

Synthesis of Some Novel Five and Six Membered Hetrocyclic Derivative From 6-Chloro Nicotinamide

Bhumi Kantariya*, Ravi Dalsania*, Kartik. Ladva, Mahesh Sawant, Urmi Kantaria

*Department of Chemistry, Atmiya University, Rajkot, Gujrat, India *Corresponding author: r.v.dalasania@gmail.com

ABSTRACT

A series of new Pyrazolines, Oxazine & Thiazine bearing 6-Chloronicotinamide moiety have been synthesized by the condensation of 6-Chloro-{4-[(2E)-3-(Aryl) prop-2-enoyl] phenyl} pyridine-3-carboxamide with Hydrazine Hydrate, Phenyl Hydrazine, Methyl acetate, urea and thiourea a using appropriate catalyst and solvent respectively. The structure of the newly synthesized compounds were confirmed by analytical and IR, 1H NMR, MASS spectral data.

Keywords : IR, 1H NMR, MASS Spectra, Nicotinamide derivatives, Urea, Chalcone, Thiourea.

I. INTRODUCTION

5-membered heterocyclic compound i.e. Pyrazoline with two adjacent nitrogen at 1-2 positions and three carbon atoms are well known and have been synthesized using various methods. The three partially reduced forms of the pyrazole are 1-Pyrazoline, 2-pyrazoline and 3-pyrazoline, all are having different positions of the double bonds. Pyrazoline derivatives are having one endocyclic double bond.

Sucinate dehydrogenase inhibitors have been developed for nearly 50 years since Carboxin was launched commercially in 1966; They are the first commercial fungicides that contain amide groups[1]. At present, 18 fungicides belonging to a novel fungicide class have been commercialized by the Fungicidal Resistance Action Committee [2,3]. The mode of action of these fungicides is based on disruption of the mitochondrial tricarboxylic acid cycle and respiratory chain [4,5]. Nicotinamide derivatives [6] have attracted great attention since the first pyridine carboxamide boscalid was commercialized by the BASF Company because of their broad fungicidal spectrum.

Wu et al.[7] reported a series of nicotinamide derivatives containing a 1,3,4-oxadiazole group. Compound A shows good fungicidal activities against Fusarium oxysporum at 50 mg/L. Li et al.[8] described compound B, which exhibits excellent fungicidal activities against Rhizoctonia solani and Botrytis cinerea in vitro. Du et al.[9] studied compound C which shows 75% inhibition against R. solani at 50 mg/L in vitro. Ye et al.[10] demonstrated that compound D has good inhibitory effects against six fungi.

II. MATERIAL AND METHOD

Chalcone derivatives occupy a unique place in the field of medicinal chemistry due to wide range of biological activities, exhibited by them. Prompted by these facts, the preparation of chalcones of type (I) have been under taken by condensation of N-(4-

acetylphenyl)-6-chloropyridine-3-carboxamide with various aromatic ketones.

Synthesis of 6-Chloropyridine-3-Carbonyl Chloride 6-chloropyridine-3-carboxylic acid (1.56gm, 0.01 mole) added in 20ml thionyl chloride in presence of DMF (0.5ml) as a catalyst and then reaction mixture was refluxed for 4hr. at 98°C and then thionyl chloride was distilled off and reaction mixture was poured in to ice and separated product was collected and crystallized from DMF Yield-84%, m.p. 50-52°C.

Figure-1 Synthesis of 6-Chloropyridine-3-Carbonyl Chloride

Synthesis of N-(4-Acetylphenyl)-6- Chloropyridine-3-Carboxamide

A solution of 6-chloropyridine-3-carbonyl chloride (1.76gm, 0.01mole) in 20ml toluene was added to p-amino aceto phenone (1.35gm, 0.01mole) with pyridine (0.05ml) as a catalyst. The mixture was refluxed for 3hr. at 110°C. The toluene was distilled off and mixture was poured into ice and the product was crystallized from DMF Yield 78%, m.p.80-82°C.

Figure-2 Synthesis of N-(4-Acetylphenyl)-6- Chloropyridine-3-Carboxamide

Synthesis of 6-Chloro-N-{(2e)-3-(4-Methoxyphenyl) Prop-2-Enoyl] Phenyl} Pyridine-3- Carboxamide A solution of N-(4-acetylphenyl)-6-chloropyridine-3-carboxamide (2.74gm, 0.01mole) in ethanol (10ml) was added to a 4-methoxybenzaldehyde(1.36gm, 0.01mole) in ethanol. To this, 40% NaOH (1ml) as a catalyst was added to make it alkaline. The reaction mixture was then stirred for 24 hr. at room temperature. The separated product was isolated and crystallized from DMF Yield-74%, m.p.-40'C.

Figure-3 Synthesis of 6-Chloro-N-{(2e)-3-(4-Methoxyphenyl) Prop-2-Enoyl] Phenyl} Pyridine-3- Carboxamide Synthesis of N-[4-(2-Amino-4-(4-Chlorophenyl)-6h-1, 3-Oxazin-6-Yl) Phenyl] - 6-Chloro Pyridine-3-Carboxamide

A mixture of 6-chloro-N-{4-[(2E)-3-phenylprop-2-enoyl] phenyl} pyridine-3-carboxamide (4.20gm, 0.01mole) and urea (0.01mole) were dissolved in ethanolic sodium hydroxide (10ml) was stirred about 2-3 hr. with a magnetic stirrer. This was then poured into 400ml 0f cold water with continuous stirring for an hour and then kept in refrigerator for 24 hr. The precipitate obtained was filtered, washed and crystallized from DMF.Yield-63%, m.p.-196°C.

Synthesis of N-[4-(2-Amino-4-(4-Chlorophenyl)-6h-1, 3-Thiazin-6-Yl) Phenyl] - 6-Chloro Pyridine-3-Carboxamide

Amixture of 6-chloro-N-{4-[(2E)-3-phenylprop-2-enoyl] phenyl} pyridine-3-carboxamide (4.20gm, 0.01mole) and thiourea(0.01mole))(part-1, section-1) were dissolved in ethanolic sodium hydroxide (10ml) was stirred about 2-3 hr. with a magnetic stirrer. This was then poured into 400ml 0f cold water with continuous stirring for an hour and then kept in refrigerator for 24 hr. The precipitate obtained was filtered, washed and crystallised from DMF. Yield-73%, m.p.-156°C.

Remaining derivatives of Chalcone, Oxazine and Thiazine have been prepared by using above General Procedures.

Figure-4 Synthesis of N-[4-(2-Amino-4-(4-Chlorophenyl)-6h-1, 3-Thiazin/Oxazine-6-Yl) Phenyl] - 6-Chloro Pyridine-3-Carboxamide

III. RESULT & DISCUSSION

Molecular weight & Formula, Melting Point & CHN ratio of synthesized molecule Table-1 Molecular weight & CHN ratio of synthesized molecule

SR.N O	COMP.	R	R'	M.F. & Mol. Wt.	M. Yield P. °C %		% Calc. / Found											
							С	Η	Ν									
1 1a	10	-H	_	C21H15ClN2O2	82	65	65.52	4.17	7.72									
	Id			362.81			65.50	4.21	7.70									
n	2 11	-OH		C21H15ClN2O3	38	62	66.58	3.99	7.40									
2	10		_	378.80			66.60	3.97	7.42									
3	1c	-OMe		C22H17ClN2O3	40	74	67.26	4.36	7.13									
			-	392.83			67.24	4.40	7.10									
4 14	14		-Cl	-Cl	-Cl	-Cl		$C_{21}H_{14}Cl_2N_2O_2$	30	70	63.49	3.25	7.05					
-	Iu	-01	—	397.25	39	70	63.50	3.22	7.06									
5	<u>Э</u> р	-H	ц	ц	п	п	п	п	п	Ш	ц	_H	-H	ц ц С21H17ClN4O 112 48	19	66.93	4.55	14.8
5	Za		-11	376.83	112	От	66.88	4.58	14.6									
6	2b	-OH	п	C21H17ClN4O2	125	59	64.21	4.36	14.2									
				392.83			64.17	4.33	14.3									
7	2c	-OMe	-OMe -H	C22H19ClN4O2	100	67	64.94	4.71	13.7									
				406.86			64.90	4.66	13.6									

0	54	-Cl	-H	C21H16Cl2N4O	117	72	61.33	3.92	13.6
0	o 20			411.28	117		61.30	3.88	13.5
0	0 2-		CAUE	C27H21ClN4O	179	40	71.60	4.67	12.3
9	Ja	-11	-0013	452.93	120	42	71.54	4.63	12.3
10	21	-OH	-C6H5	C27H21ClN4O2	208	63	69.15	4.51	11.9
10	10 30			468.93			69.12	4.48	11.8
11	11 0	-OMe	-C6H5	C28H23ClN4O2	122	66	69.53	4.80	11.6
	50			482.96			69.50	4.74	11.7
12 3d	24	-Cl	-C6H5	C27H20Cl2N4O	190	78	66.54	4.14	11.5
	50			487.37			66.50	4.13	11.4
13 4a	10	ц	COCU2	C23H19ClN4O2	168	50	65.95	4.57	13.3
	-П	-СОСПЭ	418.87	100	52	65.89	4.53	13.2	
14	4b	-OH	-COCH3	C23H19ClN4O3	194	61	63.52	4.40	12.8
				434.87			63.49	4.37	12.6
15	4c	-OMe	-COCH3	C24H21ClN4O3	165	66	64.21	4.72	12.4
				448.90			64.19	4.70	12.3
16	14	-Cl	-Cl -COCH3	C23H18Cl2N4O2	180	72	60.94	4.00	12.3
10	40			448.90			60.91	4.02	12.4

IV. SPECTRAL STUDY

IR Spectra of N-(4-Acetylphenyl)-6- Chloropyridine-3- Carboxamide

N-(4-Acetylphenyl)-6- Chloropyridine-3- Carboxamide IR (Kbr): 3272, 3061, 2991, 2852, 1673, 1592, 1540, 1358, 755 Cm-1 Pmr 400 Mhz (Δ Ppm: Dmso – D6): 2.1 (3h, S), 6.8 – 7.9 (7h, M), 8.9 (1h, S), Ms M/Z = 274 (M+), 275 (M+1).

Table-2 IR Spectrum Correlation Table of N-(4-Acetylphenyl)-6- Chloropyridine-3- Carboxamide

Type	Vibration Mode	Frequency in cm ⁻ 1		
турс	v ibration wode	Observed	Reported	
	C-H str.(asym)	2991	2975-2950	
Alkane	C-H str.(sym)	2852	2880-2860	
	C-H in.p.def.(asym)	1358	1471-1435	
	C-H str.	3061	3080-3030	
Aromatic	C=C str.	1540	1580-1480	
Aloinatic	C-H inb.	1019	1070-1000	
	С-Н о.о.р.	828	835-810	
	C=O str.	1673	1680-1630	
Amide	NH str.	3272	3500-3400	
	NH bend.	1592	1550-1510	
Halide	C-Cl str.	755	800-600	
Ketone	C=O str.	1695	1700-1680	

IR Spectra of 6-Chloro-N-{(2e)-3-(4-Chloro-Phenyl) Prop-2-Enoyl] Phenyl} Pyridine-3- Carboxamide 6-Chloro-N-{(2e)-3-(4-Chloro-Phenyl)Prop-2-Enoyl]Phenyl} Pyridine-3- Carboxamide Ir (Kbr): 3048, 2924, 2851, 1680, 1650, 1527, 1463, 1362, 823 Cm-1 Pmr 400 Mhz (Δ Ppm:Dmso – D6): 2.58 (1h, D), 3.26 (1h, D), 7.3 – 8.07 (11h, M), 9.04 (1h, S), Ms M/Z = 392 (M+), 393 (M+1).

Table-3 IR Spectrum Correlation Table of 6-Chloro-N-{(2e)-3-(4-Chloro-Phenyl) Prop-2-Enoyl] Phenyl} Pyridine-3- Carboxamide

Tuno	Vibration Mode	Frequency in cm ⁻ 1		
туре	v ibration widde	Observed	Reported	
	C-H str.	3049	3080-3030	
Aromatic	C=C str.	1546	1520-1480	
Aromatic	C-H inb.	1020	1070-1000	
	С-Н о.о.р.	818	780-830	
	C=O str.	1620	1680-1630	
Amide	NH str.	3461	3500-3400	
	NH bend.	1493	1550-1510	
Halide	C-Cl str.	653	800-600	
Chalcone	C=O str.	1640	1685-1645	

IR Spectra of N-[4-(2-Amino-4-(4-Chlorophenyl)-6h-1, 3-Oxazin-6-Yl) Phenyl] - 6-Chloro Pyridine-3-Carboxamide

N-[4-(2-Amino-4-(4-Chlorophenyl)-6h-1,3-Oxazin-6-Yl)Phenyl]-6-Chloropyridine-3-Carboxamide Ir (Kbr): 3048, 1673,1528,1523,1274,1112,1024, 825, 643, Pmr 400 Mhz (Δ Ppm:Dmso – D6): 7.7 – 7.9 (11h, M), 7.52 (1h, S), 7.50 (2h, S) 9.02 (1h, S), (Ms M/Z = 420 (M+), 421 (M+1).

Table-4 IR Spectrum Correlation Table of N-[4-(2-Amino-4-(4-Chlorophenyl)-6h-1, 3-Oxazin-6-Yl) Phenyl] - 6-Chloro Pyridine-3-Carboxamide

Tuno	Vibration	Frequency in cm ⁻¹			
Type	Mode	Observed	Reported		
	C-H str.	3048	3080-3030		
Aromatic	C=C str.	1523	1580-1480		
Alomatic	C-H inb.	1024	1070-1000		
	С-Н о.о.р.	825	835-810		
	C=O str.	1673	1680-1630		
Amide	NH str.	3324	3500-3400		
	NH bend.	1518	1550-1510		
Halide	C-Cl str.	643	800-600		
Ovazina	C-O-C str.	1116	1280-1070		
OxaZIIIe	C-N str.	1274	1280-1180		

V. CONCLUSION

We have synthesized some different novel possible hit molecules. The present synthetic methodology offers very attractive features such as short reaction time, mild reaction condition and good to excellent yield.

VI. ACKNOWLEDGEMENT

We are thankful to Atmiya University & M N & N Virani Science College for providing research facilities.

VII. REFERENCES

- G. Cecchini: Annu. Rev. Biochem. 72, 77–109 (2003).
- [2] F. Sun, X. Huo, Y. J. Zhai, A. J. Wang, J. X. Xu, D. Su, M. Bartlam and Z. H. Rao: Cell 121, 1043–1057 (2005).
- [3] V. Yankovskaya, R. Horsefield, S. Tornroth, C. L. Chavez, H. Miyoshi, C. Leger, B. Byrne, G. Cecchini and S. Iwata: Science 299, 700–704 (2003).
- [4] L. Xiong, Y. Q. Shen, L. N. Jiang, X. L. Zhu, W. C. Yang, W. Huang and G. F. Yang: "Succinate Dehydrogenase: An Ideal Target For Fungicide Discovery," ed. by P. Maienfisch and T.M. Stevenson, Washington, DC, pp, 175–194, 2015.
- [5] L. Xiong, H. Li, L. N. Jiang, J. M. Ge, W. C. Yang,
 X. L. Zhu and G. F. Yang: J. Agric. Food Chem. 65, 1021–1029 (2017).
- [6] H. F. Avenot and J. T. Michaildes: Plant Dis. 91, 1345–1350 (2007).
- [7] J. Wu, S. H. Kang, L. J. Luo, Q. C. Shi, J. Ma, J. Yin,
 B. A. Song, D. Y. Hu and S. Yang: Chem. Cent. J. 7, 64–69 (2013).
- [8] K. S. Li, D. Li, T. Xiao, S. Zhang, Z. Song and H. Ma: J. Agric. Food Chem. 64, 8927–8934 (2016).
- [9] S. J. Du, Z. M. Tian, D. Y. Yang, X. Y. Li, H. Li, C. Q. Jia, C. L. Che, M. Wang and Z. Q. Qin: Molecules 20, 8395–8408 (2015).

 [10] Y. H. Ye, L. Ma, Z. C. Dai, Y. Xiao, Y. Y. Zhang, D.
 D. Li, J. X. Wang and H. L. Zhu: J. Agric. Food Chem. 62, 4063–4071 (2014).

Cite this Article

Bhumi Kantariya, Ravi Dalsania, Kartik. Ladva, Mahesh Sawant, Urmi Kantaria, "Synthesis of Some Novel Five and Six Membered Hetrocyclic Derivative From 6-Chloro Nicotinamide", International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Online ISSN : 2394-4099, Print ISSN : 2395-1990, Volume 6 Issue 3, pp. 434-440, May-June 2019. Journal URL : https://ijsrset.com/IJSRSET2183190