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ABSTRACT 

 

The paper describes a method that uses evolving LSTM recurrent neural networks to generate melodic music 

through a discriminative model. The approach enclosed has achieved an accuracy level of over 90%, thus 

enabling our model to understand & generate music as per the input parameters. The input expected from the 

user is minimal and can be provided by a layman. The experiments presented here demonstrate how LSTM can 

successfully learn a form of training music data and compose a novel (and pleasing) melody based on that style 

of training. LSTM can play melodies with good timing and appropriate structure if the parameters have been set 

appropriately. The RNN Model presented in this paper leverages the benefits of LSTM networks and 

demonstrates how this feat can be achieved. 

Keywords : LSTM, Music Generation, Deep Learning, Recurrent Neural Networks, RNN, Discriminative Model, 

Evolving LSTM, Evolving LSTM RNN 

 

I. INTRODUCTION 

 

In order to use an RNN as a single-step predictor, it is 

easiest to use the network to automatically compose 

music. It is designed to be able to predict notes at time 

t + 1 by using notes at time t as input and notes at 

time t as output. Using its own outputs to create 

subsequent inputs, the network can generate new 

compositions after the learning has stopped. It would 

be difficult for a feed-forward network to compose 

music this way. The inability of this network to store 

past data would mean that these networks would not 

have the ability to track where they are (or were) in a 

song. The limitation mentioned above should not 

apply to RNN models. In the brain, recurrent 

connections allow hidden layer activations to be used 
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as memory. Thus it can exhibit (albeit arbitrary) 

temporal dynamics as a result of the hidden layer 

activations. 

When faced with this task, however, RNNs typically 

fall short of expectations. It is due to the vanishing 

gradient property of RNNs that this failure occurred. 

As the error flow disappears or explodes 

exponentially in gradient methods, such as Real-Time 

Recurrent Learning (RTRL) and Back-Propagation 

Through Time (BPTT), the networks will have 

trouble processing long-term dependencies. In music, 

dependencies across multiple notes and beyond are 

critical for defining a certain style. This way, metrical 

structure and phrasal structure are formed over time. 

Changes in chords are a good example of this type of 

dependency. When a chord is held for four bars or 

longer, like with early rock-and-roll for instance, 

then this is a musical form. It is expected that 

networks spanning 32 events or more will be able to 

bridge regular and reliable periods or spans of notes 

smaller than eight. It is important to note that Mozer 

(1994) composed note-by-note melodies 

accompanying chord progressions of single-voice 

melodies. 

The RNN techniques used in "CONCERT" included 

BPTT (a combination of statistical methods) and 

proportional likelihood methods. A psychologically 

realistic approach to input encoding has also been 

employed by the researchers (Shepard, 1982) 

alongside the neural network approach. As a result of 

a note that was related chromatically and 

harmonically, the network became inductive. The 

second encoding method used to produce distributed 

representations of chords was used in order to achieve 

the desired result. In our previous report, we 

discussed how BPTT-trained RNNs are ineffective at 

learning long-term dependencies. As a result, 

duration had to be encoded on a distributed basis, 

allowing him to process any note in a time interval on 

the network at the same time. Since single time steps 

are represented rather than slices of time in notes, the 

network has to bridge significantly fewer time steps 

while learning global structure. There is a network 

that encodes slices of time in an undeviating manner. 

16th notes, for instance, require that the whole note 

span sixteen steps within the network. 

Considering the sixteenth notes found in every 

CONCERT composition, every composition would 

require 172-time steps. CONCERT architecture's 

method of representing melody, chords, and duration 

in a psychologically realistic way did not accurately 

capture global musical structure despite being based 

on RNNs. Although networks regularly overproduce 

transition tables of third order, they did not find 

global structure in any case. The importance of 

structural multi-level structure is emphasized by 

Mozer in analyzing the performance of the note-by-

note method. The following architectures may 

provide solutions, and we recommend them. 

 

II. LSTM MUSIC COMPILER 

 

A. LSTM Architecture 

LSTM can't be described in depth due to space 

constraints. The concept of LSTMs is to maintain a 

constant flow of errors over time. A constant error 

carousel (CEC) is used by LSTMs to overcome the 

problems associated with error decay that plague 

previous RNNs to preserve the error flow from 

undesirable perturbations. An external cloud of 

nonlinear units is connected to a fixed self-

configuration of CECs by means of a fixed self-

configuration. Controlled data flow between 

nonlinear circuits is controlled by CEC. Flows that 

use multiplicative inputs become resistant to 

perturbation due to their multiplicative nature. 

Multiplicative output gates can also learn not to 

disturb other units if they receive memories that are 

currently irrelevant. It does this by resetting the 

contents of an outdated memory cell. An optimized 

version of BPTT was used in conjunction with a 

specialized version of BPTT for this RTRL. The input 

gates, the forget gates, and the weights to the cells use 

the RTRL implementation, and the output gates use a 
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pruned version of BPTT, in order to minimize the 

computation times. LSTMs perform better in online 

knowledge situations when weight updates are 

controlled by a Kalman filter. 

 

B. Data Representation 

Our goal is to avoid realistically distributed encodings 

and instead present simple descriptive descriptions of 

the data. Each note is assigned 1.0 input/target, with 

0.0 representing off. Instead of CONCERT, this 

scheme relies on a network to learn to prioritize 

melodies that are harmonically and chromatically 

appropriate. Our preference for local representation is 

based on several reasons. Chords and melodies are not 

artificially distinguished, and there is an implicit 

sense of many voices. Actually, chords are 

implemented by enabling the right notes in an input 

vector. Additionally, it is simple to create 

probabilistic distributions over the possibilities, 

allowing the likelihood of a single note to be 

independent or dependent. A single input vector 

represents one slice of real time, with one denotation 

of time. Depending on the step size of the 

quantization (which is the case for all experiments in 

this study), a whole note can be processed in eight 

network time steps. Since this method involves 

learning the relative durations of notes, the algorithm 

is better suited for LSTM since it makes the 

mechanism of counting and timing simpler. 

Despite the fact that this graphic is a representation of 

a complex issue, it misses two crucial points. A note 

cannot be stated precisely as to when it ends, but it is 

important that the listener keeps this in mind. The 

same is true for two eighth notes played at the same 

pitch. Thus, four sixteenth notes played at the same 

pitch will be expressed as eight eighth notes. By 

decreasing quantization steps and marking all note 

ends with zeros, altering input and target structures is 

not required. The exact same pitch is analyzed using a 

quantization level of 1 for every eighth note and four 

quarter notes assigned with the exact same 

quantization level. To indicate the beginning of a note, 

a unit (or units) can be created within the network. A 

method such as this is certainly feasible.  

However, it is unclear how the same approach would 

work with data sets containing multi-voice melodies. 

Simulation results indicated that a range of 12 chords 

and 13 melodies is possible. In the simulations, we 

divided chord notes from melody notes and this 

separation is artificial since the chord notes and 

melody notes are not represented in a different 

manner. We also intend to integrate the two in a 

more realistic way in future experiments. 

Our goal is to use MRF modeling within the 

polyphonic music domain. The representation of 

music can take many forms. A .wav or .mp3 file is a 

sequence of audio signals, in its most unstructured 

form. It is also possible for music to be represented as 

instructions for the performer, as in opus . The music 

represented in this way includes all the notes within a 

piece, as well as the onsets, durations (e.g., "quarter" 

notes, half notes"), and pitches of all the notes. In 

addition to the time signatures and key signatures, 

sharps, flats, ties, and slurs, this music provides other 

dynamic markings which help to instruct the 

performer on how they should perform the piece. 

There is a form we influence that is neither of these 

forms, but one that mixes aspects of the two forms. It 

is also possible to use MIDI (www.midi.org) as an 

example, even if the music does not have to be in this 

format. A MIDI file contains the start, duration, and 

pitch of every note in the piece of music. It is not 

always possible to obtain other information. The 

pitches are encoded as numbers from 1 to 128. Due to 

the lack of symbolic durations, milliseconds are the 

only units specified. There are no symbolic onset 

times, but rather millisecond integer locations. 

The concept of monophonic music is that in the event 

of a note playing, no new note may start until the 

previous note has been completed. Such a restriction 

does not exist in polyphonic music. The end of one 

note may be followed by the beginning of another. 

Thus, polyphonic MIDI music is represented visually 
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by a two-dimensional graph, on which millisecond 

time and the number of notes (1 to 128) are plotted. 

Here is a picture to illustrate this point. A black circle 

represents a note that is "on". An "off" note is 

represented by a white circle. 

 
The purpose of our MRF modeling is to use the 

polyphonic content in our source documents to 

model. For each note in the sequence, only the onset 

times are selected, and the note's duration is ignored. 

Thus, the example above becomes: 

 
Our next step is to remove all millisecond onsets 

without any pitches. (A first-stage model must be able 

to discard not only the duration of notes, but also the 

intervals between notes.) Millisecond onset times 

with pitches, however, are called "simulation". 

 
The 128-note y-axis has now been reduced to the 

equivalent 12-note octave pitch set. This is achieved 

by multiplying MIDI pitch numbers by the 

modulation-12 value. 

The example above thus becomes: 

 
There are either 1s or 0s in the sequential sequence of 

12-element bit vectors; thus, there are 12 elements. 

For each spot, we counted whether a note had an 

onset at that particular time (mod 12). Throughout 

this paper, we do want to emphasize that it is not 

necessary that the source music be MIDI. We are 

mostly concerned about the pitch values and the 

relative order of notes. In addition to MIDI files, it 

could also have been derived from transcribed audio 

files (AMR) or scanned musical compositions (OMR). 

If pitch information is present in a piece of music, our 

algorithms will work on it. 

 

III. EXPERIMENTS 

 

LSTMs are demonstrated to be capable of learning to 

recreate a musical chord structure in this experiment. 

Rather than relying on melody for the chord 

structure, we want to ensure that it is possible to infer 

a chord structure in the absence of melody. If LSTMs 

are predicting global chord structure, they may 

benefit from the local structure in melody. Input data 

is especially at risk when recombination occurs using 

relatively few musical examples as in this case. 

 

A. Restricted Boltzmann Machines (RBM) 

Based on an energy model, the probabilities of the 

visible input vector v (inputs) and the hidden vector h 

for any given configuration of the vectors are: 

bv, bh and W represent the parameters of the model, 

while Z represents the partition function. The hidden 

units hi are conditionally independent of one another 

when the vector v is given, and the reverse is true 

when the vector v is given: 

 
The element-wise logistic sigmoid function is σ(x) ≡ 

(1 + e−x)−1 are calculated from the marginalized 

probability of F(v) by P(v) ≡ e−F (v)/Z: 

 
The RBM inference process consists of sampling hi 

given v (or the vj given h), depending on the 

conditional distribution of hi to the Distribution 

Bernoulli (eq. 2). Using block Gibbs sampling, i.e. 

alternating between sampling v and h in k steps, it 

can be efficiently sampled from the RBM. It involves 
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two opposing terms, the positive phase, and the 

negative phase, of an input vector v(l). 

 

B. The RNN-RBM 

Recurrent Temporal RBMs (RTRBM) can be viewed 

as sequences of conditional RBMs. It works by 

describing the conditional distributions and 

conveying temporal information in hidden units, 

which are outputs of a deterministic RNN. An RNN 

with distinct hidden units hˆ(t) can be combined to 

alleviate this constraint with the RTRBM graphical 

model as shown in Figure 1. We call this model the 

RNN-RBM. 

For simplicity, we consider the RBM parameters to be 

W, bv(t) , bh(t) (i.e. only the biases are variable) and a 

single-layer RNN (bottom portion of Fig. 1(b)) whose 

hidden units hˆ(t) are only connected to their direct 

predecessor hˆ(t−1) and to v(t) by the relation. 

 
Figure 1: Graphical structure comparison of (a) the 

RTRBM and (b) the RNN-RBM with only one layer. 

An RBM's single-arrow representation represents its 

deterministic functioning, while its two-arrow 

representation represents its stochastic hidden-visible 

connections. An RNN with hˆ(t) underlying units is 

displayed on the RNN-RBM's upper half. A linear 

relationship exists between RBM biases bh(t), bv(t) in 

relation to hˆ(t−1). 

 

C. Resilient Propagation (RProp) 

A heuristic optimization algorithm called resilient 

propagation (RProp) is used for training the long-

short-term memory (LSTM) network. It is a local 

adaptation learning strategy that modulates weight-

specific parameters, such as learning rate, in order to 

facilitate gradient-descent learning problems. It is 

possible to achieve this result by only utilising 

weight-specific information, in this case partial 

derivatives, which are available in this case. By 

ignoring the scale of the partial derivatives, RProp 

directly adapts the weight update's dimensions. In 

contrast to other adaptive learning algorithms that 

use the gradient magnitude to adjust learning, in this 

case, only the derivative's sign is used. Load-related 

updates are determined solely by weight-specific 

update values, so the sign of the derivative tells us the 

direction of the load update. 

 
Figure 3: The Structure of Long-Short Term Memory 

Neurons 

The RProp algorithm has been found to achieve 

exponential convergence faster than plain gradient 

descent algorithms in research studies (Riedmiller, 

1994). Furthermore, we do not have to tune the 

parameters for optimal results with RProp. 

 

D. Melody-RNN 

The Melody-RNN library is an open source project 

built by Google under its Magenta operating system. 

We believe one of Magenta's primary objectives is to 

make music and art production more intelligent with 

machine intelligence using a broad array of machine 

learning techniques. There has already been extensive 

use of machine learning in understanding content, 

mostly in recognition of speech or translation of text. 

Through the use of intelligent algorithms and systems, 
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Project Magenta explores the other side, developing 

algorithms that can learn to create music and art on 

their own, therefore creating the potential for 

compelling and artistic content. LSTM networks can 

be comprised of two layers and Melody RNNs are 

designed to be simple twin-layer LSTM networks. 

Presently, Melody-RNN models can be categorized 

into three groups. In the first model, we use basic 

one-hot encoding to represent melodies as inputs to 

the LSTM; in the second one, we use Lookback RNN, 

which is a model that introduces custom inputs and 

labels to allow the model to easily recognize pattern 

across one and two bars; the other one is Attention 

RNN, which applies attention to the RNN cell to let it 

access information from the past without storing it in 

its state. 

Magenta team has recently published an update 

showing that the DQN network can be applied to the 

Magenta generation process to work as a reward 

function to train the neural network to follow certain 

theories of music. Below is a summary of the basic 

concept: 

 
Figure 4: WaveNet Network Architecture 

Attention RNN is by far the most sophisticated and 

best performing model compared to the others. Using 

a RNN layer with a size of 128x128 and a batch size of 

32, the dropout rate was set to 0.5, and the initial 

learning rate was 0.01. 

 

E. Biaxial-RNN 

One of the impressive takeaways of Daniel Johnson’s 

impressive RNN music composing project is the 

Biaxial-RNN. The following properties make it well 

designed:  

1. Comprehend time signatures: compositions must 

adhere strictly to time signatures. 

2. Consistency across time and space: ability to 

compose indefinitely. 

3. Having the same structure of the network as you 

transpose the notes up and down. 

4. Allow the selection of coherent chords and the 

simultaneous playing of multiple notes. 

5. Permit repeating a note: holding the C note for 

two beats is different from playing it twice. 

 
Figure 5: Biaxial-RNN Network Architecture 

Several existing RNN-based compositional techniques 

have invariants with respect to notes but variable 

behaviors with respect to time. Imagine if we 

transpose one octave up and were expecting the 

model to produce a piece of music that is almost 

identical to the original. By doing this, the Biaxial-

RNN design passes down history information along 

two axes (the note axis and the time axis). As inputs 

to the model, pitch class, proximity, note value, past 

context, and beat information; as outputs, articulate 

probability and play probability are taken into 

account. 
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F. Sample Training Input to Model 

 
Figure 2:  Sample representation of the input music 

notes provided as Training Data 

 

IV. CONCLUSION 

 

As demonstrated in this paper, discriminative 

neuroevolution can be used to create artificial 

compositions that draw from underlying rules and 

principles of music theory. Through a combination of 

common composition rules and specific style 

descriptions, this program has demonstrated the 

capability of composing melodies that are similar to 

the music desired. Despite being relatively simple, the 

results show promise, and it is likely that they will 

improve with the addition of more composition rules 

and larger training datasets. 
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