
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

National Conference on Engineering Innovations in Emerging Technologies

In association with International Journal of Scientific Research in Science,

Engineering and Technology

Print ISSN: 2395-1990 | Online ISSN : 2394-4099 (www.ijsrset.com)

doi : https://doi.org/10.32628/IJSRSET219430

172

A Deep Convolutional Neural Network Approach to Sign Alphabet Recognition
Uday Kumar Adusumilli1, Sanjana M S2, Teja S2, Yashawanth K M2, Raghavendra R2, Dr. B. Udayabalan3

1Product Support Analyst, Associate, Infor, Bangalore, Karnataka, India
2Students, Department of Information Science and Engineering, East Point College of Engineering and

Technology, Bangalore, Karnataka, India
3Professor, Department of Information Science and Engineering, East Point College of Engineering and

Technology, Bangalore, Karnataka, India

ABSTRACT

In this paper, we present an application that has been developed to be used as a tool for the purposes of learning

sign language for beginners that utilizes hand detection as part of the process. It uses a skin-color modelling

technique, such as explicit thresholding in the skin-color space, which is based on modeling skin-color spaces.

This predetermined range of skin-colors is used to determine how pixels (hand) will be extracted from non-

pixels (background). To classify the images, convolutional neural networks (CNN) were fed the images for the

creation of the classifier. The training of the images was done using Keras. A uniform background and proper

lighting conditions enabled the system to achieve a test accuracy of 93.67%, of which 90.04% was attributed to

ASL alphabet recognition, 93.44% for number recognition and 97.52% recognition of static words, surpassing

other studies of the type. An approach which is based on this technique is used for fast computation as well as

real-time processing. Deaf-dumb people face a number of social challenges as the communication barrier

prevents them from accessing basic and essential services of the life that they are entitled to as members of the

hearing community. In spite of the fact that a number of factors have been incorporated into the innovations in

the automatic recognition of sign language, an adequate solution has yet to be reached because of a number of

challenges. As far as I know, the vast majority of existing works focus on developing vision based recognizers by

deriving complex feature descriptors from captured images of the gestures and applying a classical pattern

analysis technique. Although utilizing these methods can be effective when dealing with small sign vocabulary

captures with a complex and uncontrolled background, they are very limited when dealing with large sign

vocabulary. This paper proposes a method for analyzing and representing hand gestures, which acts as the core

component of the vocabulary for signing languages, using a deep convolutional neural networks (CNN)

architecture. On two publicly accessible datasets (the NUS hand posture dataset and the American

fingerspelling A dataset), the method was demonstrated to be more accurate in recognizing hand postures.

Keywords: ASL Alphabet Recognition, Sign Language, Recognition, Static Gesture, Deep Convolutional Neural

Network (CNN).

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Volume 9 - Issue 4 - Published : July 20, 2021 Page No : 172-182

173

I. INTRODUCTION

The use of sign language can be extremely useful for

those who have speech and hearing problems (deaf

and dumb). It is a common communication method

for people to communicate with one another using

hand gestures, facial expressions, and body

movements. Since sign language isn't an international

language, very few people are familiar with the

gestures associated with it. Hearing people who do

not know sign language interacting with people who

are deaf and dumb can cause a communication

breakdown that is of great concern in society. The

spoken language is translated to sign language by

interpreters who bridge the gap between the spoken

language and the signed language. As this system is

expensive, a deaf person may never be able to access it.

Having automatic recognition of sign language

gestures will alleviate the existing communication

barrier for the deaf and dumb community. Sign

language's vocabulary is primarily made up of hand

gestures, while facial expressions and body

movements emphasize the meaning of the gestures.

There are two types of hand gestures: static and

dynamic.

The static hand gesture, also called hand postures,

involves a variety of hand positions and shapes

without conveying any movement of the hands.

Dynamic hand gestures are formed by combining

varied hand postures and motion signals as a result of

a variety of hand movements. There are many uses of

fingerspelling, notably used for letter-by-letter names,

place names, dates, ages, numbers, and words whose

sign language vocabulary does not include predefined

signs. The use of hand postures as a way of visual

input in many fields (human computer interaction

(HCI), human robot interaction (HRI), virtual reality

systems, and medical procedures) has also become a

popular choice as the hand positions reduce the

necessity of direct physical contact with the

conventional devices. In recent years, estimating

hand postures automatically has been a hot research

area based on both vision-based approaches, as well as

signals-based approaches.

Taking into account the complexity of the data

collection process, it appears that the vision-based

approaches are more user friendly and convenient

than that of other methods. Preprocessing and

extraction of features are typically handled using

classical methods of pattern analysis in most existing

vision-based facial recognition work. This work

presented a multilayer perceptron based upon

features derived from discrete wavelet transforms

(DTWs) for the recognition of letters and numbers in

Persian Sign Language (PSL). The accuracy of their

classification was 94.06 percent. Using discrete cosine

transform (DCT) features and a hidden Markov model

(HMM) Al-Rousan et al. implemented a user

independent Arabic Sign Language Recognition

system. It is claimed that 87% of the results are

accurate. Based on the fusion of heterogeneous

features, our researchers developed a method to

recognize hand postures based on publicly available

Triesh data that was 99.16% accurate. The researchers

tested a support vector machine classifier that uses

multiple kernels to recognize static hand gestures.

They generated the feature vectors by combining

shape context features with pyramidal HOG features

as well as bags of features based on SIFT techniques.

With the aid of multiclass support vector machines

which are constructed from scale invariant feature

transforms (SIFT) descriptors, Nasser et al. propose a

novel method for recognition of hand gestures. The

percentage of correctly classified exams in their exams

was 96.23%. A multiclass random forest classifier was

proposed by Pugeault et al., using the features

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Volume 9 - Issue 4 - Published : July 20, 2021 Page No : 172-182

174

extracted from Gabor filters in four levels, to

recognize 24 static signs in the ASL (American Sign

Language) alphabet. They estimate that 49% of their

candidates will be accepted into their programs. A

method has been proposed by Pramod et al to identify

hand postures from complex backgrounds by using a

human eye. As a result of combining the descriptors

extracted from images that describe shape, color,

texture, and density as well as the feature-based

features, they were able to achieve an accuracy of

94.36%.

Fig. 1: ASL (American Sign Language).

It is still becoming increasingly important for gesture

communication to include, along with hand gestures,

facial expressions and body postures. Currently, there

is also a research effort underway to develop a

technique for recognizing all three different types of

gestures using a gesture recognition system. Yang and

Lee proposed that facial expressions and hand gestures

can be used to automatically recognize British Sign

Language (BSL) by means of automatic recognition. In

spite of the fact that traditional methods have

generated excellent results, they are unable to

develop consistent feature descriptions for hand

posture recognition in real-time scenarios because of a

variety of challenging factors. A typical disadvantage

of conventional machine learning techniques is their

incapacity to accurately identify distinguishable

patterns presented by natural raw data sets. A number

of challenges stand in the way of detecting and

segmenting hands in images with complex

backgrounds when applying hand posture recognition

approaches.

There is also a problem in analyzing the structural

characteristics that account for geometrical variations

in hand postures displayed by individuals displaying

the same hand posture. The recognition of sign

language in automatic systems is also difficult when

there are many types of gestures, but their intraclass

variations are relatively small. The detection and

differentiation of the patterns in the images and

videos is a complex process that involves

computationally demanding steps and a great deal of

domain knowledge. It has also been noted that public

datasets with enough sample images do not exist

which makes it difficult for researchers to study sign

language recognition. Having difficulty

communicating in sign language could be due to a

variety of reasons, one of which is the difference in

terminology between regions and countries. As a

result, there are many different types of ASL, BSL,

CSL (Chinese Sign Language), ISL (Indian Sign

Language), and PSL.

Fig. 2: Architecture of a typical CNN.

Recent advances in deep learning techniques and

advances in convolutional neural networks (CNNs)

have enabled advanced techniques to recognize hand

gestures far more successfully than traditional systems,

since they remove the need to develop complex

feature descriptors from images after conventional

pre-processing and segmentation steps. CNNs learn

high level abstractions from images by using

hierarchical architecture, resulting in good features

being extracted from the images they process. As a

result, a large number of gesture classes are no longer

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Volume 9 - Issue 4 - Published : July 20, 2021 Page No : 172-182

175

generated with very slight variations within each one.

This means that the problem of getting inconsistent

feature descriptors can be avoided. A possible solution

to identify ASL letters has been proposed by Ameen

et al. by using CNN-based models. As part of their

work, the researchers used two types of images of

gestures in the ASL fingerspelling benchmark dataset

and were able to achieve a prediction accuracy of

80.34 %. Using RGB and depth images Rastgoo et al.

used a restricted Boltzmann machine (RBM) to

recognize ASL's fingerspelling with RGB. This model

uses the CNNs to detect hands, after which the images

that have been detected are fed into a RBM to

identify the signs.

Four public datasets were used to evaluate the model

(Massey University Gesture Dataset, American Sign

Language (ASL), Fingerspelling Dataset from the

Center for Vision, Speech, and Signal Processing at

University of Surrey, NYU, and ASL Fingerspelling A).

The results of a recent study by Mohanty et al. shows

using deep learning and CNN approach, and in the

presence of a complex background and varying

illumination conditions, it is possible to recognize

static hand gestures. A good recognition result has

been achieved with their proposed model using three

publicly accessible benchmark datasets, mostly

cluttered backgrounds, as well as the Triesh hand

posture dataset with uniform dark background and

the Marcel hand posture dataset with uniform dark

background.

The aim of this paper is to propose an automated hand

posture detection method that uses convolutional

neural networks to compute deep parallel

architectures. When the background is cluttered, it is

difficult to segment by hand, and this model

eliminates that process whenever the background is

cluttered. It is possible to segment images using many

parameters, such as skin color, hand shape, and many

others, but none of them produce good results when

applied to images with background colors. This will

allow for the creation of more detailed feature

descriptors that can be used as a basis for recognizing

different gestures without the need to perform

tedious calculations. It has been proven that the

algorithm worked with datasets with both uniform

and complex backgrounds, and that the results have

been both promising and promising.

II. RELATED WORKS

It was only recently that various sensor types,

particularly those relying on depth information, were

developed, which led to all kinds of real-time

applications, such as gesture recognition and

recognition of sign language in real-time. As a result

of their low cost, sensors such as Microsoft Kinect and

leap motion controllers are widely used by

researchers and institutions. The recognition of

sentences as well as isolated words and letters can be

separated into three subproblems within the context

of sign language recognition. Here, the main focus of

the paper is the American Sign Language (ASL)

alphabets. For developing an alphabet recognition

system for American Sign Language, there are three

steps necessary: Hand segmentation, Feature

extraction, and Classification. It is a well-known fact

that there have been numerous publications in the

field of fingerspelling in American Sign Language, but

very few have delved into user-independent

situations due to the large change of each signer's

style. In March 2006, Pugueault and Bowden

proposed using a Microsoft Kinect sensor to recognize

hand gestures used in American Sign Language.

A total of 24 images of the English alphabet were

submitted by five different signers for them to

compile the RGB and depth values for. In order to

predict the label of each fingerspelling letter, a Gabor

filter is used as a texture feature extractor from a

multiclass random forest classifier, which uses texture

features. It was found that the Gabor filter is not

capable of discriminating between different types of

signals in laboratory experiments. In this study, this

dataset was considered to be a benchmark dataset

since it was used in a number of research papers.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Volume 9 - Issue 4 - Published : July 20, 2021 Page No : 172-182

176

Keskin et al. have recently used a random forest (RDF)

method to estimate hand poses and classify hand

shapes using the generative model. They assigned

each depth pixel to an appropriate hand shape class by

using a multilayer RDF. An RGB-D image of a hand

gesture was used along with sparse auto-encoder (SAE)

and principal component analysis by Li et al. The

color and depth channels are learned respectively

from two sparse auto-encoders using convolutional

neural networks.

Several PCA layers were used to combine the features

from both channels. The authors did not discuss the

feasibility of their method for solving the signer-

independent problem, only reporting experimental

results for American sign language (ASL) datasets.

Using depth contrast feature and per-pixel

classification, Dong et al. segment the hand region

into parts. The method used hierarchical mode-

seeking to locate hand joint positions under kinematic

constraints. Based on joint angles obtained, an ASL

classifier was built using Random Forests (RF). In

recognizing all static ASL alphabet signs under

experimental tests, their method achieved above 70%

and 90% accuracy using public datasets. According to

Zhang and Tian, depth maps are encoded using H3DF

(Histogram of 3D Facets). A 3D Facet associated with

a 3D cloud point characterizes the 3D local support

surface.

Signs are represented by their 3D shape, which is

described by the H3DF descriptor. We achieved 73.3%

recognition using SVM and 77.2% recognition using

sparse representation (SR) classifiers for ASL alphabet.

An earth mover distance metric using Kinect depth

camera was proposed by Wang et al. to recognize

gestures using hand gestures. The extracted depth,

skeleton, and texture information is displayed as

superpixels. In order to measure the dissimilarity

between hand gestures, we applied the robust

Superpixel Earth Mover's Distance metric (SP-EMD).

They found 75.8% accuracy on the dataset they tested

using their distance metric and features. An American

sign language alphabet was represented using PCA

with the Gabor filter and an orientation base hash

code by Akhter and Arif-Ul-Islam. The classification

was then performed using Artificial Neural Networks

(ANN). In order to evaluate their method, they used a

database with 576 ASL alphabet sign images.

Compared to results using only RGB images alone,

results using depth images worked much better in

terms of timing and accuracy.

However, authors did not test their method against

signer-independent scenarios, only using their own

analyses, which were not publicly available. An image

recognition system based on depth images was created

by Kang et al. using convolutional neural networks

(CNNs). The researchers trained more than 30

different alphabets and numbers into different CNNs

using five different subjects. Based on the benchmark

dataset and different learning hyperparameters used,

they achieved an accuracy of 83.58% for leave-one-

out testing. Using the CNN model, Ameen and Vadera

used both color and depth images to recognize ASL

fingerspelling. In order to extract features from each

input, a CNN model is developed containing two

convolutional layers. In order to classify, the features

from both layers are concatenated into one layer.

Based on the same benchmark dataset, accuracy was

reported to be 83.34 percent. In their study, Tao et al.

synthesize inferences from multiple views using CNN.

In order to improve the performance of the CNN

model, more perspective images are generated from

the original depth image.

Based on the results of the different generated views,

a final decision was made by combining their scores.

While the researchers' method achieved state-of-the-

art accuracy, they had to incur a high computational

cost to ensure different viewpoints were possible. An

alternative approach to American sign language

recognition based on Recurrent Neural Networks

(RNNs) and Leap Motion Controllers (LMCs) was

proposed by Avola et al. An LMC device was used to

track and detect the position and motion of the hand.

In order to capture angles between bones of the

fingers, LMC was used. Additionally to the

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Volume 9 - Issue 4 - Published : July 20, 2021 Page No : 172-182

177

acquisition of data using LMC, the long term context

of these dynamic gestures was modeled using RNN. A

combination of static and dynamic gestures were used

to evaluate their system. A majority of computer

vision and gesture recognition problems are solved by

deep learning algorithms. To solve hand gesture

recognition, researchers have recently used different

deep learning algorithms.

PCANet is one of the more powerful unsupervised

deep learning algorithms that were successfully used

to solve many complex object recognition problems

among other deep learning algorithms. To learn

features from American fingerspelling depth images,

we utilize a PCANet model as opposed to the

commonly used supervised CNN architecture. For the

PCANet features that were extracted, a linear support

vector machine classifier was used to classify them.

III. THE DATA SET

Data sets for American Sign Language (ASL) from

MNIST were used for this project. The data sets are

available at Kaggle. A total of 27455 training images

and 7172 test images with a 28 x 28 pixel shape are

contained in this dataset. As a group, these images can

be classified into 25 classes of English alphabet (Z is

not classified because of gestures). The dataset on

Kaggle is available in CSV format (Comma Separated

Values (CSV) is a delimited text file that uses a

comma to separate values), with 27455 rows and

(784*784) 785 columns. This dataset has one column

for the class label and 784 columns for the pixels. Test

data follows the same paradigm.

Fig. 3: Sample Training Data

IV. SYSTEM ARCHITECTURE AND MODEL DESIGN

Step-by-step instructions on how to create a neural

network or deep learning model with Keras, utilizing

the six key steps outlined below:

1. The data will be loaded.

2. Keras can be used to create neural networks.

3. The efficient numerical backend is used to

compile Keras models.

4. Data training is the key to modeling success.

5. Analyze data to determine the effectiveness of a

model.

6. Model-based predictions.

Models built in Keras are most easily constructed

sequentially. Models can be built layer by layer with

it. Our model is built using the 'add()' function. We

have two Conv2D layers at the top. We use these

convolution layers to deal with two-dimensional

matrices representing our input images. The number

of nodes in the first layer is 32 and in the second layer

is 64 while in the third layer there are 128 and in the

fourth layer there are 512. A larger or smaller dataset

will affect this number. We'll use this for now.

Our filter matrix is termed the kernel size. If the

kernel is three, then the filter matrix will be three by

three.

An activation function is used to activate a layer. It is

proposed that we use RECLAIM, which stands for

Rectified Linear Activation, for the ReLU. Neuronal

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Volume 9 - Issue 4 - Published : July 20, 2021 Page No : 172-182

178

networks have proven to work well with this

activation function. As well as an input shape, we also

have a first layer. The input image has a rectangular

shape, 28,28, which is grayscale. Spatial 2D data can

be pooled to the maximum.

This downsample takes the maximum value for each

channel for each input window (of size defined by

pool_size) over the input space (height and width).

Steps are taken along each dimension to shift the

window. During a training phase, dropouts are set

randomly into effect to create hidden layers from

hidden units (neurons).

A layer called 'Flatten' sits between the Conv2D and

dense layers. Convolution and dense layers are

connected by flattening. We will use the layer type

‘Dense’ for the output layer. In many neural networks,

dense layers are used. In this case, softmax is activated.

So that the output can be interpreted as a probability,

Softmax makes the output sum to 1. Based on the

option with the highest probability, the model will

make its prediction. Check the summary of our model

after we define it.

V. MODEL SUMMARY

You can see the output of the summary () function in

the following diagram. Rows represent layers whose

names are unique, allowing us to refer to them

without any ambiguity. We added a layer to each

model, and you will see the layers included in the

diagram. Layers have outputs, whose shapes are listed

in the "Output Shape" column. The output of each

layer becomes the input for the next layer. For each

layer, you can see the parameter number in the

"Param #" column. There are a total of 12 parameters

in the resulting output, which is equal to the number

of trainable and non-trainable parameters. This model

allows all layers to be trained.

Fig. 4: Model Summary

VI. CALCULATION OF PARAMETERS

A. MaxPooling2D Layers

There is no parameter for any MaxPooling2D layer.

That's because all parameters are set to 0. There's no

learning going on here since it's a static layer. By

finding the maximum value for both 2 x 2 pools, it

reduces the model complexity and extracts local

features. This layer's output is used by the

MaxPooling2D layer. Thus, max_pooling2d's input

comes from the conv2d layer, which goes like this:

(26, 26, 32). (26, 26) is the shape of each filter (n=32)

in the max pooling. In the model, the pool size for

max_pooling2d layer is 2 x 2, causing the shape of the

data to become (13, 13), i.e. (26 / 2, 26 / 2).

Also, the input shape for MaxPooling2D layer 1

(MaxPooling2D_1) is (11, 11, 64). The resulting

output shape in the "Output Shape" column is (5, 5, 64)

following 2 x 2 pooling. Additionally, the third

MaxPooling2D layer (max_pooling2d_1) has the

input shape of (3, 3, 128). As can be seen in the

"Output Shape" column, the resulting output shape is

(1, 1, 128), when a 2 x 2 pooling algorithm is used.

Additionally, the third MaxPooling2D layer

(max_pooling2d_1) has the input shape of (3, 3, 128).

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Volume 9 - Issue 4 - Published : July 20, 2021 Page No : 172-182

179

The result of applying a pooling scheme of 2 x 2 is (1,

1, 128).

B. Conv2D Layers

As noted in the formula below, our model has three

Conv2D layers, and we calculate the parameters for

each layer as described in the formula. A bias of 1

indicates that each of the filters we are learning has a

bias. The model summary shows that 32 * (1 * 3 * 3 + 1)

= 320 parameters are involved. Originally, it was 28 x

28 x 1, so 1 was the input channel number. This

number corresponds to the number shown in the

summary for the second Conv2D layer (conv2d_1),

which was 64 * (32 * 3 * 3 + 1). As described in the

model-building process, the output channel number is

64 and the input channel number from the previous

MaxPooling2D layer (max_pooling2d) is 32.

Calculating how many parameters the third Conv2D

layer has is similar to calculating the second.

Fig. 5: Illustration of Processing Effects after

MaxPooling and Conv2D Layers

C. Flatten Layer

Due to the lack of learning, there are no parameters

for the Flattern layer. It would be interesting to learn

how the output of these calculations is determined. In

the case of the flatten layer, you can see that the input

has the form (1, 1, 128). The flatten layer merely

flattens the input data and outputs a shape that is

simply a concatenation of all existing parameters

using 1 * 1 * 128, which is not unlike the output of the

flatten layer, which is 128.

D. Dense Layers

A Dense layer is present in our model. The parameter

numbers are calculated using the following formula.

Input_channel_number + (output_channel_number +

1) This formula can be used to calculate how many

parameters are present in a Dense layer. 512 * (128 + 1)

= 66048. This is the number of parameters for the first

Dense layer (Dense): 128 input channels and 512

output channels. The input and output channels

numbers of the second Dense layer (i.e., dense_1) are

512 and 25, respectively. 25*512+1=12825, so 25 times

(512 + 1) is the number of parameters.

VII. TRAINING THE MODEL

The next step is to train the model. We will train our

model using the ‘fit()’ function using the following

parameters: training data (train_X), target data

(train_Y), validation data, and the number of epochs.

In order to validate our model, we will use our test set,

which we have divided into X_test and y_test. Each

epoch represents a cycle through the data by the

model. Until a certain point, a model will improve as

more epochs are run. When the model reaches that

point, it will stop improving each time. We will set 50

epochs for our model.

Epoch is an arbitrary cutoff, used to separate training

into distinct phases to facilitate logging and periodic

evaluation. It can be expressed as "one pass over the

entire dataset". To explain this further, an epoch

represents the number of times you go through a

training set.

As a result, batch_size signifies the size of the subset

of data (such as 512) from which the network will be

trained during its learning process. During each batch

of training, the weight of the previous batch is

updated, and the network is trained in a sequential

manner. For tuning hyperparameters, models are

fitted on these datasets to provide unbiased

evaluations. This dataset is used for assessing the

model fit on the training dataset in an unbiased

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Volume 9 - Issue 4 - Published : July 20, 2021 Page No : 172-182

180

manner. On the training dataset and the validation

dataset, both the loss and the accuracy are displayed

on the verbose output on each interval.

VIII. COMPILING THE MODEL

After constructing our model, we need to compile it.

To build the model, three parameters must be input:

the optimizer, the loss, and the metrics. Controlling

the learning rate is the function of the optimizer. As

our optimizer, we will be using Adam. In general,

Adam is a good optimizer for a wide range of

situations. The learner rate is adjusted by the Adam

optimizer during training. Calculation of the optimal

weights for the models is based on the learning rate.

A lower learning rate may result in more accurate

weights (up to a point), but computing weights takes

more time. The loss function for our data set will be

‘categorical_crossentropy. Most classifications are

done in this way. The model performs better when its

score is lower. To make things even easier to

understand when training the model, we will use the

'accuracy' metric.

The verbose setting allows you to specify how much

detail you want to see for each epoch. The verbose=0

option shows nothing (silent). If verbose=2 is set, the

epoch will be simply mentioned: Epoch 1/50.

After successful training, visualize the training

performance of the CNN model.

Fig. 6: Training Process

IX. EXPERIMENTAL RESULTS

Tests on publicly available hand posture datasets have

been conducted using the proposed methodology.

There are two datasets, the first of which is a hand

posture dataset from the National University of

Singapore (NUS) with cluttered backgrounds with

200 images in each class. 40 individuals from various

ethnicities participate in the postures in complex

natural settings. A three-layered convolutional

operation is used in the training phase to extract the

features. The filters used are 19x19, 17x17, and 15x15,

respectively. Eight, sixteen, and 32 filters are applied

in each layer and stride size is applied to maintain the

input size equal to the output size in each layer. Using

the max pooling layer with filter size (2,2) and stride

size of three, each of the convolutional layers

produces fewer dimensional feature maps. An

optimization function for stochastic gradient descent

with momentum (SGDM), having momentum rate of

0.90 and learning rate of 0.01 is used in this study to

train the CNN.

Fig. 7: Graph showing the accuracy of the proposed

CNN model to recognize the hand postures.

In 20 epochs of training, the CNN model was

optimally trained to recognize hand postures. Five

fold cross validation is used to evaluate the

performance of the classification. Datasets consisting

of 40 sample images of each gesture class are divided

into five subsets. Training is done on four subsets and

testing is done on the remaining subset. We repeat

the experiment five times in the same way until each

of the subsets has been developed and tested. The

performance metrics have been calculated using a

macro-averaging approach.

X. CONCLUSION

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Volume 9 - Issue 4 - Published : July 20, 2021 Page No : 172-182

181

This work uses deep learning to recognize gestures

from raw images (RGB) using hand postures as inputs.

The proposed CNN architecture eliminates the need

to detect and segment hands from captured images,

thereby reducing the computational burden faced by

classical approaches when recognizing hand postures.

Moreover, the model has the capability of

automatically determining characteristics that

distinguish hands based on very small intra class

differences. Two publicly accessible datasets have

been used to evaluate the performance of the

proposed method. As measured by accuracy, precision,

recall, and F1-score, the proposed CNN model is more

capable of recognizing objects.

XI. REFERENCES

[1]. Rastgoo, R.; Kiani, K.; Escalera, S. Sign Language

Recognition: A Deep Survey. Expert Syst. Appl.

2021, 164.

[2]. Zhao, T.; Liu, J.; Wang, Y.; Liu, H.; Chen, Y.

Towards Low-Cost Sign Language Gesture

Recognition Leveraging Wearables. IEEE Trans.

Mob. Comput. 2021, 20, 1685–1701.

[3]. Sharma, S.; Kumar, K. ASL-3DCNN: American

sign language recognition technique using 3-D

convolutional neural networks. Multimed. Tools

Appl. 2021.

[4]. Wadhawan, A.; Kumar, P. Sign Language

Recognition Systems: A Decade Systematic

Literature Review. Arch. Comput. Methods Eng.

2019, 28, 785–813.

[5]. Cooper, H.; Holt, B.; Bowden, R. Sign Language

Recognition. In Visual Analysis of Humans;

Moeslund, T., Hilton, A., Krüger, V., Sigal, L.,

Eds.; Springer: London, UK, 2011.

[6]. Dong, J.; Tang, Z.; Zhao, Q. Gesture recognition

in augmented reality assisted assembly training.

J. Phys. Conf. Ser. 2019, 1176, 032030.

[7]. Ascari Schultz, R.E.O.; Silva, L.; Pereira, R.

Personalized interactive gesture recognition

assistive technology. In Proceedings of the 18th

Brazilian Symposium on Human Factors in

Computing Systems, Vitória, Brazil, 22–25

October 2019.

[8]. Kakkoth, S.S.; Gharge, S. Real Time Hand

Gesture Recognition and its Applications in

Assistive Technologies for Disabled. In

Proceedings of the Fourth International

Conference on Computing Communication

Control and Automation (ICCUBEA), Pune,

India, 16–18 August 2018.

[9]. Simão, M.A.; Gibaru, O.; Neto, P. Online

Recognition of Incomplete Gesture Data to

Interface Collaborative Robots. IEEE Trans. Ind.

Electron. 2019, 66, 9372–9382.

[10]. Ding, I.; Chang, C.; He, C. A kinect-based

gesture command control method for human

action imitations of humanoid robots. In

Proceedings of the 2014 International

Conference on Fuzzy Theory and Its

Applications (iFUZZY2014), Kaohsiung, Taiwan,

26–28 November 2014; pp. 208–211.

[11]. Barbhuiya, A.A.; Karsh, R.K.; Jain, R. CNN based

feature extraction and classification for sign

language. Multimed. Tools Appl. 2021, 80, 3051–

3069.

[12]. Warchoł, D.; Kapu´sci ´nski, T.; Wysocki, M.

Recognition of Fingerspelling Sequences in

Polish Sign Language Using Point Clouds

Obtained from Depth Images. Sensors 2019, 19,

1078. Lee, C.K.M.; Ng, K.K.H.; Chen, C.-H.; Lau,

H.C.W.; Chung, S.Y.; Tsoi, T. American sign

language recognition and training method with

recurrent neural network. Expert Syst. Appl.

2021, 167, 114403. Appl. Sci. 2021, 11, 5594 20 of

20

[13]. Rastgoo, R.; Kiani, K.; Escalera, S. Multi-Modal

Deep Hand Sign Language Recognition in Still

Images Using Restricted Boltzmann Machine.

Entropy 2018, 20, 809.

[14]. Yang, S.; Lee, S.; Byun, Y. Gesture Recognition

for Home Automation Using Transfer Learning.

In Proceedings of the 2018 International

Conference on Intelligent Informatics and

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Volume 9 - Issue 4 - Published : July 20, 2021 Page No : 172-182

182

Biomedical Sciences (ICIIBMS), Bangkok,

Thailand, 21–24 October 2018; pp. 136–138.

[15]. Ye, Q.; Yang, L.; Xue, G. Hand-free Gesture

Recognition for Vehicle Infotainment System

Control. Proceedings of the 2018 IEEE Vehicular

Networking Conference (VNC), Taipei, Taiwan,

5–7 December 2018; pp. 1–2.

[16]. Akhtar, Z.U.A.; Wang, H. WiFi-Based Gesture

Recognition for Vehicular Infotainment

System—An Integrated Approach. Appl. Sci.

2019, 9, 5268.

[17]. Cheok, M.J.; Omar, Z.; Jaward, M.H. A review of

hand gesture and sign language recognition

techniques. Int. J. Mach. Learn. Cyber. 2019, 10,

131–153.

[18]. Elakkiya, R. Machine learning based sign

language recognition: A review and its research

frontier. J. Ambient. Intell. Hum. Comput. 2020.

[19]. Luqman, H.; El-Alfy, E.S.; BinMakhashen, G.M.

Joint space representation and recognition of

sign language fingerspelling using Gabor filter

and convolutional neural network. Multimed.

Tools Appl. 2021, 80, 10213–10234.

[20]. Shi, B.; Del Rio, A.M.; Keane, J.; Michaux, J.;

Brentari, D.; Shakhnarovich, G.; Livescu, K.

American sign language fingerspelling

recognition in the wild. In Proceedings of the

2018 IEEE Spoken Language Technology

Workshop (SLT), Athens, Greece, 18–21

December 2018; pp. 145–152.

[21]. Jiang, X.; Zhang, Y.D. Chinese sign language

fingerspelling via six-layer convolutional neural

network with leaky rectified linear units for

therapy and rehabilitation. J. Med. Imaging

Health Inform. 2019, 9, 2031–2090.

[22]. Tao, W.; Leu, M.C.; Yin, Z. American Sign

Language alphabet recognition using

Convolutional Neural Networks with multiview

augmentation and inference fusion. Eng. Appl.

Artif. Intell. 2018, 76, 202–213.

[23]. Bird, J.J.; Ekárt, A.; Faria, D.R. British Sign

Language Recognition via Late Fusion of

Computer Vision and Leap Motion with Transfer

Learning to American Sign Language. Sensors

2020, 20, 5151.

[24]. Chong, T.-W.; Lee, B.-G. American Sign

Language Recognition Using Leap Motion

Controller with Machine Learning Approach.

Sensors 2018, 18, 3554.

[25]. Pezzuoli, F.; Corona, D.; Corradini, M.L.;

Cristofaro, A. Development of a Wearable

Device for Sign Language Translation. In Human

Friendly Robotics; Ficuciello, F., Ruggiero, F.,

Finzi, A., Eds.; Springer: Cham, Switzerland,

2019.

[26]. Yuan, G.; Liu, X.; Yan, Q.; Qiao, S.; Wang, Z.;

Yuan, L. Hand Gesture Recognition Using Deep

Feature Fusion Network Based on Wearable

Sensors. IEEE Sensors J. 2020, 21, 539–547.

[27]. Ahmed, M.A.; Zaidan, B.B.; Zaidan, A.A.; Salih,

M.M.; Al-qaysi, Z.T.; Alamoodi, A.H. Based on a

wearable sensory device in 3D-printed

humanoid: A new real-time sign language

recognition system. Measurement 2021, 108431.

[28]. Khomami, S.A.; Shamekhi, S. Persian sign

language recognition using IMU and surface

EMG sensors. Measurement 2021, 108471.

[29]. Siddiqui, N.; Chan, R.H.M. Hand Gesture

Recognition Using Multiple Acoustic

Measurements at Wrist. IEEE Trans. Hum.

Mach. Syst. 2021, 51, 56–62.

