝐹(𝑢) = ∫ 𝑓(𝑡)𝑑𝑡𝛼
𝑢

𝑥0
. 

Since 𝑓  is 𝛼 -fractional analytic on [𝑎, 𝑏] , it follows 

from fundamental theorem of local fractional calculus 

that 𝐹(𝛼)(𝑢) = 𝑓(𝑢) for all 𝑢 ∈ [𝑎, 𝑏]. Let 𝑔 = 𝐹 ∘ 𝑢 . 

Since 𝑓(𝑢(𝑥)) (
𝑑𝑢

𝑑𝑥
)
𝛼

is 𝛼-fractional analytic on [𝑐, 𝑑], 

using chain rule for local fractional derivative yields  

𝑔(𝛼)(𝑥) = 𝐹(𝛼)(𝑢(𝑥)) (
𝑑𝑢

𝑑𝑥
)
𝛼
= 𝑓(𝑢(𝑥)) (

𝑑𝑢

𝑑𝑥
)
𝛼

.  (56) 

And hence 𝑔 is analytic on [𝑐, 𝑑]. Furthermore, 

         ∫ 𝑓(𝑢(𝑥))
𝑑

𝑐
(
𝑑𝑢

𝑑𝑥
)
𝛼
𝑑𝑥𝛼  

       = ∫  𝑔(𝛼)(𝑥)
𝑑

𝑐
𝑑𝑥𝛼  

       = 𝑔(𝑑) − 𝑔(𝑐) 

       = 𝐹(𝑢(𝑑)) − 𝐹(𝑢(𝑐)) 

       = ∫  𝑓(𝑡)
𝑢(𝑑)

𝑥0

𝑑𝑡𝛼 −∫  𝑓(𝑡)
𝑢(𝑐)

𝑥0

𝑑𝑡𝛼 

       = ∫  𝑓(𝑡)
𝑢(𝑑)

𝑢(𝑐)

𝑑𝑡𝛼 

= ∫ 𝑓(𝑢)
𝑏

𝑎
𝑑𝑢𝛼.                     Q.e.d. 

 

Theorem 5.9 (integration by parts for local fractional 

calculus): If 𝑓, 𝑔 are 𝛼-fractional analytic functions on 

[𝑎, 𝑏], then 

       ∫ 𝑓(𝑥) ∙ 𝑔(𝛼)(𝑥)
𝑏

𝑎
𝑑𝑥𝛼  

= 𝑓(𝑥) ∙ 𝑔(𝑥)|𝑎
𝑏 − ∫ 𝑔(𝑥) ∙ 𝑓(𝛼)(𝑥)

𝑏

𝑎
𝑑𝑥𝛼.    (57) 

Proof  Since by product rule for local fractional 

derivative, we have 

𝑓(𝑥) ∙ 𝑔(𝛼)(𝑥) = (𝑓 ∙ 𝑔)(𝛼)(𝑥) − 𝑓(𝛼)(𝑥) ∙ 𝑔(𝑥). (58) 

It follows from fundamental theorem of local 

fractional calculus that 

      ∫ 𝑓(𝑥) ∙ 𝑔(𝛼)(𝑥)
𝑏

𝑎
𝑑𝑥𝛼  

= ∫ (𝑓 ∙ 𝑔)(𝛼)(𝑥)
𝑏

𝑎
𝑑𝑥𝛼 − ∫ 𝑓(𝛼)(𝑥) ∙ 𝑔(𝑥)

𝑏

𝑎
𝑑𝑥𝛼  

   = 𝑓(𝑥) ∙ 𝑔(𝑥)|𝑎
𝑏 − ∫ 𝑔(𝑥) ∙ 𝑓(𝛼)(𝑥)

𝑏

𝑎
𝑑𝑥𝛼 .     

Q.e.d. 

The followings are some indefinite local fractional 

integral formulas. 

Proposition 5.10：Let 0 < 𝛼 < 1 and 𝐶 be a constant. 

Then 

∫𝐸𝛼(𝑥
𝛼)𝑑𝑥𝛼 = Γ(𝛼 + 1) ∙ 𝐸𝛼(𝑥

𝛼) + 𝐶,   (59) 

∫ 𝑠𝑖𝑛𝛼(𝑥
𝛼)𝑑𝑥𝛼 = −Γ(𝛼 + 1) ∙ 𝑐𝑜𝑠𝛼(𝑥

𝛼) + 𝐶,  (60) 

∫ 𝑐𝑜𝑠𝛼(𝑥
𝛼)𝑑𝑥𝛼 = Γ(𝛼 + 1) ∙ 𝑠𝑖𝑛𝛼(𝑥

𝛼) + 𝐶,  (61) 

       ∫∑
𝑎𝑛

Γ(𝑘𝛼+1)
𝑥𝑘𝛼∞

𝑘=0 𝑑𝑥𝛼  

= Γ(𝛼 + 1) ∙ ∑
𝑎𝑛

Γ((𝑘+1)𝛼+1)
𝑥(𝑘+1)𝛼∞

𝑘=0 + 𝐶,    (62) 

where ∑
𝑎𝑛

Γ(𝑘𝛼+1)
𝑥𝑘𝛼∞

𝑘=0  is a 𝛼 -fractional analytic 

function on some closed interval. 

Remark 5.11：We note that the formulas 

∫1𝑑𝑥𝛼 =𝑥𝛼 + 𝐶,           (63) 

and 

∫𝑥𝑘𝛼𝑑𝑥𝛼 =
Γ(𝑘𝛼+1)∙Γ(𝛼+1)

Γ((𝑘+1)𝛼+1)
∙ 𝑥(𝑘+1)𝛼 + 𝐶   (64) 

are false ( 𝑘  is any positive integer). Since by 

Proposition 4.2, the local 𝛼-fractional derivatives of 

the functions 𝐹(𝑥) = 𝑥𝛼 + 𝐶  and 𝐺(𝑥) =
Γ(𝑘𝛼+1)∙Γ(𝛼+1)

Γ((𝑘+1)𝛼+1)
∙ 𝑥(𝑘+1)𝛼 + 𝐶 , are 𝐹(𝛼)(𝑥) = 0  and 

𝐺(𝛼)(𝑥) = 0 for all 𝑥 ≠ 0. 

 

 

VI. CONCLUSION 
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From the above discussion, we know that the 

fractional analytic function plays an important role in 

local fractional calculus. And the Jumarie type of 

fractional calculus is equivalent to local fractional 

calculus when the studied function is fractional 

analytic. As well, we discussed some important 

properties in local fractional calculus, for example, 

fractional mean value theorem, fundamental theorem 

of local fractional calculus, fractional integration by 

parts, fractional change of variable and so on. In fact, 

these theorems are natural generalizations of the ones 

in classical calculus. In the future, the results in local 

fractional calculus we obtained  will be used to extend 

the research topics to applied science and engineering 

mathematics. 
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