An Accumulator using Electron Tunneling Through Tunnel Junction
 Dr. Anup Kumar Biswas
 Department of Computer Science and Engineering, Kalyani Govt. Engineering College, Kalyani, Nadia, West Bengal, India

Article Info
Volume 8, Issue 5
Page Number : 163-183

Publication Issue :

September-October-2021

Article History

Accepted : 10 Sep 2021
Published: 19 Sep 2021

Abstract

Instead of an existing logical Technology, by using an emerging technology we will be able to make an electronic circuit with high speed, low cost, high concentration density, light in weight, reduced gate numbers and low power consumption. This technology is based on the linear threshold logic condition and electron-tunneling event. At the time of implementing a circuit, a multi-inputs but one-output based logic-node will be brought in our consideration. In this work, we have designed a 1-bit accumulator and then implemented it. To develop an accumulator, some small components like 2-input AND, 3-input AND, 3-input OR, 8 -input OR, 9 -input OR gate and above all a JK Flip-flop (for 1-bit) are to be collected and connected them in logical order to obtain the proper circuit. After verifying all their characteristics with the results obtained from the simulator, we have built a 1 -bit accumulator. All the small components are provided in due places. They are analyzed, detected their threshold logic equations, shown their threshold logic gates (TLGs), tabulated their truth tables, drawn their inputoutput waveforms, given their respective circuits with exact parameter values. In the accumulator, there are nine control variables S1 through S9 in view of performing the operations (i) Addition, (ii) clear, (iii) complement, (iv) AND, (v) OR, (vi) XOR, (vii) Right-shift, (viii) Left-shift and (ix) increment with positive triggering clock pulses. Whether our present work's circuits are faster or slower with respect to the similar circuits of CMOS based- and Single electron transistor (SET) based circuits are compared and observed that our TLG based circuits are faster than the CMOS and SET based circuits. The power consumed for tunneling event for a circuit is measured and sensed that it would remain in the range of 10 meV to 250 meV which is low. All the circuits we have presented in this work are of 'generic multiple input threshold logic gate' which is elaborately discussed. Keywords : Electron-tunneling, Threshold logic, JK Flip-flop, Accumulator, highspeed.

I. INTRODUCTION

TERMINPLOGIES

A. Threshold Logic Gate

A threshold logic gate (TLG) is capable of implementing a Boolean function in a different way away from the traditional one, as follows. Every input variable has its determined weight, and the gate must have a threshold/intrinsic value. When the sum of the weights with their ON inputs is equal to or greater than the threshold value then the output is ' 1 '. Otherwise, the output is ' 0 '. This operating principle can be written as below.

$$
f=\left\{\begin{array}{cc}
1, & \sum_{i=1}^{n} w_{i} x_{i} \geq \theta \\
0, & \text { otherwise }
\end{array}\right.
$$

where x_{i} represents input, w_{i} represents the weight of each input, and θ is the threshold value.

Threshold logic function (TLF) which represents a Boolean function implemented by a single TLG. The TLF is called linearly separable[1-7,14]. A TLF is realized by a vector [$\left.w_{1}, w_{2}, \ldots, w_{n}: \theta\right]$. A TLF may be a more complex function, for example, $f=x_{1} x_{2}+x_{1}$ $x_{3}+x_{2} x_{3} x_{4}+x_{2} x_{3} x_{5}$ which corresponds to the TLG f $=[4,3,3,1,1 ; 7]$ and this five variables logical expression can be represented by a single node TLG as below.

Fig. 1 TLG of $f=[4,3,3,1,1 ; 7]$

The important advantage of a threshold logic is that number of gates can be reduced to a minimum number of nodes (gates) used in the circuit, decreasing area or element numbers.

Threshold Logic Properties

A TLF will be unate function, but the reverse is not always true, that is, all the unate functions are not TLF [1]. Hence, if a function bears binate variables, the function cannot be TLF. The function $f=x 1 x 2+$ $x 3 x 4$ is an example of an unate function but not of a TLF. When the logic function has complemented variables, these variables can be manipulated in the same way as the functions having all noncomplemented variables, to identify if it is a TLF. For instance, If $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a threshold function defined by [$W_{1}, W_{2}, \ldots, W_{n} ; \theta$] then its complement $\bar{f}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is also a threshold function defined by [-$\left.W_{1,-} W_{2}, \ldots,-W_{n} ; 1-\theta\right]$. When a function is a TLF, then by selectively complementing all the inputs, we can obtain a realization by a TLG with only positive coupling weights.

B. Majority Decision Functions (MDF)

This operating principle can also be expressed in another way as Majority Decision Functions.
A "majority decision function" of n variables for a logical element having n -inputs, $x_{1}, x_{2}, \ldots, x_{n}$ and one output.
The output value of the element is
$\left\{\begin{aligned} 1, & \text { for } \sum_{i=1}^{n} w_{i} x_{i} \geq \theta \\ 0, & \text { for } \sum_{i=1}^{n} w_{i} x_{i} \leq \theta-1\end{aligned}\right.$
where x_{i} represents input, W_{i} represents the coupling weight of each input x_{i}, and θ is the threshold value.
For instance, the structure $(2,1,1 ; 2)$ can be represented by a MDF as $x_{1}+x_{2} x_{3}$; so, this function is a MDF. Whereas, the function $f\left(x_{1} x_{2} x_{3} x_{4}\right)=x_{1} x_{2}+$ $x_{3} x_{4}$ is not a MDF because of that it cannot be cognized by any single majority decision element.

II. DESIGN OF AN ACCUMULATOR

An accumulator consists of n-flip-flops and n-stages. Every stage consists of a flip-flop, one data input terminal B_{i}, and a combinational logic along with the flip-flop.
For the designing purpose, we will consider only typical stage i, whereas the n-bit accumulator has n stages for $i=1,2,3, \ldots$, n. Every stage A_{i} is connected with the adjacent stage A_{i-1} on its right and stage A_{i+1} staying on its left. The last stage (leftmost stage) and first stage have no adjacent neighbors on the left and right side respectively. In this work, the register is considered to be made up of JK flop-flops.
There are nine control/selection lines with selection variables $S_{\mathrm{i}}, i=1,2 \ldots, 9$ initiates the micro-operation. We have to ensure that a single selection variable is enabled at a particular moment. As the selection variables are mutually exclusive, we can separate the combinational circuit regarding a stage into smaller components or circuits, one for each micro-operation. The list of micro-operation is shown in Table-1.

Table-1. Micro-operation of an accumulator

Selection variable	Name of operation	$\boldsymbol{\mu}$-operation
S_{1}	Addition	$A \leftarrow A+B$
S_{2}	Clear	$\mathrm{A} \leftarrow 0$
S_{3}	Complement	$\mathrm{A} \leftarrow \mathrm{A}^{-}$
S_{4}	AND	$\mathrm{A} \leftarrow \mathrm{A} \wedge \mathrm{B}$
S_{5}	OR	$\mathrm{A} \leftarrow \mathrm{AVB}$
S_{6}	XOR	$\mathrm{A} \leftarrow \mathrm{A} \oplus \mathrm{B}$
S_{7}	Shift-right	$\mathrm{A} \leftarrow \mathrm{shr} \mathrm{A}$
S_{8}	Shift-left	$\mathrm{A} \leftarrow \mathrm{shl} A$
S_{9}	Increment	$\mathrm{A} \leftarrow \mathrm{A}+1$
	Check for zero	$\mathrm{If} \mathrm{A}=0$ then $\mathrm{Z}=1$

Now, all the operations marked in the Table-1 are discussed in the sub-sections for determining the logical expressions.

2A. Selection variable S_{1} for Addition B to A:

If the selection variable S_{1} is 1 then the microoperation for addition is initiated. In the present state A_{i} of each JK flip-flop of each stage i is taken as the first input for a full adder, B_{i} is the data input (2 ${ }^{\text {nd }}$ input) and the previous carry input C_{i}. The output of full adder is sent to the flip-flop A_{i} and the carry output C_{i+1} in passed to the carry input of the next stage. The input-output relationship for the case of a full adder of a stage is given in Table- 2 below.

Table-2

Present state			Inputs state	Next JK Flip-flop inputs	Outpu t	
A_{i}	B_{i}	C_{i}	A_{i}	$J A_{i}$	$K A_{i}$	C_{i+1}
0	0	0	0	0	X	0
0	0	1	1	1	X	0
0	1	0	1	1	X	0
0	1	1	0	0	X	1
1	0	0	1	X	0	0
1	0	1	0	X	1	1
1	1	0	0	X	1	1
1	1	1	1	X	0	1

From this table, we can easily find out the Boolean functions for the Addition micro-operation. We have designated the J input and K input of flip-flop A_{i} by $J A_{i}$ and $K A_{i}$ respectively. Noted that the equations of $J A_{i}$ and $K A_{i}$ must affect the flip-flop when S_{1} is enabled, so they are to be ANDed with S_{1}. The microoperation (Addition) associated with the combinational circuit can be written by the following Boolean functions.
$J A_{i}=B_{i} \overline{\mathrm{C}}_{i} S_{1}+\overline{\mathrm{B}}_{i} C_{i} S_{1}$
$K A_{i}=B_{i} \overline{\mathrm{C}}_{i} S_{1}+\overline{\mathrm{B}}_{i} C_{i} S_{1}$
$C_{i+1}=A_{i} B_{i}+B_{i} C_{i}+C_{i} A_{i}$

The first two functions are identical, which indicates a condition of complementing A_{i}. The third equation provides the carry for the next higher stage.

2B. Selection variable S_{2} for Clear:

Selection variable S_{2} makes all the flip-flops in register A clear. To happen this we must apply $S_{2}=1$ to K input of JK flip-flop. Jinput value will be kept as 0 . So the equations for micro-operation in the case of clear will be as.

$$
\begin{gathered}
J A_{i}=0 \\
K A_{i}=S_{2}
\end{gathered}
$$

2C. Selection variable S_{3} for Complement:

We know when both of the inputs of the JK flip-flop are 1 s , the output would be the complement of the previous one. So. For the purpose of complement we apply $\boldsymbol{S}_{\mathbf{3}}$ as below.

$$
\begin{gathered}
J A_{i}=S_{3} \\
K A_{i}=S_{3}
\end{gathered}
$$

2D. Selection variable S_{4} for AND Micro-operation:

 AND operation is initiated when the variable S_{4} is applied. This logic operation happens over A_{i} and B_{i} and the result is transferred to A_{i}. The execution table is shown in Table-3 for this AND micro-operation.Table-3

Present state	input	Next state	Flip-flop inputs	
A_{i}	B_{i}	A_{i}	$J A_{i}$	$K A_{i}$
0	0	0	0	X
0	1	0	0	X
1	0	0	X	1
1	1	1	X	0

From this table we will be able to get two expressions as.

$$
\begin{aligned}
& J A_{i}=0 \\
& K A_{i}=\overline{\mathrm{B}}_{i}
\end{aligned}
$$

In these equations the variable S_{4} is not included. While including this S_{4}, we must modify the above equations as

$$
\begin{aligned}
& J A_{i}=0 \\
& K A_{i}=\overline{\mathrm{B}}_{i} S_{4}
\end{aligned}
$$

2E. Selection variable S_{5} for OR Microoperation:

An OR operation is initiated when the variable S_{5} is applied. This logic operation happens over A_{i} and B_{i} and the result is transferred to A_{i}. The execution table is shown in Table-4 for this OR micro-operation.

Table-4

Present state	input	Next state	Flip-flop inputs	
A_{i}	B_{i}	A_{i}	$J A_{i}$	$K A_{i}$
0	0	0	0	X
0	1	1	1	X
1	0	1	X	0
1	1	1	X	0

From this table we will be able to get two expressions as.

$$
\begin{gathered}
J A_{i}=\mathrm{B}_{i} \\
K A_{i}=0
\end{gathered}
$$

In these equations the variable S_{5} is not included. While including this S_{5}, we must modify the above equations as

$$
\begin{aligned}
& J A_{i}=\mathrm{B}_{i} S_{5} \\
& K A_{i}=0
\end{aligned}
$$

2F. Selection variable S_{6} for X-OR Microoperation:

An OR operation is initiated when the variable S_{5} is applied. This logic operation happens over A_{i} and B_{i}
and the result is transferred to A_{i}. The execution table is shown in Table-5 for this OR micro-operation.

Table-5

Present state	input	Next state	Flip-flop inputs	
A_{i}	B_{i}	A_{i}	$J A_{i}$	$K A_{i}$
0	0	0	0	X
0	1	1	1	X
1	0	1	X	0
1	1	0	X	1

From this table we will be able to get two expressions by using Karnaugh map as

$$
\begin{gathered}
J A_{i}=\mathrm{B}_{i} \\
K A_{i}=\mathrm{B}_{i}
\end{gathered}
$$

In this Left shift operation, the contents of the register A is shifted one position towards left. That is the value of the flip-flop A_{i-1} is transferred to the

$$
\begin{gathered}
J A_{i}=\mathrm{A}_{i-1} S_{8} \\
K A_{i}=\overline{\mathrm{A}}_{i-1} S_{8}
\end{gathered}
$$

$\mathbf{2 H}$. Selection variable $S_{\mathbf{9}}$ for increment:

In this operation, the content of register A is increased by1. This operation is similar to a binary counter shown in Fig. 2. For the case of JK flip-flop when both the inputs are 1 , the output is the complement of the previous state and when both the inputs are 0 the outputs of the flip-flops remain the same with the positive clock pulses. From the Fig. 2, it is seen that each stage will be complemented when the corresponding input carry $E_{i}=1$. Here every stage creates an output carry E_{i+1} toward the next left stage. The first stage is complemented when $S_{9}=1$. The logical expression for a typical stage is expressed as below.

$$
\begin{array}{ll}
J A_{i}=E_{i} & K A_{i}=E_{i} \\
E_{i+1}=A_{i} E_{i} & E_{1}=S_{9}
\end{array}
$$

In these equations the variable S_{6} is not included. While including this S_{6}, we must modify the above equations as

$$
\begin{gathered}
J A_{i}=\mathrm{B}_{i} S_{6} \\
K A_{i}=\mathrm{B}_{i} S_{6}
\end{gathered}
$$

2G. Selection variable S_{7} for Right shift Microoperation:

In this right shift operation, the contents of the register A is shifted one position towards right. That is the value of the flip-flop A_{i+1} is transferred to the flipflop A_{i}. So, this transfer operation can be expressed as

$$
\begin{aligned}
& J A_{i}=\mathrm{A}_{i+1} S_{7} \\
& K A_{i}=\overline{\mathrm{A}}_{i+1} S_{7}
\end{aligned}
$$

2J. Selection variable $S_{\mathbf{8}}$ for Left shift Microoperation:

flip-flop A_{i}. So, this transfer operation can be expressed as

Fig. 2 A 4-bit binary counter

2I. Check for Zero (Z) for the Accumulator

Z is an output variable emerging from the accumulator. It is used to indicate whether the content of the register A is zero or not. The value of $\mathrm{Z}=1$ whenever all the JK flip-flops in the accumulator are cleared. If a flip-flop is cleared, the output of its complement (Q) equals to 1 . From the Fig. 3, every stage creates a variable Z_{i+1} while ANDing an input variable Z_{i} and complement output of A_{i}. If all the values of Z_{i} are 1 , then we can say the accumulator is in state Zero. Hence we can express the logical equation for a particular stage as below. $\mathrm{Z}=1$, if the output bit signal from the final stage equals to 1 .
$Z_{i+1}=Z_{i} \overline{\mathrm{~A}}_{i} \quad \mathrm{i}=1,2, \ldots \mathrm{n}$

Fig. 3 checking the zero content of a register A

2K. Single Stage of Accumulator

Now we can make a typical stage of an accumulator with the help of the expressions of micro-operations derived above. As the variables from S_{1} to S_{9} are mutually exclusive i.e., they are not activated at the same time, so the respective circuits are joined/connected with an OR operation. By joining all the input functions for the sake of J and K inputs of the flip-flops A_{i}, we can create a composite set of input logical expression for a particular stage.
$J A_{i}=B_{i} \overline{\mathrm{C}}_{i} S_{1}+\overline{\mathrm{B}}_{i} C_{i} S_{1}+S_{3}+\mathrm{B}_{i} S_{5}+\mathrm{B}_{i} S_{6}+\mathrm{A}_{i+1} S_{7}+$ $\mathrm{A}_{i-1} S_{8}+E_{i}$
$K A_{i}=B_{i} \overline{\mathrm{C}}_{i} S_{1}+\overline{\mathrm{B}}_{i} C_{i} S_{1}+S_{2}+S_{3}+\overline{\mathrm{B}}_{i} S_{4}+\mathrm{B}_{i} S_{6}+\overline{\mathrm{A}}_{i+1} S_{7}+$ $\overline{\mathrm{A}}_{i-1} S_{8}+E_{i}$
For the case of the accumulator, each stage, of course, produces the carries for the stage towards left. These carries are as follows.
$C_{i+1}=A_{i} B_{i}+B_{i} C_{i}+C_{i} A_{i}$
$E_{i+1}=A_{i} E_{i}$
$Z_{i+1}=Z_{i} \overline{\mathrm{~A}}_{i}$
Based on these logical expressions, a logic diagram for a typical stage as to the accumulator is drawn in Fig.4.
This is basically the direct implementation of the logical expressions listed above.

Fig. 4 Logic diagram of a single stage Accumulator

1. Generic Multiple input threshold logic gate

A multiple threshold logic gate [1-7, 12-14] which may also be called a generic Multiple input threshold logic gate is shown in Fig. 5.

Fig. 5 TLG with multi-input
It consists of a tunnel junction having internal capacitance C_{j} and resistance R_{j}, two multi-inputsignals (i) V_{k}^{P} s and (ii) V_{l}^{n} s connected at two points ' q ' and 'p' respectively. Each input voltage V_{k}^{P} (upper side) is connected to the point "q" through the capacitance C_{k}^{P}; and each input voltage V_{l}^{n} (lower side), is joined at the point " p " through the capacitance C_{l}^{n}. The bias voltage V_{b}, for the
assistance of the tunneling, is connected to the point " q " through the true capacitor C_{b}. Tunnel Junction capacitor C_{j} is linked between " p " and " q ". Point " p " is grounded through Co. C_{j} and Co play the important role in the circuit. For a LTG, the operation of it can be expressed by a function called signun function. The signun function of $\mathrm{h}(\mathrm{x})$ expressed by two equations (1a) and (1b).
$g(x)=\operatorname{sgn}\{h(x)\}=\left\{\begin{array}{l}0, \text { if } h(x)<0 \\ 1, \text { if } h(x) \geq 0\end{array}\right.$
$\mathrm{h}(\mathrm{x})=\sum_{k=1}^{n}\left(w_{k} \times x_{k}\right)-\theta$
where x_{k} represents n -Boolean inputs, and w_{k} are their corresponding integer weights.

The LTG compares the threshold value θ with the weighted sum of the inputs $\sum_{k=1}^{n}\left(w_{k} \times x_{k}\right)$. When $\sum_{k=1}^{n}\left(w_{k} \times x_{k}\right)$ is more than or equal to the threshold value θ of the circuit, then output of the LTG shows high (logical " 1 "), otherwise low (logical "0").

III. THRESHOLD LOGIC GATES BASED CIRCUITS

A typical stage of an accumulator has been designed and presented in a pictorial view by using the direct implementation of the logical expressions discussed. In is transparent for us that the small elements required for implementing the typical stage are (i) 2-input AND gate, (ii) 3-input AND gate (iii) 3-input OR gate, (iv) 8 -input OR gate, (v) 9-input OR gate and (vi) JK flipflop with clock. Now, we will present all these components based on linear threshold gates (LTGs) and they will be verified by means of a software called SIMON.

4A. 2-input AND gate (linear threshold logic)

By using the Generic Multiple input threshold logic gate, a 2-input AND gate with positive logic will be obtained easily. Consider the threshold logic expression of 2-input AND gate to be
$\operatorname{AND}(A, B)=\operatorname{sgn}\left\{w_{A} A+w_{B} B-\theta\right\}$

To obtain a 2-input threshold logic AND gate, we can draw the truth Table-6 of a 2-input AND gate and compare the coupling weights w_{A} and w_{B} of two variables A and B respectively with the threshold value $\theta[1-5,7,8]$.

Table-6

A	B	$\mathrm{F}(\mathrm{A}, \mathrm{B})$	θ	inequality
0	0	0	$0<\theta$	(1)
0	1	0	$w_{B}<\theta$	(2)
1	0	0	$w_{A}<\theta$	(3)
1	1	1	$w_{B}+w_{A} \geq \theta$	(4)

As 2-input AND gate is a positive logic, we can assume the weights of A and B are 1 each. Then from the four inequalities in the Table- 6 , if we take $w_{B}=1, w_{A}=1$ and $\theta=2$, then the four inequalities in $4^{\text {th }}$ column in Table6 are satisfied. Hence the linear threshold logic equation for the cited AND gate becomes
$\operatorname{AND}(A, B)=\operatorname{sgn}\{A+B-2\}$
Based upon the equation (5), we can place two input capacitances $\mathrm{C}_{1}^{\mathrm{p}}$ and $\mathrm{C}_{2}^{\mathrm{P}}$ with two positive logic inputs in the Generic Multiple input threshold logic gate. For this purpose the parameter values we have measured are as follows: logic input " 0 " $=0 \mathrm{~V}$, logic " 1 " = $16 \mathrm{mV}, \mathrm{C}=1 \mathrm{aF}, \mathrm{C}_{1}^{\mathrm{p}}=\mathrm{C}_{2}^{\mathrm{P}}=\frac{1}{2} C=0.5 \mathrm{aF}, C_{b}=9 a F$, $C_{j}=0.25 a F, C_{L}=9 a F, C_{0}=10 a F, R_{j}=10^{5}$ Ω, . $V_{b}=V_{s}=16 \mathrm{mV}$. The corresponding 2-input threshold logic gate is given in Fig. 6(a) with its simulated results in Fig. 6(b).

Fig. 6(a) 2-input AND Gate

(b) Simulation result

4B. 2-input AND gate with one complement input

We are to explore the construction of the Fig. 6(c) and find out the threshold logic symbol for the same. If we think of the similarity of logic equations
$\operatorname{AND}(\mathrm{A}, \mathrm{B})=\mathrm{AB}$ and $\mathrm{AND}(\mathrm{A}, \overline{\mathrm{B}})=\mathrm{AB}$, a threshold logic equation of $\operatorname{AND}(A, \bar{B})=A \bar{B}$ can be written as $\mathrm{AND}(\mathrm{A}, \overline{\mathrm{B}})=\operatorname{sgn}\{A+\overline{\mathrm{B}}-2\}$
But we know, $\overline{\mathrm{B}}+\mathrm{B}=1$ or $\overline{\mathrm{B}}=-\mathrm{B}+1$,
Putting this value into equation (4), we obtain equation (5)
$\mathrm{F}(\mathrm{A}, \mathrm{B})=\operatorname{AND}(\mathrm{A}, \overline{\mathrm{B}})=\operatorname{sgn}\{A-B-1\}$

Based upon the equation (5), we can place two input capacitances $\mathrm{C}_{1}^{\mathrm{p}}$ and $\mathrm{C}_{1}^{\mathrm{n}}$ with one positive logic input and one negative input in the Generic Multiple input threshold logic gate. For this purpose the parameter values we have measured are as follows: logic input " 0 " $=0 \mathrm{~V}$, logic " 1 " = $16 \mathrm{mV}, \mathrm{C}=1 \mathrm{aF}, \quad \mathrm{C}_{1}^{\mathrm{p}}=\mathrm{C}_{1}^{\mathrm{n}}=$ $\frac{1}{2} C=0.5 \mathrm{aF}, C_{b}=9.5 a F, C_{j}=0.25 a F, C_{L}=$ $9 a F, C_{0}=9.5 a F, R_{j}=10^{5} \Omega, V_{b}=V_{s}=16 \mathrm{mV}$. The corresponding 2 -input threshold logic gate is given in Fig. 6(e) with its simulated results in Fig. 6(f).

Fig.6(c) symbol of $A \bar{B}$

6(d) TLG based node of $A B$

Fig. 6(e) 2-input TLG of $A \bar{B}$ Fig. 6(f) simulated result of Fig 6(e)

4 C. 3-input AND gate (linear threshold logic)

By using the Generic Multiple input threshold logic gate, a 3-input AND gate with positive logic will be obtained easily. Consider the threshold logic expression of 3-input AND gate to be
$\operatorname{AND}(A, B, C)=\operatorname{sgn}\left\{w_{A} A+w_{B} B+w_{C} C-\theta\right\} \ldots \ldots$. (6)

To obtain a 3-input threshold logic AND gate, we can draw the truth Table-7 of a 3-input AND gate and compare the coupling weights w_{A}, w_{B} and w_{C} of three variables A, B and C respectively with the threshold value θ [3-7,13-15].

Table-7

A	B	C	$\mathrm{F}=$ ABC	θ	Eqn. No.
0	0	0	0	$0<\theta$	(1)
0	0	1	0	$w_{C}<\theta$	(2)
0	1	0	0	$w_{B}<\theta$	(3)
0	1	1	0	$w_{\mathrm{B}}+w_{\mathrm{C}}<\theta$	(4)
1	0	0	0	$w_{A}<\theta$	(5)
1	0	1	0	$w_{\mathrm{A}}+w_{C}<\theta$	(6)
1	1	0	0	$w_{\mathrm{A}}+w_{\mathrm{B}}<\theta$	(7)
1	1	1	1	$w_{\mathrm{A}}+w_{\mathrm{B}}+w_{\mathrm{C}}$ $\geq \theta$	(8)

As 3 -input AND gate is a positive logic, we can assume the weights of A, B and C are 1 each. Then from the eight inequalities in the Table-7, if we take $w_{B}=1$, $w_{A}=1, w_{C}=1$ and $\theta=3$, then the eight inequalities in $5^{\text {th }}$ column in Table-7 are satisfied. Hence the linear threshold logic equation for the 3 -input AND gate becomes Equation (7). The symbolic representation of
linear threshold logic for the 3-input AND gate is given in Fig. 7(a)
$\operatorname{AND}(A, B, C)=\operatorname{sgn}\{A+B+C-3\}$

Fig. 7(a) symbolic representation 3-input AND

Based upon the equation (7), we can place three input capacitances $\mathrm{C}_{1}^{\mathrm{p}}, \mathrm{C}_{2}^{\mathrm{p}}$ and $\mathrm{C}_{3}^{\mathrm{P}}$ with three positive logic inputs in the Generic Multiple input threshold logic gate. For this purpose the parameter values we have measured are as follows logic input " 0 " $=0 \mathrm{~V}$, logic " 1 " = $16 \mathrm{mV}, \mathrm{C}=1 \mathrm{aF}, \mathrm{C}_{1}^{\mathrm{p}}=\mathrm{C}_{2}^{\mathrm{P}}=\mathrm{C}_{3}^{\mathrm{P}}=\frac{1}{2} C=0.5 \mathrm{aF}, \quad C_{b}=$ 8.5aF , $\quad C_{j}=0.25 a F, C_{L}=9 a F, C_{0}=$ $10 a F, R_{j}=10^{5} \Omega, . V_{b}=V_{s}=16 \mathrm{mV}$. The corresponding 3 -input threshold logic gate is given in Fig. 6(b) with its simulated results in Fig. 6(c).

Fig. 6(b) 3-input TLG of ABC | Fig.6(c) simulated result

4D. 3-input AND gate with one complement input

When making an Accumulator, we require an expression $A \overline{B C}$ to be implemented by a three input gate as shown in Fig. 7(a). Keeping the similarity of equation (7), we can write the threshold logic equation (TLE) for the logic expression ABC as in equation (8). $\operatorname{AND}(\mathrm{A}, \overline{\mathrm{B}}, \mathrm{C})=\operatorname{sgn}\{A+\overline{\mathrm{B}}+\mathrm{C}-3\}$

Putting this value into equation (8), we obtain
equation (9)
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{AND}(\mathrm{A}, \overline{\mathrm{B}, \mathrm{C}})$

$$
\begin{equation*}
=\operatorname{sgn}\{A-B+C-2\} \tag{9}
\end{equation*}
$$

Based upon the equation (9), we can place two input capacitances $\mathrm{C}_{1}^{\mathrm{p}}, \mathrm{C}_{2}^{\mathrm{p}}$ and $\mathrm{C}_{1}^{\mathrm{n}}$ with two positive logic input and one negative input in the Generic Multiple input threshold logic gate. For this purpose the parameter values we have measured are as follows: logic input " 0 " $=0 \mathrm{~V}$, logic " 1 " $=16 \mathrm{mV}, \mathrm{C}=1 \mathrm{aF}, \mathrm{C}_{1}^{\mathrm{p}}=$ $\mathrm{C}_{2}^{\mathrm{p}}=\mathrm{C}_{1}^{\mathrm{n}}=\frac{1}{2} C=0.5 \mathrm{aF}, C_{b}=9 a F, C_{j}=0.25 a F$, $C_{L}=9 a F, C_{0}=9.5 a F, R_{j}=10^{5} \Omega, . V_{b}=$ $V_{s}=16 \mathrm{mV}$. The corresponding 3-input threshold logic gate is given in Fig. 7(b) with its simulated results in Fig. 7(c).

Fig. 7(a) logic gate of $A \overline{B C} \quad$ 7(b) Symbol of TLG of

Fig. 7(c) 3-input TLG of ABC | Fig.6(c) simulated result

But we know, $\overline{\mathrm{B}}+\mathrm{B}=1$ or $\overline{\mathrm{B}}=-\mathrm{B}+1$,

4E. 3-input OR gate

We can find out the threshold logic gate of 3-input OR gate as the procedure discussed above. The Threshold logic equation is of 3 -input OR is given in equation (10).
$O R(A, B, C)=\operatorname{sgn}\{A+B+C-1\}$.

Fig. 8(a) 3-in TLG of A+B+C Fig.8(b) simulated result

4F. 8-input OR and 9-input Threshold Logic OR gate

For space limitation, we have not elaborately discussed regarding the process to find out the threshold logic equations of 8 -input and 9 -input OR gates. The threshold logic(TL) equations of them are given below.
$\operatorname{OR}\left(X_{1} X_{2} X_{3} X_{4} X_{5} X_{6} X_{7} X_{8}\right)=\operatorname{sgn}\left\{\mathrm{V}_{i=1}^{8} X_{i}-1\right\}$
$\operatorname{OR}\left(X_{1} X_{2} X_{3} X_{4} X_{5} X_{6} X_{7} X_{8} X_{9}\right)=\operatorname{sgn}\left\{\mathrm{V}_{i=1}^{9} X_{i}-1\right\} \cdots$

The corresponding TL 8-input OR and 9-input OR gates are given in Fig. 9(a) and Fig. 9(b) respectively.

Fig. 9 (a) 8-input TL OR gate

Fig. 9(b)-input TL OR gate

4G. Implementation of JK Flip-flop using Threshold Logic Gate
First we can draw the truth table for a JK Flip-flop which is given in Table-8.

Table-8

Q^{t}	J	K	Q^{t+1}
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

The logic function of JK Flip－flop on the basis of Boolean gate can be written as

$$
\begin{array}{ll}
& \mathrm{Q}^{\mathrm{t}+1}=\mathrm{JQ}^{\mathrm{t}} \\
\text { and } \tag{14}\\
& \overline{\mathrm{QQ}^{\mathrm{t}+1}}=\overline{\mathrm{JQ}}+\mathrm{KQ}^{\mathrm{t}}
\end{array}
$$

We know that $\mathrm{Q}^{\overline{t+1}=} \operatorname{NOT}\left(\mathrm{Q}^{\mathrm{t}+1}\right)$ ．We are familiar with the expression $Y=A \cdot \bar{B}+\bar{A} \cdot B$ and it is similar to the equation（13）．Now for representing the Boolean function $Q^{t+1}=J . \bar{Q}^{t}+\bar{K} . Q^{t}$ using threshold logic gate，first we take $\mathrm{P}=\left(\mathrm{J} \cdot \bar{Q}^{\mathrm{t}}\right)$ ；as it is an AND function，so using equation（5）we can write for P as．

$$
\begin{equation*}
\mathrm{P}=\operatorname{sgn}\left\{\mathrm{J}-\mathrm{Q}^{\mathfrak{t}}-(1)\right\} \tag{15}
\end{equation*}
$$

The threshold Logic gate of equation（15）is drawn in Fig．10．The truth table of equation（15）is given in Table－9．

Table－9．Truth table of equation（15）

J	$Q^{\mathbf{t}}$	P
0	0	0
0	1	0
1	0	1
1	1	0

Fig． 10 threshold Logic gate of equation（15）

Now is the time for us to express the Boolean expression $Q^{t+1}=J \cdot Q^{\bar{t}}+\bar{K} \cdot Q^{t}$ ．We put $P=J . Q^{t}$
So， $\mathrm{Q}^{\mathrm{t}+1}=\mathrm{P}+\overline{\mathrm{KQ}^{\mathrm{t}}}$

$$
\begin{equation*}
\Rightarrow \mathrm{Q}^{\mathrm{t+1}}=\mathrm{P}+\overline{\mathrm{KQ}}^{\mathrm{t}} \tag{16}
\end{equation*}
$$

For having the threshold gate logic of equation（16）， we draw the truth Table－ 8 with the help of Table－ 9 and from which we solve the minimum value solution to get the coupling weight values．

Table－10

CP	K	P	$\mathrm{Q}^{\text {t }}$	$\mathrm{Q}^{\text {t＋1 }}$	θ
」	0	0	0	0	$0<\theta$
」	0	0	1	0	$W_{Q t}<\theta$
」	0	1	0	1	$W_{P} \geq \theta$
」	0	0	1	0	$W_{Q t}<\theta$
」	1	0	0	0	$W_{\mathrm{k}}<\theta$
」	1	0	1	1	$W_{\overline{\mathrm{k}}}+W_{Q t} \geq \theta$
」	1	1	0	1	$W_{\overline{\mathrm{k}}}+W_{P} \geq \theta$
」	1	0	1	1	$W_{\overline{\mathrm{k}}}+W_{Q t} \geq \theta$

After solving the conditional equations in the $6^{\text {th }}$ column in Table－10 we obtain a solution set which is $\left\{W_{\overline{\mathrm{K}}}, W_{P}, W_{Q t} ; \theta\right\}=\{1,2,1 ; 2\}$
Hence the Threshold equation for the T Flip－flop is
so we get

$$
\begin{equation*}
\mathrm{Q}^{\mathrm{t}+1}\left(\mathrm{~K}, \mathrm{P}, \mathrm{Q}^{\mathrm{t}}\right)=\operatorname{sgn}\left\{-\mathrm{K}+2 \mathrm{P}+Q^{t}-(1)\right\} \tag{17}
\end{equation*}
$$

As the Accumulator will require positive clock pulse to execute a particular logic，we must involve a clock in the JK flip－flop．Including the clock，the JK flip－flop of equation（17）using TLG has been given in Fig．11．

Fig． 11 Threshold logic gate based JK Flip－flop For the simulation purpose of the T Flip－flop，we have chosen related parameters．For Threshold logic gate1 （tlg1）：$\quad C_{0}=9.5 a F, R_{j}=10^{5} \Omega, V_{s}=V_{b}=$ $16 \mathrm{mV}, C_{1}^{p}=0.5 a F, C_{2}^{p}=0.5 \mathrm{aF}, C_{b}=9 a F$ $C_{j}=0.25 a F \quad$ For the Threshold Logic gate2（tlg2）
$: C_{1}^{p}=0.5 a F, C_{1}^{n}=0.5 \mathrm{aF}, C_{b}=9.5 a F, C_{L}=$
$9 a F, C_{0}=9.5 a F, C_{j}=0.25 a F, \quad R_{j}=10^{5}$
$\Omega, V_{s}=V_{b}=16 \mathrm{mV}$ ．For the Threshold Logic gate2
(tlg3): $\quad C_{0}=9.5 a F, R_{j}=10^{5} \Omega, V_{s}=V_{b}=$ $16 \mathrm{mV}, C_{1}^{p}=0.5 \mathrm{aF}, \quad C_{2}^{p}=0.5 \mathrm{aF}, C_{1}^{n}=0.5 \mathrm{aF}$, $C_{b}=19 a F C_{j}=0.25 a F$

$3 H$. logical expression of $A B+B C+C A$

The logic diagram given in Fig. 12(a) indicates a logic diagram of logic expression $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}$. This figure has four gates. If we replace the diagram with the help of the TLGs, only one TLG node (gate) is sufficient. Reduction property of TLG is applicable here. We can draw the truth Table-11 with the threshold inequalities.

Fig. 12(a) Logical circuit of $A B+B C+C A$

Table-11

A	B	C	$\mathrm{AB}+$ $\mathrm{BC}+\mathrm{C}$ A	θ	Inequ ality
0	0	0	0	$0<\theta$	
0	0	1	0	$w_{C}<\theta$	
0	1	0	0	$w_{B}<\theta$	
0	1	1	1	$w_{\mathrm{B}}+w_{\mathrm{C}} \geq \theta$	
1	0	0	0	$w_{A}<\theta$	
1	0	1	1	$w_{\mathrm{A}}+w_{C} \geq \theta$	
1	1	0	1	$w_{\mathrm{A}}+w_{\mathrm{B}} \geq \theta$	
1	1	1	1	$w_{\mathrm{A}}+w_{\mathrm{B}}$ $+w_{\mathrm{C}} \geq \theta$	

After solving the eight inequalities in the Table-11, we get a solution set $\left\{w_{\mathrm{A}}, w_{\mathrm{B}}, w_{\mathrm{C}} ; \theta\right\}=\{1,1,1 ; 2\}$. So the threshold logic equation for $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}$ is given in equation (18).
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\operatorname{sgn}\{\mathrm{A}+\mathrm{B}+\mathrm{C}-2\} \cdots$
According to the classical logic, to implement the Boolean logic $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}$ we require four gates three AND gates and one OR gate. On the other hand, only one gate is sufficient to implement this logic expression. The symbol of the threshold logic gate representing the expression $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}$ is given in Fig. 12(b) and the TLG based circuit is shown in Fig. 12(c).

Fig. 12(b) Symbol of AB+BC+CA

Fig. 12(c) TLG circuit of $A B+B C+C A$

2. Single stage Accumulator

All the TLG based small circuits are drawn above for the purpose of constructing a single stage accumulator in Fig. 13 and by using n- number of such particular stage we have been able to draw a complete accumulator as shown in Fig. 15. A threshold logic gate based (TLG) single stage accumulator is depicted in Fig. 13. For the verification of the circuit, the simulation of the single stage accumulator is
performed and observed that the simulation results for different control signal conditions are matched with the theoretical aspects．Table－12 is provided for different input－output relationships．The simulation results for the typical stage in Fig． 13 is given in Fig． 14. Table－12

	Input $\mathrm{A}_{\mathrm{i}} \mathrm{Bi}_{\mathrm{i}} \mathrm{Ci}_{\mathrm{i}}$	Clock pulse	Next A_{i}	result
$\mathrm{S}_{1}=1$	$\begin{array}{lll}0 & 1 & 1\end{array}$	」	0（sum）	1 （carry）
$\mathrm{S}_{2}=1$	0	」	0	clear
$\mathrm{S}_{3}=1$	0／1	」	1／0	complement
$\mathrm{S}_{4}=1$	$\begin{array}{ll} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{array}$	」	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	AND
$\mathrm{S}_{5}=1$	$\begin{array}{ll}0 & 0 \\ 0 & 1 \\ 1 & 0\end{array}$	」	$\begin{aligned} & 0 \\ & 1 \\ & 1 \end{aligned}$	OR

	11		1	
$\mathrm{S}_{6}=1$	00	」	0	XOR
	01		1	
	10		1	
	11		0	
$\mathrm{S}_{7}=1$	$\mathrm{A}_{\mathrm{i}+1}=1$	」	1	Right－shift
	$\mathrm{A}_{\mathrm{i}}=0 / 1$			
$\mathrm{S}_{8}=1$	$\mathrm{A}_{\mathrm{i}-1}=1$	」	1	Left－shift
	$A_{i}=0 / 1$			
$\mathrm{S}_{9}=1$	Assume	」	$\mathrm{A}_{4} \mathrm{~A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1}$	increment
	$\mathrm{A}_{4} \mathrm{~A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1}$		$=1010$	
	＝1001			

For different small components，distinct parameters are essential．For the understanding，at a glance，the parameter values are listed in Table－13．

Fig． 13 A single stage of the accumulator

Fig. 14 Simulation result of a single state Accumulator
Table-13

Sl. No.	Expressions used \& Name of Expression	parameters
1		For the simulation purpose of the T Flip-flop, we have chosen related parameters. For Threshold logic (tlg1): $C_{0}=9.5 a F, R_{j}=10^{5} \Omega, V_{s}=V_{b}=16 \mathrm{mV}, C_{1}^{p}=0.5 a F, C_{2}^{p}=0.5 \mathrm{aF}, C_{b}=$ 9aF $C_{j}=0.25 a F \quad$ For the Threshold Logic gate2 (tlg2) : $C_{1}^{p}=0.5 a F, C_{1}^{n}=0.5 \mathrm{aF}, C_{b}=9.5 a F, C_{L}=9 a F, C_{0}=9.5 a F, C_{j}=$ $0.25 a F, R_{j}=10^{5} \Omega, V_{s}=V_{b}=16 \mathrm{mV}$. For the Threshold Logic gate2 (tlg3): $C_{0}=$ $9.5 \mathrm{aF}, R_{j}=10^{5} \Omega, V_{s}=V_{b}=16 \mathrm{mV}, C_{1}^{p}=0.5 \mathrm{aF}, C_{2}^{p}=0.5 \mathrm{aF}, C_{1}^{n}=0.5 \mathrm{aF}$, $C_{b}=19 a F C_{j}=0.25 a F$
2		$\begin{aligned} & \text { logic input " } 0 \text { " }=0 \mathrm{~V}, \operatorname{logic} " 1 \text { " }=16 \mathrm{mV}, \mathrm{C}=1 \mathrm{aF}, \mathrm{C}_{1}^{\mathrm{p}}=\mathrm{C}_{2}^{\mathrm{P}}=\mathrm{C}_{3}^{\mathrm{p}}=\frac{1}{2} C \quad=0.5 \mathrm{aF}, C_{b}= \\ & 8.5 a F, C_{j}=0.25 a F, C_{L}=9 a F, C_{0}=10 a F, R_{j}=10^{5} \Omega, . V_{b}=V_{b}=V_{s}=16 \mathrm{mV} \end{aligned}$

3		$\begin{aligned} & " 0 "=0 \mathrm{~V}, \operatorname{logic} " 1 "=16 \mathrm{mV}, \mathrm{C}=1 \mathrm{aF}, \mathrm{C}_{1}^{\mathrm{p}}=\mathrm{C}_{1}^{\mathrm{n}}=\frac{1}{2} C=0.5 \mathrm{aF}, C_{b}=9.5 a F, C_{j}= \\ & 0.25 a F, C_{L}=9 a F, C_{0}=9.5 a F, R_{j}=10^{5} \Omega, . V_{b}=V_{S}=16 \mathrm{mV} \end{aligned}$
4		logic input " 0 " $=0 \mathrm{~V}$, logic " 1 " $=16 \mathrm{mV}$, $\mathrm{C}=1 \mathrm{aF}, \mathrm{C}_{1}^{\mathrm{p}}=\mathrm{C}_{2}^{\mathrm{p}}=\mathrm{C}_{1}^{\mathrm{n}}=\frac{1}{2} C=0.5 \mathrm{aF}, C_{b}=9 a F$, $C_{j}=0.25 a F, C_{L}=9 a F, C_{0}=9.5 a F, R_{j}=10^{5} \Omega, . V_{b}=V_{s}=16 \mathrm{mV}$.
5		$\begin{aligned} & \text { logic input " } 0 \text { " }=0 \mathrm{~V}, \text { logic " } 1 "=16 \mathrm{mV}, \mathrm{C}=1 \mathrm{aF}, \mathrm{C}_{1}^{\mathrm{p}}=\mathrm{C}_{2}^{\mathrm{p}}=\mathrm{C}_{3}^{\mathrm{p}}=\mathrm{C}_{4}^{\mathrm{p}}=\mathrm{C}_{5}^{\mathrm{p}}=\mathrm{C}_{6}^{\mathrm{p}}=\mathrm{C}_{7}^{\mathrm{p}}= \\ & \mathrm{C}_{8}^{\mathrm{p}}=0.5 \mathrm{aF}, C_{b}=9.1 a F, C_{j}=0.25 a F, C_{L}=9 a F, C_{0}=9.8 a F, R_{j}=10^{5} \\ & \Omega, . V_{b}=V_{s}=16 \mathrm{mV} . \end{aligned}$
6	N	$\begin{aligned} & \text { logic input " } 0 \text { " }=0 \mathrm{~V}, \operatorname{logic} " 1 "=16 \mathrm{mV}, \mathrm{C}=1 \mathrm{aF}, \mathrm{C}_{1}^{\mathrm{p}}=\mathrm{C}_{2}^{\mathrm{p}}=\mathrm{C}_{3}^{\mathrm{p}}=\mathrm{C}_{4}^{\mathrm{p}}=\mathrm{C}_{5}^{\mathrm{p}}=\mathrm{C}_{6}^{\mathrm{p}}=\mathrm{C}_{7}^{\mathrm{p}}= \\ & \mathrm{C}_{8}^{\mathrm{p}}=\mathrm{C}_{9}^{\mathrm{p}}=\frac{1}{2} C=0.5 \mathrm{aF}, C_{b} 8.5 a F, C_{j}=0.25 a F, C_{L}=9 a F, C_{0}=9.9 a F, \\ & R_{j}=10^{5} \Omega, . V_{b}=V_{s}=16 \mathrm{mV} . \end{aligned}$
7	$\begin{array}{ll} \stackrel{y}{4} \\ \downarrow & \stackrel{\rightharpoonup}{0} \\ > & \Delta \end{array}$	For the inverter, the parameter values chosen are: $V_{g 1}=0, V_{g 2}=0.1 \times \frac{q_{e}}{C}, C_{L}=9 C$, $C_{j}=\frac{1}{10} C, 5 C_{j}=\frac{1}{2} C, C_{g}=\frac{1}{2} C, C_{b}=\frac{17}{4} C, \mathrm{R}_{\mathrm{j}}=50 \mathrm{~K} \Omega$. For the sake of simulating, the value of $\mathrm{C}=1 \mathrm{aF}$ is fixed.
8		logic input " 0 " $=0 \mathrm{~V}$, logic " 1 " $=16 \mathrm{mV}, \mathrm{C}=1 \mathrm{aF}, \mathrm{C}_{1}^{\mathrm{p}}=\mathrm{C}_{2}^{\mathrm{P}}=\mathrm{C}_{3}^{\mathrm{p}}=\frac{1}{2} C \quad=0.5 \mathrm{aF}, C_{b}=$ $8.6 a F, C_{j}=0.25 a F, C_{L}=9 a F, C_{0}=10 a F, R_{j}=10^{5} \Omega, . V_{b}=V_{b}=V_{s}=16 \mathrm{mV}$

Fig. 15 A 4-bit Accumulator

An n -bit Accumulator needs n - stages which are connected in cascade, each stage bearing the circuit is shown in Fig. 13. All the control lines corresponding the variables, except S9 have to be applied to every
stage. The other inputs and outputs are contained by each stage will be connected to make a complete accumulator. Interconnections among the stages to make a desired Accumulator of 4-bit are shown in Fig. 15. In this diagram, each block corresponds to the circuit as Fig. 13. Each block takes control lines S_{1} through S_{8}, and a clock pulse (Clock). All the other four outputs and six inputs in every block are similar to the Fig. 13 except that the subscript is changed by a number for each block. The circuit contains four B $\left(B_{1}, B_{2}, B_{3}, B_{4}\right)$ inputs. The zero-detection chain as in Fig. 3 can be obtained by joining the Z_{i} variables in
cascade, where the first block takes the value 1(high). For the right-shift operation, the serial input passes through A_{0}, which corresponds to A_{i-1} for the stage 1.The carries are connected in cascade to full adder circuits. For the left-shift operation, the serial input passes through A_{5}, which corresponds to $\mathrm{A}_{\mathrm{i}+1}$ for the stage 4. The carries are connected in cascade to full adder circuits. By the control variable S9 connecting in stage 1 , the operation of increment is enabled. The remaining blocks get the increment carry from the previous ones.

3. Delay, Switching energy and Fastness

Whenever a complex circuit is implemented, there must have some inevitable components which are connected in a proper way to get the circuit. In the present work, as an accumulator is considered, we require the inevitable components like 2 -input AND, 3 -input AND, 3 -input OR, 8 -input OR, 9 -input OR, inverter [3-7] and JK Flip-flop with Clock pulse. For measuring the efficiency of an electronic substance/device, some factors are to be kept in brain like-time required for an execution, number of components, speed, power consumption, costs of materials, fan-outs, controlling charge, atmospheric temperature etc. Calculating the processing delays cum latency will be the first considered for this present work.

To measure the processing/switching delays, the critical voltage V_{c} and the tunnel junction capacitance C_{j} must be entangled. The processing delay for a circuit can be find out by using the expression given by the approach as written below [37, 14-15].

Delay $=-\left(e\left|\ln \left(P_{\text {error }}\right)\right| R_{t}\right) /\left(\left|V_{j}\right|-V_{c}\right) \cdots \cdots(19)$
where, R_{t} is the internal resistance of the tunnel junction, V_{c} is the critical voltage and V_{j} is the tunnel junction voltage.

Execution is performed when an electron passes through the tunnel junction. When the tunnel junction voltage V_{j} which is a portion of the supply voltage is being greater than or equal to the internal critical voltage V_{c}, of the tunnel junction i.e., when $\left|V_{j}\right| \geq V_{c}$, the tunneling event occurs.

If conditional expression is satisfied by a 3 -input AND gate, junction voltage of the 3 -input AND gate becomes $V_{j}=11.8 \mathrm{mV}$, the internal critical voltage V_{c} of the tunnel junction is found to be 11.58 mV . Given that the parameter values of tunnel resistance $R_{t}=$ $10^{5} \Omega$ and the probability of error $P_{\text {error }}=10^{-12}$. Putting them into equation (19) we can measure the gate delay $=0.072\left|\ln \left(\boldsymbol{P}_{\text {error }}\right)\right| \mathrm{ns}=1.98 \mathrm{~ns}$. In a similar manner we can calculate the delays of distinct circuits and they are listed in Table-14 and

Table-14

Gate/Device	elements	Delay (ns)	Switching Energy meV
inverter	9	$0.022\left\|\ln \left(\boldsymbol{P}_{\text {error }}\right)\right\|$	10.40
2-in NOR	6	0.060 $\ln \left(\boldsymbol{P}_{\text {error }}\right) \mid$	10.70
2-in OR	6	$0.062\left\|\ln \left(\boldsymbol{P}_{\text {error }}\right)\right\|$	10.80
2-in NAND	6	$0.062\left\|\ln \left(\boldsymbol{P}_{\text {error }}\right)\right\|$	10.80
2-in AND	6	$0.062\left\|\ln \left(\boldsymbol{P}_{\text {error }}\right)\right\|$	10.80
3-in AND	7	$0.072\left\|\ln \left(\boldsymbol{P}_{\text {error }}\right)\right\|$	11.58
3-in NAND	7	$0.072\left\|\ln \left(\boldsymbol{P}_{\text {error }}\right)\right\|$	11.58
2-in XOR	13	$0.080 \mid \ln \left(\boldsymbol{P}_{\text {error }}\right)$ \|	21.20
3-in OR	7	$0.073\left\|\ln \left(\boldsymbol{P}_{\text {error }}\right)\right\|$	11.58
3-in NOR	7	$0.072\left\|\ln \left(\boldsymbol{P}_{\text {error }}\right)\right\|$	11.57
4-in OR	8	$0.076\left\|\ln \left(\boldsymbol{P}_{\text {error }}\right)\right\|$	14.22
8-in OR	12	$0.077\left\|\ln \left(\boldsymbol{P}_{\text {error }}\right)\right\|$	21.4
$9-\mathrm{in} \mathrm{OR}$	13	$0.079\left\|\ln \left(\boldsymbol{P}_{\text {error }}\right)\right\|$	23.18
JK flip-flop	19	$0.197\left\|\ln \left(\boldsymbol{P}_{\text {error }}\right)\right\|$	33.88
1 stage	128	$0.418\left\|\ln \left(\boldsymbol{P}_{\text {error }}\right)\right\|$	224.7
Accumulator			

While tunneling, an electron goes through the junction barrier, by changing the total energy in the circuit. The energy changes before and after a tunneling event can be measured by using the equation (20) given below.

$$
\begin{align*}
\Delta E= & E_{\text {before tunnel }}-E_{\text {after tunnel }} \\
& =-e\left(V_{c}-\left|V_{j}\right|\right) \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \tag{20}
\end{align*}
$$

This is the switching/tunneling energy $-e\left(V_{c}-\left|V_{j}\right|\right)$ consumed for a tunnel event in the tunneling circuit. We listed the energy consumptions for distinct TLG circuits in Table-14.

Two distinct curves have been traced in relation to the switching delay vs. switching error probability and the switching delay vs. the unit capacitance C ($=1 \mathrm{aF}$) in Fig. 16(a) and Fog. 16(b) respectively.

Fig. 16(a) Delay vs. Error Probability in TLGs

Fig. 16(b) Delay Vs. capacitance in circuits of TLGs.

How many number of fundamental elements like capacitors, resistors are needed for constructing a small elements like gate or circuit are counted. We have kept track of the data required from this work in respect of small element numbers, delays or late, and switching power etc. and all of them are tabulated in Table-15. Power consumption (meV) for each circuit vs. elements is shown in Fig. 17 below. The processing delays for single electron Transistor (SET) and TLG based circuits in reference the various elements are projected by using the bar diagram side by side in Fig. 18.

Fig. 17 Comparison of small Elements and switching energy

Table-15

Gate/Device	SET- based delay ns	LTG- based delay ns	Speed-up times
inverter	8	0.60	13.33
2-input NOR	4	1.65	2.42
2-input OR	4	1.71	2.33
2-input NAND	4	1.71	2.33
2-input AND	4	1.71	2.33
3-input AND	8	1.98	4.04
3-input NAND	8	1.98	4.04
2-input XOR	4	2.21	1.81
3-input OR	8	2.01	3.98
3-input NOR	8	1.99	4.02
4-input OR	8	2.15	3.72
8-in OR	28	2.12	13.2
9-in OR	32	2.18	14.67
JK flip-flop	16	5.44	2.94
1 stage	44	11.54	3.81
Accumulator			

Considering that the value of $P_{\text {error }}$ is 10^{-12}, the time after which the first output of the 4 -bit Accumulator will fan out is $11.54 \times 4=46.16 \mathrm{~ns}$. Hence, we surely maintain the clock pulse time i.e., after every 46.16 ns ns or more in the 4 -bit Accumulator circuit. In this condition, frequency of fan-out for the Accumulator circuit will be $1 / 46.16 \mathrm{~ns}=21.66 \mathrm{MHz}$.

We are intended to bring to light the circuit delays in connection with CMOS, SET-based and LTG-based. We have detected the processing delays as 12 ns [5-11, 17-18] each for the case of a CMOS logic gate like AND, NAND, NOR and XOR. The tunneling time delay in the case of a single electron transistor (SET) [13-15] is approximately 4 ns [4-10, 17-18]. The speedup of LTG-based delays in connection to the corresponding delays of SET-based delays are tabulated in Table-15 and the three curves of (i) SET-
based delay, (ii) LTG-based delay and (iii) Speed-up times (ratio) versus the different logic gates / circuits are depicted in Fig.19.

Fig. 19 Delays of SET- and TLG- based and their ratio

4. Switching delays of SET and LTG

Given that the probability of error is 10^{-12}, the processing delays in the case of different circuits we have tracked are given in Table-15. From this table, we can easily have that the LTG based circuit is at least 2 times faster than the SET based circuit. In view of CMOS, the LTG based circuit is 8 times faster than that.

IV. CONCLUSION

In the accumulator of the central processing unit (CPU), the intermediate results of the ALU operations are stored. In the absence of an accumulator in a CPU, the operating system writes the result of each operation (like addition, multiplication, shift, AND, OR etc.) to the main memory. The main memory is really slower to access than to access an accumulator. Since the technology,
bringing to bear upon for the main memory, is really slower. Different operational results can be produced and stored in the accumulator by supplying the high logical value to the control variable lines S1 through S9. As the tunnel junction is very small in size (diameter 10 nm), the concentration density of the TLG based circuits must be high. The maximum power consumed for the Accumulator is $224.7 \mathrm{meV}=224.7 \times 10^{-3} \times 1.602 \times 10^{-19}=3.599 \times$ 10^{-24} Joule which is, really, very low amount. From the perspective of the result of the processing delay, it is observed that the TLG-based circuit is at least 2times faster in comparison with the SET based circuit and 8 -times faster than the CMOS based circuit. In our observation, we have decided that after every 46.16 ns one desired output is fanned out from output terminal of the accumulator. If we take the output of a complete 4 -bit Accumulator then the fan-out will be $1 \div(46.16 n s)=21.66 \mathrm{MHz}$. Almost all the given circuits are verified by the simulator-SIMON and realized that the simulated results are matched with the theoretical data. The reality is that atmospheric temperature in single electron tunneling based linear threshold logic technology is to be maintained at very close to 0 K and it is a very challenging job.

V. REFERENCES

[1]. Chin-Heng Liu, Chia-Chun Lin et al, "Threshold Function Identification by Redundancy Removal and Comprehensive Weight Assignments" IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 12, DECEMBER 2019
[2]. A.K. Biswas, "Measuring of an unknown voltage by using single electron transistor based voltmeter" , Semiconductor Physics, Quantum Electronics \& Optoelectronics(SPQEO), 24 (3),
P. 277-287 (2021) August 2021; ISSN 1605-6582 (On-line)
[3]. Anup Kumar Biswas, "A High-Speed Bidirectional Register with Parallel Loading using single electron Threshold Logic Technology" ,International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Vol. 8 (4) : pp394-408; July-August-2021, Print ISSN: 2395-1990 Online ISSN : 2394-4099 (www.ijsrset.com) doi : https://doi.org/10.32628/IJSRSET
[4]. Anup Kumar Biswas, "Integrated-Circuit Random Access Memory based on an emerging Technology-electron tunneling through Tunnel Junction", International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Vol. 8 (4) pp.409-424 July-August-2021, Print ISSN: 2395-1990 Online ISSN : 2394-4099
[5]. Anup Kumar Biswas, "A High-Speed Bidirectional Register with Parallel Loading using single electron Threshold Logic Technology", International Journal of Scientific Research in Science, Engineering and Technology Print ISSN: 2395-1990 | Online ISSN : 2394-4099 (www.ijsrset.com),July-August-2021, 8 (4) : pp394-408
[6]. Anup Kumar Biswas, "Application of single electron threshold logic gates and memory elements to an up-down Counter" International Journal of Creative Research Thoughts (IJCRT) | Volume 9, Issue 6 June 2021 | ISSN: 2320-2882
[7]. Anup Kumar Biswas, -"Implementation of A $4 n$-Bit Comparator based on IC Type 74L85 using Linear Threshold Gate Tunneling Technology" International Journal of Engineering Research \& Technology ISSN: 2278-0181, Vol. 10 Issue 05, May-2021 pp.299310,
[8]. Anup Kumar Biswas, "State Transition Diagram for A Pipeline Unit based on Single Electron Tunneling" International Journal of Engineering Research \& Technology (IJERT) Vol. 10 Issue 04, April-2021pp.325-336, ISSN: 2278-0181
[9]. Anup Kumar Biswas, "Design of A Pipeline for A Fixed-Point Multiplication using Single Electron Tunneling Technology", International Journal of Engineering Research \& Technology ISSN: 2278-0181, Vol. 10 Issue 04, April-2021 pp. 86-98,
[10]. A. K. Biswas and S. K. Sarkar: "An arithmetic logic unit of a computer based on single electron transport system" (SPQEO) Semiconductor Physics, Quantum Electronics \& Opt-Electronics. 2003. Vol 6. pp 91-96 No.1,
[11]. A.K. Biswas and S. K. Sarkar: -"Error Detection and Debugging on Information in Communication System Using Single Electron Circuit Based Binary Decision Diagram." (SPQEO) Semiconductor Physics Quantum electronics and opt electronics, Vol. 6, pp.1-8, 2003
[12]. Alexander N. Korotkov, "Single-electron logic and memory devices" INT. ELECTRONICS, 1999, Vol. 86, No. 5, 511-547
[13]. Casper Lageweg, Student Member, IEEE, Sorin Cot, ofan ${ }^{\text {a }}$, Senior Member, IEEE, and Stamatis Vassiliadis, Fellow, IEEE "Single Electron Encoded Latches and Flip-Flops" IEEE TRANS. ON NANOTECHNOLOGY, VOL. 3, NO. 2, JUNE 2004
[14]. C. Lageweg, S. Cot, fan ${ }^{\text {na, and S. Vassiliadis, "A }}$ linear threshold gate implementation in single electron technology," IEEE Computer Society VLSI Workshop, Apr. 2001, pp. 93
[15]. K. Likharev, "Single-electron devices and their applications," Proc. IEEE, vol. 87, pp. 606-632, Apr. 1999.
[16]. J. R. Tucker,- "Complementary digital logic based on the Coulomb-blockade", Journal of Applied Physics., vol. 72, no. 9, pp. 4399-4413, November 1992.
[17]. Jacob. Millman and C. C. Halkias; "Integrated Electronics- Analog and Digital Circuits and Systems -second edition" McGraw Hill Education;
[18]. Millman's Electronic Devices \& Circuits 4th Edition (English, Paperback, Jacob Millman)

Cite this article as :

Dr. Anup Kumar Biswas, "An Accumulator using Electron Tunneling Through Tunnel Junction", International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Online ISSN : 2394-4099, Print ISSN : 2395-1990, Volume 8 Issue 5, pp. 163-183, September-October 2021. Available at doi : https://doi.org/10.32628/IJSRSET218512 Journal URL : https://ijsrset.com/IJSRSET218512

BIOGRAPHY

जn
ANUP KUMAR BISWAS, is an Assistant Professor in Computer Science and Engineering, Kalyani Govt. Engineering College, West Bengal, India. He defended his Ph.D.[Engg.] thesis in 2005 in the stream of Electronics and Telecommunication Endineering at Jadavpur University. He was a Senior Research Fellow(SRF) in Faculty of Engineering and Technology (FET) from 2002 to 2005 at the Department of Electronics \&TC. Dr. Biswas has published 27 papers in national, international journals and conferences. The area of his scientific interests are computer arithmetic, parallel architectures, nanotechnology, and computer-aided design. He is engaged in research activities and teaching last 18 years.

