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ABSTRACT 

 

The introduction of Transport Layer Security has been one of the most important 

contributors to the privacy and security of internet communications during the last 

decade. Malware authors have followed suit, using TLS to hide potentially dangerous 

network connections. Because of the growing use of encryption and other evasion 

measures, traditional content-based network traffic categorization is becoming more 

challenging. In this paper, we provide a malware classification technique that uses 

packet information and machine learning algorithms to detect malware. We employ 

the use of classification algorithms such as support vector machine and random 

forest. We start by eliminating characteristics that are highly correlated. We utilized 

the Random Forest method to choose only the 10 best characteristics from all the 

remaining features after eliminating the unnecessary ones. Following the feature 

selection phase, we employ several classification algorithms and evaluate their 

performance. Random forest algorithm performed exceptionally well in our 

experiments resulting in an accuracy score of over 0.99. 

Keywords : Malware classification, Encrypted Traffic, Feature Selection, Random 

Forest, Support Vector Machine 

 

I. INTRODUCTION 

 

Transport Layer Security (TLS) is a cryptographic 

technology that is increasingly being used to secure 

web, messaging, and application data transfer on the 

Internet. TLS is already used to encrypt and 

encapsulate the contents of HTTPS, the Tor 

anonymizing network, and virtual private networks 

based on the OpenVPN protocol, preventing them 

from being monitored or modified in transit. TLS has 

been used by malware authors for the same purpose: 

to prevent defenders from detecting and preventing 

malware distribution and data theft. There has been a 

substantial surge in malware that uses TLS to hide its 

communications in the previous year. As a result, 

network monitoring devices must be able to detect 

malicious traffic hidden behind TLS encryption. 

 

Traditional traffic prediction algorithms relied on port 

numbers and deep packet inspection (DPI). URL 

analysis and TLS fingerprinting are two more types of 

traditional traffic analysis. These approaches are 
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ineffective in detecting malicious messages in TLS 

transmission. In the absence of the payload content, 

other features such as inter-packet arrival intervals, 

TCP headers, and flow direction can be utilized to 

identify the application and data encrypted by TLS. 

Modern traffic analysis techniques are built on the 

combination of these features with machine learning 

algorithms.  

 

We describe a malware categorization approach that 

employs various machine learning classifiers in this 

work. To aid with categorization, we utilise a 

comprehensive feature selection and removal 

procedure. The amount of features in the benchmark 

dataset is decreased to improve the performance and 

efficiency of our classification models. 

 

The remainder of the paper is organised as follows. 

The second section discusses similar work on 

encrypted traffic analysis. Section III discusses our 

research study's recommended approach. We discuss 

the dataset selected for this research. We also go 

through the feature selection and removal process. 

Section IV presents the results of the experiments. In 

Section V, we summarise our findings and make 

recommendations for further study. 

 

II. LITERATURE REVIEW 

 

Traditional approaches to traffic classification, such as 

those based on port numbers and payloads, are usually 

based on packet content analysis. However, as the 

general public's security awareness develops, so does 

the usage of encryption techniques for 

communication. The packet payloads are now 

encrypted, making prior methods useless. As a result, 

how to identify encrypted malware has become a 

research priority in the field of network security. 

M.J de Lucia et al. [1] proposed a method for 

identifying suspicious communication using 

convolutional neural networks and a support vector 

machine Their SVM model outperformed the CNN 

model, and they used an approach that needed very 

little feature engineering. Shen et al. [2] provided a 

systematic technique for improving feature selection 

for successful encrypted traffic categorization. Yu et 

al. [3] presented a neural network-based approach for 

detecting encrypted malicious communications. 

During their investigation, they discovered that the 

imbalance in the dataset had an effect on the 

identification of encrypted traffic. Thaseen et al. [4] 

proposed a method for detecting network intrusion 

using machine learning algorithms. Singh et al. [5] 

presented a comparative research that included the 

examination of HTTPS traffic and virus identification. 

They recommended fully investigating TLS 

information and DNS traffic in order to improve 

malware detection and analysis. 

 

Priya et al. [6] proposed a system for identifying users' 

browsers and apps by monitoring network data in real 

time with unsupervised machine learning algorithms. 

Hou et al. [7] created a detection method for smart 

home systems based on edge computing using a 

support vector machine. When all webpages are from 

the same source, Shen et al. [8] devised a technique 

for fingerprinting them based simply on packet length 

information. They achieved an accuracy of up to 91.6 

percent using the k-NN technique. Dong et al. [9] 

proposed using the k-Nearest Neighbour method, a 

machine learning classification approach, to 

categorise video traffic. Conti et al. [10] described a 

method for detecting user activities by analysing an 

Android device's encrypted network. Using the 

dynamic time warping approach, they computed the 

sequence of data packets and extracted features. A 

random forest model was used for classification. 

Wang et al. [11] created a method for measuring the 

distance between packet sequences in order to 

achieve website fingerprinting. 
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III.  PROPOSED METHODOLOGY 

This section offers an overview of our work. 

Following the exploratory analysis of the dataset, we 

did comprehensive and rigorous feature pre-

processing, feature selection, and dataset reduction. 

We used five alternative machine learning classifiers 

after selecting the needed characteristics, and based 

on the performance metrics, we summarised which 

model is best suited for encrypted traffic 

categorization. We further improved the performance 

of our models using grid search to tune the hyper 

parameters. We evaluate classifier performance using 

a variety of metrics, including AUC, Precision, 

Accuracy, F1-Score, and Recall.  

A. Dataset 

We utilised the MTA-KDD'19 Dataset developed by 

Ivan Letteri et al. [12] to perform this study. This 

dataset was created by grouping packets with the 

same source address in each pcap in segments, even if 

they were not time-stamped. As a result, we may see 

traffic from a new perspective, one that takes into 

account the hosts participating in the connection 

rather than simply the packets themselves. There are 

33 features in this data collection. The dataset's 

creators carefully selected each of these 

characteristics. 

 

B. Feature Elimination 

We investigate the effect of preserving just important 

information that can increase prediction accuracy and 

eliminating those that are irrelevant and may harm 

model performance. We reduce model complexity by 

decreasing the number of features. This can aid in the 

prevention of overfitting. We selected a correlation 

threshold of +0.8 to eliminate strongly linked 

characteristics from our dataset. There were many 

groupings of characteristics that were correlated. We 

eliminated 11 features owing to multicollinearity as a 

result of this. The highly correlated features are 

shown in table 1. 

TABLE I 

HIGHLY CORRELATED FEATURES 

S. No Feature 1 Feature 2 Correlation 

1. UDPoverIP TCPoverIP 0.985633 

2. UDPoverIP DNSoverIP 0.877538 

3. AckFlagDist FlowLEN 0.957587 

4. AckFlagDist PshFlagDist 0.931598 

5. AckFlagDist SynFlagDist 0.810665 

6. AvgLen AvgWinFlow 0.947299 

7. AvgLen MaxLen 0.858070 

8. AvgLen FlowLen 0.850807 

9. AvgLen StdDevLen 0.837223 

10. DeltaTimeFlo

w 

MaxIAT 0.945212 

11. NumCon NUmIPdst 0.930952 

12. AvgIAT AvgIATrx 0.875336 

13. FinFlagDist SynFlagDist 0.827972 

 

We then used the random forest method to rank 

characteristics in order to focus on the most relevant 

ones. The Random Forest method ranks a node's Gini 

impurity using tree-based techniques. The highest 

impurity is found at the root, whereas the lowest 

impurity is found at the ends of the branches. A tree 

may also compute how much of the observed 

impurity in the tree is decreased by each feature once 

it has been trained. By trimming the tree, we may 

generate a subset of the most essential characteristics. 

Figure 1 depicts the top ten features in our dataset in 

terms of feature significance as determined by the 

Random Forest method. 

 
Figure 1:  Top 10 features based on feature 

importance 
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C. Evaluation Metrics 

Multiple evaluation metrics may be used to assess the 

performance of machine learning classifiers. In our 

investigation, we employed the following metrics: 

precision, accuracy, recall, and F1-score. These are 

based on the confusion matrix, which may be 

generated by considering the predicted values of the 

algorithm: true positives, true negatives, false 

positives, and false negatives. 

D. Classifiers Used 

1)  Decision tree: 

The decision tree method is represented as a tree, 

with nodes representing attributes, branches 

representing decisions (rules), and leaf nodes 

representing outcomes. We discovered that our first 

effort at modelling a decision tree algorithm was 

prone to overfitting. As a result, hyper parameter 

adjustment was required. We set max features, 

minimum samples split, and tree depth to 6, 0.2, and 5, 

respectively, after hyper parameter tweaking using 

grid search. This hyper parameter tweaking 

procedure resulted in a more efficient model. The 

training set's accuracy was 0.8967, whereas the testing 

set's accuracy was 0.8874. 

2)  Naïve Bayes: 

This is a classification method based on the Bayes 

Theorem. It is predicated on predictor independence. 

A Naive Bayes classifier assumes that the existence of 

one feature in a class has no impact on the presence of 

any other feature in the class. These models are 

simple to build and useful for very large data sets. It is 

called Naive because it believes that the existence of 

one feature has nothing to do with the presence of 

others. When compared to the random forest model, 

this classifier performed poorly with our dataset. The 

accuracy of the training set was 0.8236, whereas the 

accuracy for the testing set was also 0.8212. 

3) Random forest: 

Random forest is an ensemble learning approach that 

combines multiple decision trees or weak learners to 

get more precise and dependable outcomes. A random 

forest's hyper parameters are nearly equal to those of 

a decision tree. Random Forest increases the model's 

unpredictability when 'growing' these trees. The 

graphs below might assist you in determining the 

appropriate values for the Random Forest classifier's 

hyper parameters. N-estimator denotes the number of 

trees to be built before computing the maximum 

voting or prediction averages. A larger number of 

trees improves performance but uses more resources. 

The maximum number of features, n estimators, 

minimum sample split, and tree depth were set to 5, 

25, 0.2, and 10 correspondingly. The random forest 

classifier beat the decision tree classifier, and hyper 

parameter tweaking enhanced the classifier's 

performance even more. The training set's 

accuracy was 0.9950, whereas the testing set's was 

0.9927. 

4) Support vector machine: 

The support vector machine algorithm finds a 

hyperplane in an n-dimensional space, where n 

denotes the number of distinguishing features 

between data points. Several such hyperplanes might 

be utilised to split data point groupings. The aim is to 

find the plane that has the maximum distance 

between data points from both classes. Hyperplanes 

are the boundaries that help in data categorization. 

Support vectors, on the other hand, are data points 

that are closest to the hyperplane and have an 

influence on its direction and location. Grid search 

was utilised to fine-tune the support vector machine 

classifier's hyper parameters. Grid search tries all 

possible dictionary value combinations and evaluates 

the model for each one using the cross-validation 

method. The best values for „C,' „gamma,' and „kernel' 

that resulted were 1000, 0.1, and „rbf,' where „rbf' 
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stands for the Radial Bias Function kernel. When 

compared to the random forest model, this classifier 

did rather well with our dataset. The training set had 

an accuracy of 0.9247, while the testing set had an 

accuracy of 0.9264. 

IV. RESULTS AND DISCUSSION 

This section summarises the results of our experiment. 

We utilised four machine learning classifiers on the 

dataset: Random Forest (RF), Support Vector Machine 

(SVM) with the radial bias function kernel, Naive 

Bayes classifier, and Decision Tree (DT). Table 2 and 3 

summarise the comparative metrics of the algorithms 

used in this study. The Random Forest classifier 

outperformed all other models with an accuracy of 

0.9927 percent. The SVM classifier provided 

extremely strong results as well, with performance 

metric values greater than 0.9. The Nave Bayes model 

performed the lowest of the five, with comparably 

low accuracy and precision scores. 

TABLE III 

FINAL RESULTS (ACCURACY & PRECISION)  

S.No Algorithm 

 

Accuracy Precision 

1 Decision Tree 0.8874 0.9811 

2 Naïve Bayes 0.8212 0.7889 

3 Random 

Forest 

0.9927 0.9941 

4 SVM 0.9264 0.9075 

 

TABLE IIIII 

FINAL RESULTS (RECALL & F1-SCORE)  

S.No Algorithm 

 

Accuracy Precision 

1 Decision Tree 0.8018 0.8824 

2 Naïve Bayes 0.9021 0.8417 

3 Random 

Forest 

0.9921 0.9931 

4 SVM 0.9580 0.9321 

 

V. CONCLUSION AND FUTURE SCOPE 

 

As the volume of encrypted communication increases 

rapidly, detecting malware in traffic which is 

encrypted has become a difficult and complex 

challenge. Traditional content-based network traffic 

categorization is becoming difficult due to the rising 

use of encryption. In this paper we propose a malware 

classification technique by using multiple machine 

learning classifiers. We use an extensive feature 

selection and elimination process to further help in 

classification. We removed features based on 

correlation between them and finally selected only 

ten best features using the random forest algorithm. 

The number of features from the dataset is reduced to 

make our classification models perform better and 

make it more efficient. From the results we obtained, 

we conclude that the Random Forest algorithm 

performed the best compared to the other algorithms 

used for the classification of data packets as malicious 

or benign. 

 

In future studies, we plan to use datasets which we 

will develop ourselves. Future work will also include 

deep learning models.  
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