
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

National Conference on Engineering Innovations in Emerging Technologies

In association with International Journal of Scientific Research in Science,

Engineering and Technology

Print ISSN: 2395-1990 | Online ISSN : 2394-4099 (www.ijsrset.com)

 207

Security Checker to Detecting Vulnerabilities in Common Weaknesses

Enumeration (CWE) Through JAVA Code
Ms.Deepa1, Dr. Chandramouli H1, Dr. Anitha N1

1Department of ISE, East Point College of Engineering and Technology, Bangalore, Karnataka, India

ABSTRACT

In CWE (Common Weakness Enumeration) some weaknesses are categorized that usually occur in any

software which are made by the programmers while writing the code so unknowingly done known mistakes

are also made but these mistakes only gives a clear path for the attacker to make its way to enter into the code

and modify it so as to cause problems that can really do a disastrous approach towards the users.

This paper deals with detecting and finding out those weaknesses which can harm Software application by

using a tool called SECCHECK. This Tool has been developed and it will detect few new Software weaknesses.

The proposed tool takes Java source files as input and stores each line of input in memory. Then it scans each

line of input based on factors that causes vulnerabilities. If it identifies any vulnerability then it displays

messages alerting developer to correct these and also calculate the Degree of Insecurity in order to understand

the level of insecurity in the application after been tested.

Keywords : - Common Weakness Enumeration (CWE), SECCHECK, Vulnerability, Degree of InSecurity Matric

(ISM)

I. INTRODUCTION

Software security is all about Building secure software

without flaws. Security is required to provide

authentication, integrity, availability and

confidentiality. Software security deals with

protecting software against malicious attack and other

risks by unintended users or by hackers, so that the

software continues to work correctly and properly

under such risks and threats.

Security aspects have to be taken care during design

and implementation phase as unintentional mistakes

during coding by the programmer may make the

software vulnerable. Poor software design and

engineering are the root causes of most security

vulnerabilities in deployed systems today. The

security of software is threatened at various points

throughout its life cycle. The software’s security can

be threatened during its development, during its

deployment, during its operation and during

sustainment. CWE is a community-developed list of

common software security weaknesses. It serves as

a common language, a measuring stick for software

security tools, and as a baseline for weakness

identification, mitigation, and prevention efforts.

II. LITERATURE SURVEY

Software security is about building secure software:

designing software to be secure, making sure that

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Volume 9 - Issue 4 - Published : July 20, 2021 Page No : 207-214

208

software is secure, and educating software developers,

architects, and users about how to build secure

applications. Developing robust, enterprise-level

applications are a difficult task, and making them

completely secure is virtually impossible. Too often

software development organizations place

functionality, schedules, and costs at the forefront of

their concerns, and make security and quality an

afterthought. Nearly all attacks on software

applications have one fundamental cause: the code is

not secure due to defects in its design,

implementation, testing, and operations.

Software security is first and foremost about

identifying and managing risks. One of the most

effective ways to identify and manage risk for an

application is to iteratively review its code

throughout the development cycle. Application

security is the key risk area for exploits, and exploits

of applications can be devastating [4].

Vulnerability is an error that an attacker can exploit.

Many types of vulnerabilities exist in software

systems, including local implementation errors, inter-

procedurally interface errors (such as a race condition

between an access control check and a file operation),

design-level mistakes (such as error handling and

recovery systems that fail in an insecure fashion), and

object-sharing systems that mistakenly include

transitive trust issues.

Vulnerabilities typically fall into two categories:

1. Bugs at the implementation level and

2. Flaws at the design level.

2.1 Detection of Vulnerabilities in Design Phase

The Design Phase seeks to develop detailed

specifications that emphasize the physical solution to

the user's information technology needs. The system

requirements and logical description of the entities,

relationships, and attributes of the data that were

documented during the Requirements Analysis Phase

are further refined and allocated into system and

database design specifications that are organized in a

way suitable for implementation within the

constraints of a physical environment (e.g., computer,

database, facilities).

The cost associated with addressing software

problems increases as the lifecycle of a project

matures. The cost of finding and fixing a bug after a

software product has been released can be 100 times

more expensive than solving the problem in the

requirements or design phase. Thus, patching

vulnerable software after release can be a costly way

of securing applications. Furthermore, patches are not

always applied by owners/users of the vulnerable

software; patches can contain yet more vulnerabilities

[24].

Since design phase prepares skeleton of the software,

making changes and corrections in the phase is much

easier than to make them in the subsequent phases. A

single design flaw may manifest itself causing serious

security related consequences. The very architecture

of the application should take security into account

from the outset, and that concern should be followed

through down to implementation and deployment

[5].

The cost of defects, especially security defects, is (or

can be) a lot higher once the application is deployed

than before deployment – defects are usually

especially cheap if caught at early design phases.

In order to minimize vulnerabilities, the propagation

of vulnerabilities must be controlled. Further, the

means by which these propagations are made (i.e. the

design characteristics), need to be analysed to make

appropriate decision regarding the same [25].

2.1.1 Vulnerability Analysis

A security assessment or security vulnerability

analysis is a subset of a process called enterprise risk

management, which involves evaluating and

prioritizing all risks to an organization, security being

one of them. For instance, from an enterprise risk

management perspective, the security risk could be

vulnerability to assets, people, business, brand and

reputation. To examine this risk, a security

vulnerability analysis would evaluate an organization

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Volume 9 - Issue 4 - Published : July 20, 2021 Page No : 207-214

209

to identify, validate and prioritize vulnerabilities that

could produce a security incident. This incident could

be as mundane as product loss or as catastrophic as a

shooting in a facility.

A security vulnerability analysis seeks out root causes

for security vulnerability and applies physical,

technical and operational controls to deter, delay and

minimize the impact on the organization for an

incidence [7]. The security vulnerability analysis

validates vulnerabilities to upper management and

helps procure money for improvements. These

improvements could be establishing a security

program, purchasing technology, performing

upgrades to lighting or physical security, training,

improving awareness, and so on. Vulnerability

analysis should be done in all of the development

phase since they might be injected in many phases

such as requirement phase, design level mistakes,

implementation errors etc., as shown in the Figure 2.1

[26].

Fig 2.1: Injection of Vulnerabilities in Different Phases

2.1.2 Vulnerability Modeling

Most of the vulnerabilities presented in the previous

section could be prevented if the software is

developed more carefully, avoiding the introduction

of vulnerabilities that could be exploited by attackers.

One solution is in the improvement of the knowledge

and understanding of software developers about:

known vulnerabilities, causes, threats, attacks and

counter measures. Models are in fact adequate to

implement such solution. There is for instance a

vulnerability model called Vulnerability Cause Graph

(VCG) which ―is a directed acyclic graph that

contains one exit node representing the vulnerability

being modeled, and any number of cause nodes, each

of which represents a condition or event

during software development that might contribute to

the presence of the modeled vulnerability‖.

An example of a VCG representing a known buffer

overflow in xpedx (CVE-2005-3192) taken from [2] in

the above figure. In this graph we can observe the

different causes and possible scenarios or sequence

actions that could lead to the introduction of this kind

of vulnerability. The VCG is helpful to understand

what can cause the vulnerability. If causes are well

understood, then they could be avoided in the

development process.

2.1.3 Software Inspection

The software inspection process consists in reading or

visually inspecting the program code or documents in

order to find any defects and correct them early in

the development process. When the defect is found

soon the less expensive it becomes to fix. However, a

good inspection depends then on the ability and

expertise of the inspector, and the kind of defects he

is looking for. Usually during the software inspection,

it is necessary to look for any possible defects during

the security inspections. In the following sections we

introduce two inspection methods that intend to

codify the implicit knowledge of security experts

regarding how to check for correct implementation of

security goals and how to search for vulnerabilities

[28].

III. ARCHITECTURE

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Volume 9 - Issue 4 - Published : July 20, 2021 Page No : 207-214

210

Fig 3.1: Architecture of the Proposed System

In this system architecture, analyses the java source

code in the application and check for the

vulnerability attacks in the source code and notify

them.

Load the attackers in source code of java files.

Application has to identify the type of vulnerabilities

in the source code and measure the degree of

insecurity metric as well.

IV. PROPOSED METHOD

We implement following security ids from CWE.

1. CWE-78: Improper Neutralization of Special

Elements used in an OS Command ('OS Command

Injection')

2. CWE-89: Improper Neutralization of Special

Elements used in an SQL Command ('SQL

Injection')

3. CWE-94: Improper Control of Generation of Code

('Code Injection')

4. CWE-119: Improper Restriction of Operations

within the Bounds of a Memory Buffer

5. CWE-185: Incorrect Regular Expression

6. CWE-190: Integer Overflow or Wraparound

7. CWE-202: Exposure of Sensitive Data Through

Data Queries

8. CWE-233: Improper Handling of Parameters

Advantages:

Our solution relies on scanning & identifying the

security vulnerabilities rather than executing them.

We identify the line number in which vulnerability is

present & it helps the developer to fix it easily.

V. IMPLEMENTATION

Generic Steps and its logic behind the working for

each vulnerability IDS

Step 1.: Load the java files

Step 2.: Apply for loop

Step 3.: go to each file

Step 4.: read the each line in the file

Step 5.: Apply condition

Step 6.: check the Patterns

Step 7.: if patterns correct

Step 8.: Vulnerability found

Step 9.: end if

Step 10.: else

Step 11.: No vulnerability found

Step 12.: END

5.1. PseudoCode in Java for CWE IDs

CWE-78: Improper Neutralization of Special Elements

used in an OS Command ('OS Command Injection')

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Volume 9 - Issue 4 - Published : July 20, 2021 Page No : 207-214

211

CWE-89: Improper Neutralization of Special Elements

used in an SQL Command ('SQL Injection')

CWE-94: Improper Control of Generation of Code

('Code Injection')

CWE-119: Improper Restriction of Operations within

the Bounds of a Memory Buffer

CWE-185: Incorrect Regular Expression

CWE-190: Integer Overflow or Wraparound

CWE-233: Improper Handling of Parameters

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Volume 9 - Issue 4 - Published : July 20, 2021 Page No : 207-214

212

5.2. Weakness Identification in Ids

Weaknesses that are rarely exploited will not receive

a high score, regardless of the typical severity

associated with any exploitation. This makes sense,

since if developers are not making a particular

mistake, then the weakness should not be highlighted

in the CWE.

Weaknesses with a low impact will not receive a high

score. This again makes sense, since the inability to

cause significant harm by exploiting a weakness

means that weakness should be ranked below those

that can.

Weaknesses that are both common and can cause

harm should receive a high score.

To check the Score with proper parameters:

If the total number of errors identified in the tested

java file is more than ISM score values gets increased

If the total number of errors identified in the tested

java file is less then ISM score value gets decreased

VI. EXPERIMENTAL RESULTS

To Calculate ISM

The level of danger presented by a particular CWE is

then determined by multiplying the severity score by

the frequency score.

Score (CWE_X) = Fr (CWE_X) * Sv (CWE_X) * 100

There are a few properties of the scoring method that

merit further explanation.

VII. CONCLUSION

Vulnerability is a flaw within the source code which

can be exploited by attacker to hack the code.

Vulnerability is a weak spot in the software, which if

exploited will result in the

compromise of the system. Vulnerability is the

intersection of three elements: a system susceptibility

or flaw, attacker access to the flaw, and attacker

capability to exploit the flaw. To exploit vulnerability,

an attacker must have at least one applicable tool or

technique that can connect to a system weakness. In

this frame, vulnerability is also known as the attack

surface.

Existence of vulnerabilities implies weaker software.

In order to make software weakness free,

vulnerabilities must be detected and corrected.

Vulnerabilities must be identified during

development phase of the software to produce better

software product. The proposed tool finds ten

vulnerabilities in Java source code.

The vulnerabilities identified are as follows

 CWE-78: Improper Neutralization of Special

Elements used in an OS Command ('OS Command

Injection')

 CWE-89: Improper Neutralization of Special

Elements used in an SQL Command ('SQL

Injection')

 CWE-94: Improper Control of Generation of Code

('Code Injection')

 CWE-119: Improper Restriction of Operations

within the Bounds of a Memory Buffer

 CWE-185: Incorrect Regular Expression

 CWE-190: Integer Overflow or Wraparound

 CWE-202: Exposure of Sensitive Data Through

Data Queries

 CWE-233: Improper Handling of Parameters

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Volume 9 - Issue 4 - Published : July 20, 2021 Page No : 207-214

213

The proposed tool takes Java source files as input and

stores each line of input in memory. Then it scans

each line of input based on factors that cause

vulnerabilities. If it identifies any

vulnerability then it displays a warning message and

shows the degree of insecurity.

The tool can be further enhanced to find other

software vulnerabilities that cause unsafe software.

VIII. ACKNOWLEDGEMENT

The project is funded by VGST, Government of

Karnataka under K-FIST L1, with GRD No: 264 and

the authors would like to thank the VGST Group for

providing this opportunity.

IX. REFERENCES

[1]. www.ece.cmu.edu/~dbrumley/courses/18732f09/

[2]. https://buildsecurityin.us-

cert.gov/bsi/547.html#dsy547-BSI_princ

[3]. http://en.wikipedia.org/wiki/Vulnerability_(com

puting)

[4]. Asoke K.Talukder, Manish

Chaitanya.‖Architecting Secure Software

Systems‖, 2009

[5]. http://rlc.vlinder.ca/blog/2009/09/security-at-

the-design-phase-examples-review/

[6]. http://msdn.microsoft.com/en-

us/library/windows/desktop/cc307414.aspx

[7]. Steven Lavenhar.‖Code Analysis‖, 2008.

[8]. Robert C. Seacord Allen D. Householder.‖ A

Structured Approach to Classifying Security

Vulnerabilities‖, January 2005

[9]. CLASP Vulnerability View — Classes in CLASP

Taxonomy, March 2006

[10]. http://makingsecuritymeasurable.mitre.org/docs/

cwe-intro-handout.pdf

[11]. http://msdn.microsoft.com/en-

us/library/windows/desktop/cc307416.aspx

[12]. Michal Chmielewski, Neill Clift, Sergiusz

Fonrobert and Tomasz Ostwald ,‖Find and Fix

Vulnerabilities Before Your Application Ships‖.

[13]. Steven M. Christey, Janis E. Kenderdine, John

M.Mazella and Brendan Miles. ―CWE V2.0‖:

2011

[14]. http://en.wikipedia.org/wiki/Off-by-one_error

[15]. http://cwe.mitre.org/data/definitions/789.html

[16]. http://cwe.mitre.org/data/definitions/20.html.

[17]. http://cwe.mitre.org/data/definitions/754.html.

[18]. http://en.wikipedia.org/wiki/Arithmetic_underfl

ow

[19]. http://my.safaribooksonline.com/book/software-

engineering-and-

development/0321166078/floating-point-

arithmetic/ch08lev1sec4

[20]. http://javapapers.com/core-java/java-overflow-

and-underflow/

[21]. Dead Code:

http://en.wikipedia.org/wiki/Dead_code

[22]. http://link.springer.com/static-

content/lookinside/891/chp%253A10.1007%252

F978-3-642-35606-3_16/000.png

[23]. collaboration.csc.ncsu.edu/laurie/Papers/ICSE_Fi

nal_MCG_LW.pdf‎

[24]. seij.dce.edu/vol-2/paper5.pdf‎

[25]. https://buildsecurityin.us-

cert.gov/articles/knowledge/sdlc-process/secure-

software-development-life-cycle-processes

[26]. https://lh6.googleusercontent.com/-S-

VcaHPug00/UVHExiEmXAI/AAAAAAAALQs/Ji

k0EqgAvjs/s1867/2013%25252006%25253A25.jp

g

[27]. www-lor.int-evry.fr/~anna/files/sec-mda09.pdf‎

[28]. http://en.wikipedia.org/wiki/Penetration_test

[29]. http://en.wikipedia.org/wiki/Security_testing

[30]. finalize() Method Declared Public:

http://cwe.mitre.org/data/definitions/583.html

[31]. https://www.securecoding.cert.org/.../MET12-

J.+Do+not+use+finalizers‎

[32]. Improper Initialization:

http://cwe.mitre.org/data/definitions/665

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com

Volume 9 - Issue 4 - Published : July 20, 2021 Page No : 207-214

214

[33]. http://books.google.co.in/books?id=8d-

qU8K0BN4C&pg=PT128&lpg=PT128&dq=impro

per+initialization&source=bl&ots=TjhUdhx-

1G&sig=y3Di4gH_Iea6_BrzdsbFTaheIso&hl=en&

sa=X&ei=xm21Ucs4zpOuB9mVgMAN&ved=0CE

oQ6AEwBjge

[34]. http://www.oracle.com/technetwork/java/seccod

eguide-139067.html#5

[35]. Michal Chmielewski, Neill Clift, Sergiusz

Fonrobert and Tomasz Ostwald ,‖Find and Fix

Vulnerabilities Before Your Application Ships‖.

[36]. http://www.its.ny.gov/pmmp/guidebook2/Syste

mImplement.pdf

