

Optimization of Operational Method to improve sustainable Energy Efficiency of Auxiliaries in a CFBC coal fired Boiler- Result Analysis

Manish Radheshyam Moroliya*1 and Dr. Vinay Chandra Jha2

^{*1}Ph.D. Scholar, Department of Mechanical Engineering, Kalinga University, Raipur, C.G, India ²Professor, Department of Mechanical Engineering, Kalinga University, Raipur, C.G, India.

ABSTRACT

Article Info

Volume 9, Issue 1 Page Number : 30-40

Publication Issue : January-February-2022

Article History Accepted : 05 Jan 2022 Published: 17 Jan 2022 The research paper provides details of the sultry dihydrogen monoxide heating system for power consumption such as aliment pump, victual pump motor, control valves etc; withal, details cognate to the test of the subsisting system power utilizing the 3-element mode method to control the drum level. Includes details about the sundry energy test equipment used during the potency test to quantify the sundry parameters such as flow, head, power haste, temperature and vibration. This study was conducted with the avail of 2 boiler and turbine engineers and 3 operators where there is an inch switch. During the study of the parameter sundry parameters were accumulated and designations were accumulated and the calculation was predicated on brake vigor and pressure disunion. In order to calculate it is consequential that one situation is sometimes engendered under the circumstances of each task. In cases of full volume, the drum pressure is customarily kg/cm² above the maximum pressure. This denotes that when the total smoke load maximum pressure is ninety kg/cm², then the corresponding drum pressure will be 100 kg/cm². Ergo, while competitive calculations always engender the assurance that the pressure to aliment the victual in an economic rest area or aliment supply center is much more preponderant than the high pressure of the boiler drum suppleness for harmless operation.

Keywords: Boiler Feed pump, Energy efficiency, Auto Scoop, Boiler auxiliary, Differential pressure, Drum level control

I. INTRODUCTION

The research paper provides details of the sultry dihydrogen monoxide heating system for power consumption such as aliment pump, victual pump motor, control valves etc; withal, details cognate to the test of the subsisting system power utilizing the 3-element mode method to control the drum level. Includes details about the sundry energy test equipment used during the potency test to quantify the sundry parameters such as flow, head, power haste, temperature and vibration. This study was conducted with the avail of 2 boiler and turbine engineers and 3 operators where there is an inch

Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

switch. During the study of the parameter sundry parameters were accumulated and designations were accumulated and the calculation was predicated on brake vigor and pressure disunion. In order to calculate it is consequential that one situation is sometimes engendered under the circumstances of each task. In cases of full volume, the drum pressure is customarily kg/cm² above the maximum pressure. This denotes that when the total smoke load maximum pressure is ninety kg/cm², then the corresponding drum pressure will be 100 kg/cm². Ergo, while competitive calculations always engender the assurance that the pressure to aliment the victual in an economic rest area or aliment supply center is much more preponderant than the high pressure of the boiler drum suppleness for harmless operation.

Energy preserving on this nonessential BFP performance of high loads is another option adopted. This approach utilized the advantages of BFP speed control utilizing the subsisting scoop control system. In the incipient BFP scoop control manual it is set to the default mode that would maintain the Differential pressure throughout the FRS as a set point while the FRS control valve will maintain that drum level as required for the 3rd phase control (50%) control. There are no adscititious costs or tangible assets as all arrangements are in place and provided in the subsisting system. It is withal recommended to lock the control valves at the FRS station to operate between 0% (min) - 75% (max) open position to ascertain that the sensitivity of the control valves is maintained. The only change required was the rectification of the BFP scoop signs. Since this method uses subsisting equipment, no adscititious funding is required. Withal, because all the indispensable requisites were in place in time from a divergent perspective on the authentic implementation of the project was inhibited. This betokened paramount savings of perpetual working hours.

Before submitting your final paper, check that the format conforms to this template. Specifically, check the appearance of the title and author block, the appearance of section headings, document margins, column width, column spacing and other features.

II. ENERGY AUDIT INSTRUMENTS

The instruments used in the feedwater system for the purpose of measurements are,

TABLE I INSTRUMENTS OF MEASUREMENTS

Parameter	Instrument	Accuracy	
Flow	Magnetic Flow Meter	±1%	
Head	Bourdon Tube Pressure Gauge and	± 0.5 %	
Power	3-phase watt transducer in	± 0.5 %	
Speed	Electronic Revolution Centre	± 0.1 %	
Temperature	Resistance temperature	± 1°C	
Vibration	Spectrum analyzer with accelerometer	± 5 %	

The flow transmitter and the flow element are provided at the cessation of the Boiler supply pump. While the flow element maintains the required permeate the victual line the flow conductor measures the flow of the victual line. Two transmitters are provided in the dihydrogen monoxide supply system. One transfer is near the cessation of the boiler victual pump discharge i.e., afore the aliment supply station and other transfers are provided abaft the aliment control station near the economic inclusion. These transmitters transmit pressure readings to the control systems distributed in the control room and avail in perpetual monitoring away from the field. Similarly, a pressure gauge is provided at the terminus of the Boiler pump for pressure monitoring. A component of the heat and temperature of the gauge is provided at the terminus of the pump cooling outlet of the boot to quantify the temperature of the engenderer source. In integration

to the above implements, the same arrangement of the three flow valves is withal provided in the victual line connecting the victual control channel. The main purport of the aliment control station is to maintain the pressure required for the victual dihydrogen monoxide to be relinquished against the pressure of the drum. A detailed procedure and diagram for the installation of the dihydrogen monoxide supply system is provided in the appendices.

TABLE II ENERGY CONSUMPTION AND ENERGY GENERATION OF SINGLE UNIT PER DAY

Sr. N o	Parameters	UOM	Design Value	Operatin g Value
1	Generation	MWH	1476.00	1444.00
2	Net Power Export	MWH	1321.02	1251.62
3	Net Power Import	MWH	-	0.00
4	Load on Station Transformer	MWH	_	101.69
5	Auxiliary Consumptio n	MWH	_	82.59
6	UAT	MWH	-	81.40
7	Total Unit Auxiliary Consumptio n	MWH	154.98	163.99
8	Total Unit Auxiliary Consumptio n	%	10.50	11.36
9	Running Hours of Generator	Hrs	24.00	24.00

		1	1	1	
10	Average Load (Running	MW	61.50	60.17	
11	Hrs. Basis) Plant Load Factor	%	100	97.83	
12	Plant Availability Factor	%	100	100	
13	Total Steam at Boiler Outlet	TPD	5760.12	5627.31	
14	Steam Inlet to Turbine	TPD	5712.12	5442.38	
15	Steam Consumptio n per KWH	Kg / KWH	3.87	3.77	
16	Turbine Heat Rate	Kcal /KW H	2218	2231.84	
17	Station Heat Rate	Kcal /KW H	2650	2688.96	
18	Running Hours Boiler	Hrs	24.00	24.00	
19	Raw Water Consumptio n	Cu. M	20599.0 0	5924.00	
20	DM Water Consumptio n	Cu. M	< 180	60.00	
21	Coal Consumptio n	MT	1220.00	1153.69	
22	G.C.V of feed coal	Kcal / Kg	3432.00	3711.00	
23	Specific Coal Consumptio n	Kg / KWH	0.83	0.80	

Details	ails Technical Specifications					
	No of stages	14				
	Liquid handled	Boiler feed water				
	Diff. Head/ ham	1505 m				
	NPSH r	7.2 m				
	Speed	2905 rpm (+ 5%				
	Speed	slippage)				
Boiler Feed Pump	Efficiency	81%				
	Power	1142 kw				
	Suction temp.	158.1 °C				
	Suction pressure	6.0 kg/cm ²				
	Discharge pressure	142 kg/cm ²				
	Discharge temp.	160.1 °C				
	Discharge flow	300 m³/hr				
	Туре	Squirrel cage motor				
	Rated voltage	6600v				
	Frequency	50 hz.				
	Connection	Star				
Doilor Food Dump Motor	Phase	3				
Boiler Feed Pump Motor	Speed	2985 rpm				
	Power factor	0.88				
	Current	166 amps				
	Efficiency	96.1%				
	Rated power output	1600 kw				

TABLE III TECHNICAL SPECIFICATION OF EQUIPMENTS OF FEED WATER SYSTEM

TABLE IV ENERGY AUDIT OF BOILER FEED PUMP IN 3- ELEMENT METHOD

PERFORMANCE TEST RECORD (3 – El Equipment			Boiler	Date	г. ⁻		1/08/2020		
Model No			MD 100		Serial No		386620		
Suction/Discharge NB (mm)			400 / 12				•		
Driver KW			1600 RPN		<u> </u>	2905			
	ST		RD OPERATING PARAMI						
Liquid Duty				Liquid Da					
Flow (m^3 / hr)			300						
			Gravity		0.909				
			1505 Temperature		150 1				
TDH (mwc)			1505	(°C)	ure	158.1			
Pump Input (KW)			1442	Viscosity		0.15 P			
Efficiency (%)			81	Ke: 1		Kh: 1		Kq: 1	
NPSH r (mwc): 7.20	Hatm	(mwc)					nwc) : 1884		
		È É	1	2708					
Speed		RPM	2734	2708	2/	26	2726	2772.51	
Flow		m³/hr	0.00	80.10	16	1.00	242.70	281	
uc	Gaug	Bar	5.8	5.8	5.8		5.8	5.8	
Suction	Corr	М	0.70	0.70	0.7		0.70	0.70	
Su	Hs	mwc	59.86	59.86		.86	59.86	59.86	
<u>.</u>	Gaug	Bar	164.30	161.00		3.70	141.00	137.61	
Disch.	Corr	Μ	0.70	0.70	0.7	70	0.70	0.70	
Di	Hd	mwc	1676.5	1642.90		68.44	1438.9	1404.32	
		mwc	1616.6	1583.02	-	08.56	1379.02	1344.44	
Voltage		volts	6600	6600	66		6600	6600	
Current		Amps	69.60	99.20		5.63	131.20	137.18	
Wattmeter		KW	8.75	12.47	-	.54	16.49	17.24	
Multi factor			80	80	80		80	80	
Motor Input		KW	700.15	997.92	1163.20		1319.83	1379.95	
Motor Efficiency		%	95.23	95.36	95	.57	96.01	96.34	
Pump Output		KW	0.00	345.50	66	1.79	911.95	1029.39	
Pump Efficiency		%	0.00	25.53	63	.43	79.88	80.85	
Performance Corrected	l to Rated	Speed:	2905 RPN	1					
Flow		m³/hr	0.00	85.92	17	1.57	258.63	294.42	
TDH		mwc	1825.2 3	1821.71	1713.18		1566.06	1476.00	
Pump Input K		KW	0.00	980.13	10	98.51	1222.67	1269.89	
Efficiency %			0.00	25.53	63	.43	79.88	80.85	
Ambient Temperature:	30.23 °C	В	earing Te	mperature:	D.E	- 43.00	°C N.D.	E – 55.00 °C	
Noise level including s	urroundin		0	-					
				V	Η		А		
DE			DP	1.87	1.8	80	1.01		
Velocity (mm/sec)		D.E	MF	1.43	2.3		0.85		
		NDE	DP	0.68	2.2		0.92		
		N.D.E	MF	0.99	2.3		1.19		

III. ENERGY AUDIT OF BOILER FEED PUMP BY DP AUTO SCOOP METHOD ${\rm TABLE} \ {\rm V}$

PERFORMANCE TEST RECORD OF SYSTEM IN DP AUTO SCOOP MODE

PERFORMANCE TEST RECORD										
(DP Method with Scoop in AUTO Mode)										
Equipment Boiler Fee						Date	15/06/2021			
Mod	lel No		MD 1	.00-300	/	Serial No	386620			
Suct	ion/Discharge	NB (mm)) 400 / 1	400 / 125		Impeller Diar	neter	297		
Driv	er KW		1600			RPM		2905		
STANDARD OPERATING PARAMETERS										
Liquid Duty Liquid Data										
Flow	v (m³ / hr)		300		S	pecific Gravity	7	0.909		
TDH	I (mwc)		1505		Т	emperature (º	2)	158.1		
Pum	p Input (KW)		1442		V	iscosity		0.15 P		
Effic	ciency (%)		81		Κ	e : 1	Kh : 1	Kq : 1		
NPS	H _r (mwc): 7.2	20	H atm (n	nwc) : 10.	2	Shut Off	Head (mw	<u>c):1884</u>		
Spee	d	RPM	2653	2657		2655	2650	2660		
Flow	V	m³/hr	277	280		281	270	285		
0	Gauge	Bar	5.8	5.8		5.8	5.8	5.8		
Suctio	Correction	Μ	0.70	0.70		0.70	0.70	0.70		
Sı	Hs	mwc	59.86	59.86		59.86	59.86	59.86		
Disch.	Gauge	Bar	125.35	122.63		117.67	120.31	118.16		
	Correction	М	0.70	0.70		0.70	0.70	0.70		
Д	Hd	mwc	1279.27	1251.52		1201.02	1227.86	1205.93		
TDE	I	mwc	1219.39	1191.64		1141.14	1167.98	1146.05		
Volt	age	volts	6600	6600		6600	6600	6600		
Curr	rent	Amps	105.38	110.10)	108.52	103.98	115.71		
Wat	tmeter	KW	13.25	13.84		13.64	13.07	14.55		
Mult	ti factor		80	80		80	80	80		
Mote	or Input	KW	1060.09	1107.57		1091.68	1046.01	1164.01		
Mot	or Efficiency	%	96.40	96.50		96.50		96.50	96.40	96.60
Pum	ip Output	KW	920.35	909.15		909.15		873.73	859.27	889.98
Pump Efficiency % 8		86.25	86.40	86.75		86.80	86.55			
Performance Corrected to Rated Speed : 2905 RPM										
Flow m ³ /hr		303.31	306.13		306.13		307.45	295.98	311.25	
TDH mwc 1		1462.04	1424.47				1366.16	1403.57	1366.88	
Pum	ip Input	KW	1067.07	1052.25	25 1007.18		989.94	921.30		
Efficiency % 86.2				6.25 86.40 86.75 86.80 86.55						
Ambient Temperature : 31.50 °CBearing Temperature : D.E – 46.00 °CN.D.E –										
NOT	ГЕ:									

From the above readings, the feed water flow in the DP method (scoop in AUTO mode) that matches the feed water flow from the readings obtained in the 3-element method is used for computation and analysis. Hence, the readings corresponding to the flow of 281 m³/hr is used in the calculations and extrapolations.

IV. CALCULATION FOR EXISTING SYSTEM

Rated Speed, N= 2905 RPM Test Speed, N1 = 2772.51 RPM Rated Flow = 300 m3/hr Test Flow, Q = 281 m3/hr Operating Temperature To= 158.1 0C Suction NB, Ds= 400 mm Discharge NB, Dd = 250 mm Elevation difference between suction gauge and pump centre, HS= 0.7 m Elevation difference between Discharge gauge and pump centre, HD = 0.7 m Atmospheric Pressure, Ha = 10.2 mwc Vapour Pressure, Hv = 59.62 mwc Density of water at operating temperature = 0.9093 kg/m²

A) Suction Head, Hs = Ps x $10.2 \pm$ HS = $5.8 \times 10.2 \pm 0.7$ Hs = 59.86 mwc

- B) Discharge Head, $Hd = Pd \ge 10.2 \pm HD$ = 137.61 $\ge 10.2 \pm 0.7$ Hd = 1404.32 mwc
- C) Suction Velocity Head,
 - $$\begin{split} & \text{K1} = 6.382 \text{ x } 10 \text{ -9 x } \{1 \text{ / } (\text{Ds})^4\} \text{ x } \text{Q}^2 \\ & = 6.382 \text{ x } 10 \text{ -9 x } \{1 \text{ / } (0.4)^4\} \text{ x } (281)^2 \\ & \text{K1} = 0.01968 \text{ mwc} \end{split}$$
- D) Net Velocity Head, $K = 6.382 \text{ x } 10\text{-9 x } [\{1/(Dd)4\} - \{1/(Ds)^4\}] \text{ x } Q2$ $= 6.382x 10\text{-9 x } [\{1/(0.25)4 - \{1/(0.4)^4\}] \text{ x } (281)^2$ K = 0.109 mwc
- E) Total Differential Head, TDH = Hd - Hs + K = 1404.32 - 59.86 + 0.109TDH = 1344.56 mwc

- F) NPSH a = Ha + Hs + K1 Hv = 10.2 + 59.86 + 0.01968 - 59.62NPSH a = 10.45 mwc
- G) Power Output of Pump,
 Pout = Q x TDH / 367
 =281x 1344.56/367
 Pout = 1029.49 KW
- H) Power Input to motor,
 Pm = Wattmeter X Multi factor
 = 17.24 x 80
 Pm = 1379.95 KW
 - I) Brake Kilowatt,
 bKw = Pm x ηm x ηc = 1379.95 x 0.9610 x 0.96
 bKw = 1273.09 KW
 - J) bKw Hot = bKw x ρ / η Hot = 1273.09 x 0.9093 / 0.80 bKw Hot = 1447.02 KW
 - K) Efficiency of Pump, $\eta_p = (Pout / bKw) \ge 100$ $= (1029.49 / 1273.09) \ge 100$ $\eta_p = 80.86 \%$

Correction to Rated speed

- I. Flow, Q rated = (N / N1) x Q = (2905 / 2772.51) x 281 Q rated = 294.42 m3 / hr
- II. Total Differential Head, TDH rated = $(N / N1)^2 x$ TDH = $(2905 / 2772.51)^2 x$ 1344.44 TDH rated = 1476.00 mwc
- III. NPSH a rated = $(N / N1)^2 x NPSH$

= (2905 / 2772.51)² x 10.45 NPSH a rated = 11.47 mwc

IV. bKw rated = (N / N1)³ x bKw = (2905 / 2772.51)³ x 1447.02 bKw rated = 1664.53 KW

V. CALCULATION FOR PROPOSED SYSTEM

Rated Speed, N= 2905 RPM

Test Speed, N1 = 2772.51 RPM

Rated Flow = 300 m3 / hr

Test Flow, Q = 281 m3 / hr

Operating Temperature To= 158.1 0C

Suction NB, Ds= 400 mm

Discharge NB, Dd = 250 mm

Elevation difference between suction gauge and pump

centre, HS= 0.7 m

Elevation difference between Discharge gauge and

pump centre, HD = 0.7 m

Atmospheric Pressure, Ha = 10.2 mwc

Vapour Pressure, Hv = 59.62 mwc

Density of water at operating temperature= $0.9093 \text{kg}/\text{m}^2$

- A) Suction Head, Hs = Ps x $10.2 \pm$ HS = $5.8 \times 10.2 \pm 0.7$ Hs = 59.86 mwc
- B) Discharge Head, Hd = Pd x 10.2 ± HD
 = 117.67 x 10.2 + 0.7
 Hd = 1201.02 mwc
- C) Suction Velocity Head,
 K1 = 6.382 x 10 -9 x {1 / (Ds) 4} x Q² = 6.382 x 10 -9 x {1 / (0.4)4} x (281)²
 K1 = 0.01968 mwc
- D) Net Velocity Head,
 K = 6.382 x 10 -9 x[{ /(Dd)⁴ } {1/(Ds)⁴ }] x Q²
 = 6.382 x 10-9 x [{1/(0.25)⁴} -{1/(0.4)⁴}] x (281)²

K = 0.109 mwc

- E) Total Differential Head, TDH = Hd - Hs + K = 1201.02 - 59.86 + (-0.019)TDH = 1141.141 mwc
- F) NPSH a = Ha + Hs + K1 Hv = 10.2 + 59.86 + 0.01968 - 59.62NPSH a = 10.45 mwc
- G) Power Output of Pump,
 Pout = Q x TDH / 367
 = 281 x 1141.141 / 367
 Pout = 873.73 KW
- H) Pump Input to motor,
 Pm = Wattmeter X Multi factor
 = 14.55 x 80
 Pm = 1091.68 KW
 - I) Brake Kilowatt,
 bKw = Pm x ηm x ηc = 1091.68 x 0.9610 x 0.96
 bKw = 1007.14 KW
 - J) bKw Hot = bKw x ρ / η Hot = 1007.14 x 0.9093 / 0.80 bKw Hot = 1144.74 KW
 - $\begin{array}{ll} \text{K)} & \text{Efficiency of Pump,} \\ \eta_{\text{P}} = (\text{Pout} \ / \ b \text{Kw}) \ x \ 100 \\ & = (873.73 \ / \ 1007.14) \ x \ 100 \\ & \eta_{\text{P}} = 86.75 \ \% \end{array}$

The above calculations are made at operating conditions and hence need to be extrapolated to rated conditions to determine the exact effect of the modification on the system operation. The corrections to rated conditions are calculated below.

Correction to Rated Speed:

- I. Flow, Q rated = (N / N1) x Q = (2905 / 2655) x 281 Q rated = 307.45 m3 / hr
- II. Total Differential Head, TDH rated = (N / N1) 2 x TDH = (2905 / 2655)2 x 1141.141 TDH rated = 1366.16 mwc
- III. NPSH a rated = (N / N1)² x NPSH = (2905 / 2655)² x 10.45 NPSH a rated = 12.51 mwc
- IV. bKw rated = (N / N1) 3 x bKw = (2905 / 2655)3 x 1007.14 bKw rated = 1319 KW

VI. CALCULATION FOR ENERGY SAVINGS

BFP rating: 6600 Volts, 1600KW Power Factor: 0.88

Reduction in BFP current: 28.66 Amps Cost of 1KWH unit: Rs4.35 (inclusive of coal cost, water cost and auxiliary consumption cost) Savings = $\sqrt{3}$ VI Cos Ø

= 1.732 x 6600 x 28.66 x 0.90 x 24/1000 KWH /day
= 7076.56 KWH/day (in terms of units per day)
= 7076.56 x365 x 6.35 x 4 (in terms of Rupees/annum)
= Rs. 6, 65, 06, 787.76 per year (For 4 Units)
= Rs. 1, 64, 01, 696.94 per year (Per running unit)

VII. RESULT ANALYSIS

TABLE VI COMPARATIVE OF POWER CONSUMPTION OF EXISTING AND PROPOSED SYSTEM

Power Consumption of Existing System							
Feed Water eco inlet							
pressure (after Feed	Kg/cm ²	108.50					
control station)	-						
Feed Water pressure							
before Feed control	Kg/cm ²	137.61					
station	-						
Scoop % (Command)	%	67					
Scoop % (Actual)	96	73.25					
Control Valve opening	96	53					
position	70	55					
Differential Pressure							
across Feed Control	Kg/cm ²	29.12					
Station							
Boiler Feed Pump Speed	Rpm	2772.51					
BFP Current	AMP	137.18					
BFP Power	кwн	33871.65					
Consumption (Per day)	RWII	3.00/1.05					
Power Consumption of Proposed System							
(Based on Theoretical Calculations, Motor and							
Pump Efficiency Curves)							
Feed Water eco inlet							
pressure (after Feed	Kg/cm ²	108.50					
control station)							
Feed Water pressure							
before Feed control	Kg/cm ²	117.67					
station							
Scoop % (Command)	96	70					
Scoop % (Actual)	96	70					
Control valve opening	96						
		73					
position	10	73					
DP Set point for BFP							
DP Set point for BFP scoop control	Kg/cm ²	73 10					
DP Set point for BFP scoop control Differential Pressure	Kg/cm ²	10					
DP Set point for BFP scoop control Differential Pressure across Feed Control							
DP Set point for BFP scoop control Differential Pressure across Feed Control Station	Kg/cm ²	10 10					
DP Set point for BFP scoop control Differential Pressure across Feed Control Station Boiler Feed Pump Speed	Kg/cm ² Kg/cm ² Rpm	10 10 2655					
DP Set point for BFP scoop control Differential Pressure across Feed Control Station Boiler Feed Pump Speed BFP Current	Kg/cm ² Kg/cm ²	10 10					
DP Set point for BFP scoop control Differential Pressure across Feed Control Station Boiler Feed Pump Speed	Kg/cm ² Kg/cm ² Rpm	10 10 2655					

For the calculations it is imperative that one condition is always fulfilled under every operating load conditions. The feed water discharge pressure at the economiser inlet is always greater than the boiler drum pressure. If this condition is reversed then it might lead to tube ruptures of the economiser due to overheating. At full load conditions the drum pressure is always 10 kg/cm² above the main steam pressure i.e. at full load condition the maximum allowable main steam pressure is 90 kg/cm², therefore the corresponding drum pressure will be 100 kg/cm². Hence, while considering the calculations it is always made sure that the feed water discharge pressure at the economiser inlet or the feed regulation station outlet is above the maximum pressure range of the boiler drum for safe operation. The rest of the calculations are completely dependent on only the power requirement and consumption of the boiler feed pump corresponding to the discharge pressure. The power consumption and the discharge pressure are in direct proportion i.e., an increase in discharge pressure increases the power consumed and a decrease in discharge pressure decreases the power consumed. The calculations are provided below.

VIII. ACTUAL NET SAVINGS FROM NEW SYSTEM

Since, all the instruments and equipments for controlling and monitoring the experimentation are already installed in the system, no extra cost of purchasing and installation is required. Therefore, the payback is immediate. Also, the success of the experiment provides both tangible and intangible benefits. It is very robust control and can be used during varying loads without any major drum level fluctuation. With decreased DP across FRS life of control valve also increases. Life of a bearing is inversely proportional of the seventh power of its speed hence as the speed of BFP decreases its bearing life also increases.

Actual Net Energy Savings:						
Cost Benefits						
BFP Current	=	108.52 amps				
BFP Power		26795.09				
Consumption (Per		20775107				
Annual Energy	=	33871.65 - 26795.09				
Saving Potential	=	7076.56 KWH/day				
	=	7076.56 x 365 x 4.35 x				
Annual Cost Saving		Rs. 44943232.56 per				
		year (For 4 Units)				
Investment	=	Nil				
Simple Payback	=	Immediate				

TABLE VII ACTUAL NET SAVINGS FROM NEW SYSTEM

IX. CONCLUSION

In the calculation it is paramount that one condition is continually slaked under all working situations. The pressure of the dihydrogen monoxide supply in the feeder installation area remains higher than the pressure of the boiler tank. If this situation is inverted it could lead to economic collapse due to overheating. In cases of total load, the pressure of the drum remains at 10 kg/cm² above the maximum pressure of the smoke i.e., in the full case the maximum allowable load is 90 kg/cm², so the corresponding drum pressure will be 100 kg/cm². Ergo, when considering the calculation, it is always ascertained that the pressure of the victual discharge from the economic centre or supply law station is more preponderant than the width of the boiler drum pressure so that it can operate safely.

Therefore, from the calculations for the proposed modification in system it is clear that the

- NSHP a for the proposed system is greater than the NSHP a for the existing system and will always be greater than NPSH r under operating conditions.
- The changes in Flow and Head are small compared to the previous system.

- The efficiency of the pump increases by 5.9 % compared to the previous system.
- The power input to the motor decreases by 288.27 KW compared to the previous system
- The efficiency of the motor more or less remains the same with respect to Power factor as a component of load and speed.

X. REFERENCES

- [1] Manish R. Moroliya and Vinay Chandra Jha, "Optimization of Operational Method to Improve Sustainable Energy Efficiency of Auxiliaries in a CFBC Coal Fired Boiler- Energy Audit of Existing System." Solid State Technology ISSN 0038-111X Volume: 63 Issue: 5, 2020
- [2] Manish R. Moroliya and Vinay Chandra Jha, "Optimization of Operational Method to Improve Sustainable Energy Efficiency of Auxiliaries in a CFBC Coal Fired Boiler-Problem Statement and Probable Solution." International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-9 Issue-3, February 2020
- [3] T. Rajkumar, V.M. Ramma Priya and K. Gobi, "Boiler Drum Level Control by Using Wide Open Control with Three Element Control System." International journal of research in management and technology, Volume: 2 (Apr-2013) ISSN: 2320-0073, pp. 85-96.
- [4] Manish R. Moroliya, Bhojraj N.Kale and Ashish Mathew Pullenkunnel "Energy Conservation of Boiler Feed Pump by Differential Pressure Autoscoop Control Method" International Journal of Current Engineering and Technology, Vol. 05, No. 3 (June 2015) E-ISSN 2277-4106, P-ISSN 2347-5161
- [5] Ms. A.Karthikeyani, G.Nivedha,D.Pavithra and S.Poorani "Boiler Drum Level Control In Full Load Control Valve by using Wide Open Mode by Three Element Method" International

Journal of Advanced Science and Engineering Research, Volume: 3, Issue: 1, 2018, ISSN: 2455-9288.

- [6] Santosh M. Mestry, "Technical paper on major energy saving potential in thermal power plant & effective implementation of EC Act 2001 in Power Sector." (Issue#28) Reliance Energy Limited, Dahanu Thane.
- G.R. Mahesh, G. Srinivasa Rao, M.V. Giridhar,
 "Energy Audit of Boiler Feed Pump System and Air Compressor in a Thermal Power Plant." International journal of engineering research and technology, Volume: 2, (Oct-2013) ISSN: 2278-0181, pp. 3316-3322.
- [8] M. Iacob, G.-D. Andreescu, Drum-boiler control system employing shrink and swell effect remission in thermal power plants, Proc. 2011 3rd International Congress on Ultra-Modern Telecommunications and Control Systems and Workshops (ICUMT), Budapest, Hungary, ISSN: 2157-0221, ISBN: 978-1-4577- 0682-0, pp. 1-8, Oct. 2011. Ieee
- [9] J.C. Cone, "Pump Energy Conservation Techniques." E.I. du Pont de Nemours and Company, Engineering Department, Wilmington, Delaware, pp. 83-101.
- [10] G.F. Gilman and Jerry Gilman, "Boiler Control Systems Engineering" ISA Publication, Volume: 2 (2010).
- [11] NTPC, "500 MW Unit Operation Manual" Volume: 1.

Cite this article as :

Manish Radheshyam Moroliya, Dr. Vinay Chandra Jha, "Optimization of Operational Method to improve sustainable Energy Efficiency of Auxiliaries in a CFBC coal fired Boiler- Result Analysis", International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Online ISSN : 2394-4099, Print ISSN : 2395-1990, Volume 9 Issue 1, pp. 30-40, January-February 2022. Available at doi : https://doi.org/10.32628/IJSRSET22915 Journal URL : https://ijsrset.com/IJSRSET22915