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ABSTRACT 

 

In this paper, we present an application that has been developed to be used as a tool for the purposes of learning 

sign language for beginners that utilizes hand detection as part of the process. It uses a skin-color modelling 

technique, such as explicit thresholding in the skin-color space, which is based on modeling skin-color spaces. 

This predetermined range of skin-colors is used to determine how pixels (hand) will be extracted from non-

pixels (background). To classify the images, convolutional neural networks (CNN) were fed the images for the 

creation of the classifier. The training of the images was done using Keras. A uniform background and proper 

lighting conditions enabled the system to achieve a test accuracy of 93.67%, of which 90.04% was attributed to 

ASL alphabet recognition, 93.44% for number recognition and 97.52% recognition of static words, surpassing 

other studies of the type. An approach which is based on this technique is used for fast computation as well as 

real-time processing. Deaf-dumb people face a number of social challenges as the communication barrier 

prevents them from accessing basic and essential services of the life that they are entitled to as members of the 

hearing community. In spite of the fact that a number of factors have been incorporated into the innovations in 

the automatic recognition of sign language, an adequate solution has yet to be reached because of a number of 

challenges. As far as I know, the vast majority of existing works focus on developing vision based recognizers by 

deriving complex feature descriptors from captured images of the gestures and applying a classical pattern 

analysis technique. Although utilizing these methods can be effective when dealing with small sign vocabulary 

captures with a complex and uncontrolled background, they are very limited when dealing with large sign 

vocabulary. This paper proposes a method for analyzing and representing hand gestures, which acts as the core 

component of the vocabulary for signing languages, using a deep convolutional neural networks (CNN) 

architecture. On two publicly accessible datasets (the NUS hand posture dataset and the American 

fingerspelling A dataset), the method was demonstrated to be more accurate in recognizing hand postures. 

 

Keywords: ASL Alphabet Recognition, Sign Language, Recognition, Static Gesture, Deep Convolutional Neural 

Network (CNN). 

 



International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com  

Volume 9  -  Issue 4  - Published :      July  20, 2021      Page No : 172-182 

 

 

 

 
173 

 

I. INTRODUCTION 

 

The use of sign language can be extremely useful for 

those who have speech and hearing problems (deaf 

and dumb). It is a common communication method 

for people to communicate with one another using 

hand gestures, facial expressions, and body 

movements. Since sign language isn't an international 

language, very few people are familiar with the 

gestures associated with it. Hearing people who do 

not know sign language interacting with people who 

are deaf and dumb can cause a communication 

breakdown that is of great concern in society. The 

spoken language is translated to sign language by 

interpreters who bridge the gap between the spoken 

language and the signed language. As this system is 

expensive, a deaf person may never be able to access it. 

Having automatic recognition of sign language 

gestures will alleviate the existing communication 

barrier for the deaf and dumb community. Sign 

language's vocabulary is primarily made up of hand 

gestures, while facial expressions and body 

movements emphasize the meaning of the gestures. 

There are two types of hand gestures: static and 

dynamic. 

The static hand gesture, also called hand postures, 

involves a variety of hand positions and shapes 

without conveying any movement of the hands. 

Dynamic hand gestures are formed by combining 

varied hand postures and motion signals as a result of 

a variety of hand movements. There are many uses of 

fingerspelling, notably used for letter-by-letter names, 

place names, dates, ages, numbers, and words whose 

sign language vocabulary does not include predefined 

signs. The use of hand postures as a way of visual 

input in many fields (human computer interaction 

(HCI), human robot interaction (HRI), virtual reality 

systems, and medical procedures) has also become a 

popular choice as the hand positions reduce the 

necessity of direct physical contact with the 

conventional devices. In recent years, estimating 

hand postures automatically has been a hot research 

area based on both vision-based approaches, as well as 

signals-based approaches. 

Taking into account the complexity of the data 

collection process, it appears that the vision-based 

approaches are more user friendly and convenient 

than that of other methods. Preprocessing and 

extraction of features are typically handled using 

classical methods of pattern analysis in most existing 

vision-based facial recognition work. This work 

presented a multilayer perceptron based upon 

features derived from discrete wavelet transforms 

(DTWs) for the recognition of letters and numbers in 

Persian Sign Language (PSL). The accuracy of their 

classification was 94.06 percent. Using discrete cosine 

transform (DCT) features and a hidden Markov model 

(HMM) Al-Rousan et al. implemented a user 

independent Arabic Sign Language Recognition 

system. It is claimed that 87% of the results are 

accurate. Based on the fusion of heterogeneous 

features, our researchers developed a method to 

recognize hand postures based on publicly available 

Triesh data that was 99.16% accurate. The researchers 

tested a support vector machine classifier that uses 

multiple kernels to recognize static hand gestures. 

They generated the feature vectors by combining 

shape context features with pyramidal HOG features 

as well as bags of features based on SIFT techniques. 

With the aid of multiclass support vector machines 

which are constructed from scale invariant feature 

transforms (SIFT) descriptors, Nasser et al. propose a 

novel method for recognition of hand gestures. The 

percentage of correctly classified exams in their exams 

was 96.23%. A multiclass random forest classifier was 

proposed by Pugeault et al., using the features 
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extracted from Gabor filters in four levels, to 

recognize 24 static signs in the ASL (American Sign 

Language) alphabet. They estimate that 49% of their 

candidates will be accepted into their programs. A 

method has been proposed by Pramod et al to identify 

hand postures from complex backgrounds by using a 

human eye. As a result of combining the descriptors 

extracted from images that describe shape, color, 

texture, and density as well as the feature-based 

features, they were able to achieve an accuracy of 

94.36%. 

 
Fig. 1: ASL (American Sign Language).  

It is still becoming increasingly important for gesture 

communication to include, along with hand gestures, 

facial expressions and body postures. Currently, there 

is also a research effort underway to develop a 

technique for recognizing all three different types of 

gestures using a gesture recognition system. Yang and 

Lee proposed that facial expressions and hand gestures 

can be used to automatically recognize British Sign 

Language (BSL) by means of automatic recognition. In 

spite of the fact that traditional methods have 

generated excellent results, they are unable to 

develop consistent feature descriptions for hand 

posture recognition in real-time scenarios because of a 

variety of challenging factors. A typical disadvantage 

of conventional machine learning techniques is their 

incapacity to accurately identify distinguishable 

patterns presented by natural raw data sets. A number 

of challenges stand in the way of detecting and 

segmenting hands in images with complex 

backgrounds when applying hand posture recognition 

approaches. 

There is also a problem in analyzing the structural 

characteristics that account for geometrical variations 

in hand postures displayed by individuals displaying 

the same hand posture. The recognition of sign 

language in automatic systems is also difficult when 

there are many types of gestures, but their intraclass 

variations are relatively small. The detection and 

differentiation of the patterns in the images and 

videos is a complex process that involves 

computationally demanding steps and a great deal of 

domain knowledge. It has also been noted that public 

datasets with enough sample images do not exist 

which makes it difficult for researchers to study sign 

language recognition. Having difficulty 

communicating in sign language could be due to a 

variety of reasons, one of which is the difference in 

terminology between regions and countries. As a 

result, there are many different types of ASL, BSL, 

CSL (Chinese Sign Language), ISL (Indian Sign 

Language), and PSL.  

Fig. 2: Architecture of a typical CNN.  

Recent advances in deep learning techniques and 

advances in convolutional neural networks (CNNs) 

have enabled advanced techniques to recognize hand 

gestures far more successfully than traditional systems, 

since they remove the need to develop complex 

feature descriptors from images after conventional 

pre-processing and segmentation steps. CNNs learn 

high level abstractions from images by using 

hierarchical architecture, resulting in good features 

being extracted from the images they process. As a 

result, a large number of gesture classes are no longer 
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generated with very slight variations within each one. 

This means that the problem of getting inconsistent 

feature descriptors can be avoided. A possible solution 

to identify ASL letters has been proposed by Ameen 

et al. by using CNN-based models. As part of their 

work, the researchers used two types of images of 

gestures in the ASL fingerspelling benchmark dataset 

and were able to achieve a prediction accuracy of 

80.34 %. Using RGB and depth images Rastgoo et al. 

used a restricted Boltzmann machine (RBM) to 

recognize ASL's fingerspelling with RGB. This model 

uses the CNNs to detect hands, after which the images 

that have been detected are fed into a RBM to 

identify the signs. 

Four public datasets were used to evaluate the model 

(Massey University Gesture Dataset, American Sign 

Language (ASL), Fingerspelling Dataset from the 

Center for Vision, Speech, and Signal Processing at 

University of Surrey, NYU, and ASL Fingerspelling A). 

The results of a recent study by Mohanty et al. shows 

using deep learning and CNN approach, and in the 

presence of a complex background and varying 

illumination conditions, it is possible to recognize 

static hand gestures. A good recognition result has 

been achieved with their proposed model using three 

publicly accessible benchmark datasets, mostly 

cluttered backgrounds, as well as the Triesh hand 

posture dataset with uniform dark background and 

the Marcel hand posture dataset with uniform dark 

background. 

The aim of this paper is to propose an automated hand 

posture detection method that uses convolutional 

neural networks to compute deep parallel 

architectures. When the background is cluttered, it is 

difficult to segment by hand, and this model 

eliminates that process whenever the background is 

cluttered. It is possible to segment images using many 

parameters, such as skin color, hand shape, and many 

others, but none of them produce good results when 

applied to images with background colors. This will 

allow for the creation of more detailed feature 

descriptors that can be used as a basis for recognizing 

different gestures without the need to perform 

tedious calculations. It has been proven that the 

algorithm worked with datasets with both uniform 

and complex backgrounds, and that the results have 

been both promising and promising. 

 

II. RELATED WORKS 

 

It was only recently that various sensor types, 

particularly those relying on depth information, were 

developed, which led to all kinds of real-time 

applications, such as gesture recognition and 

recognition of sign language in real-time. As a result 

of their low cost, sensors such as Microsoft Kinect and 

leap motion controllers are widely used by 

researchers and institutions. The recognition of 

sentences as well as isolated words and letters can be 

separated into three subproblems within the context 

of sign language recognition. Here, the main focus of 

the paper is the American Sign Language (ASL) 

alphabets. For developing an alphabet recognition 

system for American Sign Language, there are three 

steps necessary: Hand segmentation, Feature 

extraction, and Classification. It is a well-known fact 

that there have been numerous publications in the 

field of fingerspelling in American Sign Language, but 

very few have delved into user-independent 

situations due to the large change of each signer's 

style. In March 2006, Pugueault and Bowden 

proposed using a Microsoft Kinect sensor to recognize 

hand gestures used in American Sign Language. 

A total of 24 images of the English alphabet were 

submitted by five different signers for them to 

compile the RGB and depth values for. In order to 

predict the label of each fingerspelling letter, a Gabor 

filter is used as a texture feature extractor from a 

multiclass random forest classifier, which uses texture 

features. It was found that the Gabor filter is not 

capable of discriminating between different types of 

signals in laboratory experiments. In this study, this 

dataset was considered to be a benchmark dataset 

since it was used in a number of research papers. 



International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com  

Volume 9  -  Issue 4  - Published :      July  20, 2021      Page No : 172-182 

 

 

 

 
176 

Keskin et al. have recently used a random forest (RDF) 

method to estimate hand poses and classify hand 

shapes using the generative model. They assigned 

each depth pixel to an appropriate hand shape class by 

using a multilayer RDF. An RGB-D image of a hand 

gesture was used along with sparse auto-encoder (SAE) 

and principal component analysis by Li et al. The 

color and depth channels are learned respectively 

from two sparse auto-encoders using convolutional 

neural networks. 

Several PCA layers were used to combine the features 

from both channels. The authors did not discuss the 

feasibility of their method for solving the signer-

independent problem, only reporting experimental 

results for American sign language (ASL) datasets. 

Using depth contrast feature and per-pixel 

classification, Dong et al. segment the hand region 

into parts. The method used hierarchical mode-

seeking to locate hand joint positions under kinematic 

constraints. Based on joint angles obtained, an ASL 

classifier was built using Random Forests (RF). In 

recognizing all static ASL alphabet signs under 

experimental tests, their method achieved above 70% 

and 90% accuracy using public datasets. According to 

Zhang and Tian, depth maps are encoded using H3DF 

(Histogram of 3D Facets). A 3D Facet associated with 

a 3D cloud point characterizes the 3D local support 

surface. 

Signs are represented by their 3D shape, which is 

described by the H3DF descriptor. We achieved 73.3% 

recognition using SVM and 77.2% recognition using 

sparse representation (SR) classifiers for ASL alphabet. 

An earth mover distance metric using Kinect depth 

camera was proposed by Wang et al. to recognize 

gestures using hand gestures. The extracted depth, 

skeleton, and texture information is displayed as 

superpixels. In order to measure the dissimilarity 

between hand gestures, we applied the robust 

Superpixel Earth Mover's Distance metric (SP-EMD). 

They found 75.8% accuracy on the dataset they tested 

using their distance metric and features. An American 

sign language alphabet was represented using PCA 

with the Gabor filter and an orientation base hash 

code by Akhter and Arif-Ul-Islam. The classification 

was then performed using Artificial Neural Networks 

(ANN). In order to evaluate their method, they used a 

database with 576 ASL alphabet sign images. 

Compared to results using only RGB images alone, 

results using depth images worked much better in 

terms of timing and accuracy. 

However, authors did not test their method against 

signer-independent scenarios, only using their own 

analyses, which were not publicly available. An image 

recognition system based on depth images was created 

by Kang et al. using convolutional neural networks 

(CNNs). The researchers trained more than 30 

different alphabets and numbers into different CNNs 

using five different subjects. Based on the benchmark 

dataset and different learning hyperparameters used, 

they achieved an accuracy of 83.58% for leave-one-

out testing. Using the CNN model, Ameen and Vadera 

used both color and depth images to recognize ASL 

fingerspelling. In order to extract features from each 

input, a CNN model is developed containing two 

convolutional layers. In order to classify, the features 

from both layers are concatenated into one layer. 

Based on the same benchmark dataset, accuracy was 

reported to be 83.34 percent. In their study, Tao et al. 

synthesize inferences from multiple views using CNN. 

In order to improve the performance of the CNN 

model, more perspective images are generated from 

the original depth image. 

Based on the results of the different generated views, 

a final decision was made by combining their scores. 

While the researchers' method achieved state-of-the-

art accuracy, they had to incur a high computational 

cost to ensure different viewpoints were possible. An 

alternative approach to American sign language 

recognition based on Recurrent Neural Networks 

(RNNs) and Leap Motion Controllers (LMCs) was 

proposed by Avola et al. An LMC device was used to 

track and detect the position and motion of the hand. 

In order to capture angles between bones of the 

fingers, LMC was used. Additionally to the 
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acquisition of data using LMC, the long term context 

of these dynamic gestures was modeled using RNN. A 

combination of static and dynamic gestures were used 

to evaluate their system. A majority of computer 

vision and gesture recognition problems are solved by 

deep learning algorithms. To solve hand gesture 

recognition, researchers have recently used different 

deep learning algorithms. 

PCANet is one of the more powerful unsupervised 

deep learning algorithms that were successfully used 

to solve many complex object recognition problems 

among other deep learning algorithms. To learn 

features from American fingerspelling depth images, 

we utilize a PCANet model as opposed to the 

commonly used supervised CNN architecture. For the 

PCANet features that were extracted, a linear support 

vector machine classifier was used to classify them. 

 

III. THE DATA SET 

 

Data sets for American Sign Language (ASL) from 

MNIST were used for this project. The data sets are 

available at Kaggle. A total of 27455 training images 

and 7172 test images with a 28 x 28 pixel shape are 

contained in this dataset. As a group, these images can 

be classified into 25 classes of English alphabet (Z is 

not classified because of gestures). The dataset on 

Kaggle is available in CSV format (Comma Separated 

Values (CSV) is a delimited text file that uses a 

comma to separate values), with 27455 rows and 

(784*784) 785 columns. This dataset has one column 

for the class label and 784 columns for the pixels. Test 

data follows the same paradigm. 

 
Fig. 3: Sample Training Data  

 

IV. SYSTEM ARCHITECTURE AND MODEL DESIGN 

 

Step-by-step instructions on how to create a neural 

network or deep learning model with Keras, utilizing 

the six key steps outlined below: 

1. The data will be loaded. 

2. Keras can be used to create neural networks. 

3. The efficient numerical backend is used to 

compile Keras models. 

4. Data training is the key to modeling success. 

5. Analyze data to determine the effectiveness of a 

model. 

6. Model-based predictions. 

 

Models built in Keras are most easily constructed 

sequentially. Models can be built layer by layer with 

it. Our model is built using the 'add()' function. We 

have two Conv2D layers at the top. We use these 

convolution layers to deal with two-dimensional 

matrices representing our input images. The number 

of nodes in the first layer is 32 and in the second layer 

is 64 while in the third layer there are 128 and in the 

fourth layer there are 512. A larger or smaller dataset 

will affect this number. We'll use this for now. 

Our filter matrix is termed the kernel size. If the 

kernel is three, then the filter matrix will be three by 

three. 

An activation function is used to activate a layer. It is 

proposed that we use RECLAIM, which stands for 

Rectified Linear Activation, for the ReLU. Neuronal 
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networks have proven to work well with this 

activation function. As well as an input shape, we also 

have a first layer. The input image has a rectangular 

shape, 28,28, which is grayscale. Spatial 2D data can 

be pooled to the maximum. 

This downsample takes the maximum value for each 

channel for each input window (of size defined by 

pool_size) over the input space (height and width). 

Steps are taken along each dimension to shift the 

window. During a training phase, dropouts are set 

randomly into effect to create hidden layers from 

hidden units (neurons). 

A layer called 'Flatten' sits between the Conv2D and 

dense layers. Convolution and dense layers are 

connected by flattening. We will use the layer type 

‘Dense’ for the output layer. In many neural networks, 

dense layers are used. In this case, softmax is activated. 

So that the output can be interpreted as a probability, 

Softmax makes the output sum to 1. Based on the 

option with the highest probability, the model will 

make its prediction. Check the summary of our model 

after we define it. 

 

V. MODEL SUMMARY 

 

You can see the output of the summary () function in 

the following diagram. Rows represent layers whose 

names are unique, allowing us to refer to them 

without any ambiguity. We added a layer to each 

model, and you will see the layers included in the 

diagram. Layers have outputs, whose shapes are listed 

in the "Output Shape" column. The output of each 

layer becomes the input for the next layer. For each 

layer, you can see the parameter number in the 

"Param #" column. There are a total of 12 parameters 

in the resulting output, which is equal to the number 

of trainable and non-trainable parameters. This model 

allows all layers to be trained. 

 
Fig. 4: Model Summary 

 

VI. CALCULATION OF PARAMETERS 

 

A. MaxPooling2D Layers 

There is no parameter for any MaxPooling2D layer. 

That's because all parameters are set to 0. There's no 

learning going on here since it's a static layer. By 

finding the maximum value for both 2 x 2 pools, it 

reduces the model complexity and extracts local 

features. This layer's output is used by the 

MaxPooling2D layer. Thus, max_pooling2d's input 

comes from the conv2d layer, which goes like this: 

(26, 26, 32). (26, 26) is the shape of each filter (n=32) 

in the max pooling. In the model, the pool size for 

max_pooling2d layer is 2 x 2, causing the shape of the 

data to become (13, 13), i.e. (26 / 2, 26 / 2). 

Also, the input shape for MaxPooling2D layer 1 

(MaxPooling2D_1) is (11, 11, 64). The resulting 

output shape in the "Output Shape" column is (5, 5, 64) 

following 2 x 2 pooling. Additionally, the third 

MaxPooling2D layer (max_pooling2d_1) has the 

input shape of (3, 3, 128). As can be seen in the 

"Output Shape" column, the resulting output shape is 

(1, 1, 128), when a 2 x 2 pooling algorithm is used. 

Additionally, the third MaxPooling2D layer 

(max_pooling2d_1) has the input shape of (3, 3, 128). 



International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com  

Volume 9  -  Issue 4  - Published :      July  20, 2021      Page No : 172-182 

 

 

 

 
179 

The result of applying a pooling scheme of 2 x 2 is (1, 

1, 128). 

 

B. Conv2D Layers 

As noted in the formula below, our model has three 

Conv2D layers, and we calculate the parameters for 

each layer as described in the formula. A bias of 1 

indicates that each of the filters we are learning has a 

bias. The model summary shows that 32 * (1 * 3 * 3 + 1) 

= 320 parameters are involved. Originally, it was 28 x 

28 x 1, so 1 was the input channel number. This 

number corresponds to the number shown in the 

summary for the second Conv2D layer (conv2d_1), 

which was 64 * (32 * 3 * 3 + 1). As described in the 

model-building process, the output channel number is 

64 and the input channel number from the previous 

MaxPooling2D layer (max_pooling2d) is 32. 

Calculating how many parameters the third Conv2D 

layer has is similar to calculating the second. 

 
Fig. 5: Illustration of Processing Effects after 

MaxPooling and Conv2D Layers 

 

C. Flatten Layer 

Due to the lack of learning, there are no parameters 

for the Flattern layer. It would be interesting to learn 

how the output of these calculations is determined. In 

the case of the flatten layer, you can see that the input 

has the form (1, 1, 128). The flatten layer merely 

flattens the input data and outputs a shape that is 

simply a concatenation of all existing parameters 

using 1 * 1 * 128, which is not unlike the output of the 

flatten layer, which is 128. 

 

D. Dense Layers 

A Dense layer is present in our model. The parameter 

numbers are calculated using the following formula. 

Input_channel_number + (output_channel_number + 

1) This formula can be used to calculate how many 

parameters are present in a Dense layer. 512 * (128 + 1) 

= 66048. This is the number of parameters for the first 

Dense layer (Dense): 128 input channels and 512 

output channels. The input and output channels 

numbers of the second Dense layer (i.e., dense_1) are 

512 and 25, respectively. 25*512+1=12825, so 25 times 

(512 + 1) is the number of parameters. 

 

VII. TRAINING THE MODEL 

 

The next step is to train the model. We will train our 

model using the ‘fit()’ function using the following 

parameters: training data (train_X), target data 

(train_Y), validation data, and the number of epochs. 

In order to validate our model, we will use our test set, 

which we have divided into X_test and y_test. Each 

epoch represents a cycle through the data by the 

model. Until a certain point, a model will improve as 

more epochs are run. When the model reaches that 

point, it will stop improving each time. We will set 50 

epochs for our model. 

Epoch is an arbitrary cutoff, used to separate training 

into distinct phases to facilitate logging and periodic 

evaluation. It can be expressed as "one pass over the 

entire dataset". To explain this further, an epoch 

represents the number of times you go through a 

training set. 

As a result, batch_size signifies the size of the subset 

of data (such as 512) from which the network will be 

trained during its learning process. During each batch 

of training, the weight of the previous batch is 

updated, and the network is trained in a sequential 

manner. For tuning hyperparameters, models are 

fitted on these datasets to provide unbiased 

evaluations. This dataset is used for assessing the 

model fit on the training dataset in an unbiased 
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manner. On the training dataset and the validation 

dataset, both the loss and the accuracy are displayed 

on the verbose output on each interval. 

 

VIII. COMPILING THE MODEL 

 

After constructing our model, we need to compile it. 

To build the model, three parameters must be input: 

the optimizer, the loss, and the metrics. Controlling 

the learning rate is the function of the optimizer. As 

our optimizer, we will be using Adam. In general, 

Adam is a good optimizer for a wide range of 

situations. The learner rate is adjusted by the Adam 

optimizer during training. Calculation of the optimal 

weights for the models is based on the learning rate. 

A lower learning rate may result in more accurate 

weights (up to a point), but computing weights takes 

more time. The loss function for our data set will be 

‘categorical_crossentropy. Most classifications are 

done in this way. The model performs better when its 

score is lower.  To make things even easier to 

understand when training the model, we will use the 

'accuracy' metric. 

The verbose setting allows you to specify how much 

detail you want to see for each epoch. The verbose=0 

option shows nothing (silent). If verbose=2 is set, the 

epoch will be simply mentioned: Epoch 1/50. 

After successful training, visualize the training 

performance of the CNN model. 

  
Fig. 6: Training Process  

 

IX. EXPERIMENTAL RESULTS 

 

Tests on publicly available hand posture datasets have 

been conducted using the proposed methodology. 

There are two datasets, the first of which is a hand 

posture dataset from the National University of 

Singapore (NUS) with cluttered backgrounds with 

200 images in each class. 40 individuals from various 

ethnicities participate in the postures in complex 

natural settings. A three-layered convolutional 

operation is used in the training phase to extract the 

features. The filters used are 19x19, 17x17, and 15x15, 

respectively. Eight, sixteen, and 32 filters are applied 

in each layer and stride size is applied to maintain the 

input size equal to the output size in each layer. Using 

the max pooling layer with filter size (2,2) and stride 

size of three, each of the convolutional layers 

produces fewer dimensional feature maps. An 

optimization function for stochastic gradient descent 

with momentum (SGDM), having momentum rate of 

0.90 and learning rate of 0.01 is used in this study to 

train the CNN.  

 
Fig. 7: Graph showing the accuracy of the proposed 

CNN model to recognize the hand postures.  

In 20 epochs of training, the CNN model was 

optimally trained to recognize hand postures. Five 

fold cross validation is used to evaluate the 

performance of the classification. Datasets consisting 

of 40 sample images of each gesture class are divided 

into five subsets. Training is done on four subsets and 

testing is done on the remaining subset. We repeat 

the experiment five times in the same way until each 

of the subsets has been developed and tested. The 

performance metrics have been calculated using a 

macro-averaging approach. 

 

X. CONCLUSION 
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This work uses deep learning to recognize gestures 

from raw images (RGB) using hand postures as inputs. 

The proposed CNN architecture eliminates the need 

to detect and segment hands from captured images, 

thereby reducing the computational burden faced by 

classical approaches when recognizing hand postures. 

Moreover, the model has the capability of 

automatically determining characteristics that 

distinguish hands based on very small intra class 

differences. Two publicly accessible datasets have 

been used to evaluate the performance of the 

proposed method. As measured by accuracy, precision, 

recall, and F1-score, the proposed CNN model is more 

capable of recognizing objects. 
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