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ABSTRACT 

 

We have studied the 𝑅̅-Projective motion in a Finsler space 𝐹𝑛
∗  equipped with 

a non-symmetric connection. 𝑅̅ - Curvature collineation and Ricci- Collineation 

have also been studied in the above context and new results have been obtained. 

Keywords: 𝑅̅ -Projective Motion, 𝑅̅ -Curvature Collineation, Ricci- 

Collineation, Non-Symmetric Connection. 

 

I. INTRODUCTION 

 

Davies [1] has studied the generalization of the Lie-

derivatives to the Finsler space 𝐹𝑛
∗, and its application 

to the theory of subspaces. By considering the 

infinitesimal point transformation  𝑥̅𝑖  =𝑥𝑖  + 𝑣𝑖  (𝑥)𝑑𝑡, 

Rund, [2] and Yano, [3] have defined the Lie-

derivatives of an arbitrary vector 𝑋𝑖(𝑥, 𝑥̇)  and the 

symmetric connection parameter 𝛤𝑗𝑘
∗𝑖(𝑥, 𝑥̇) . Katzin, 

Levine and Davis [4] have defined the curvature 

collineation in a Riemannian space and have studied its 

properties. They developed that a Riemannian space 

𝑉𝑛 , admits a curvature collineation provided that there 

exists a vector 𝑣𝑖(𝑥) such that ʆ̵𝑣𝑅𝑗𝑘ℎ
𝑖 = 0 where 𝑅𝑗𝑘ℎ

𝑖  

is the Riemannian curvature tensor. The properties of 

curvature collineation in a conformally flat 

Riemannian space have also been studied by them. 

This theory of curvature collineation has been 

extended in a Finsler space by Pande and Kumar [5], 

Singh and Prasad [6] and many others. The relations 

which exist in a Finsler space admitted by curvature 

collineation and other symmetries with special 

reference to Berwald's and Cartan's curvature tensor 

fields have also been studied by these researchers.  

 

Vranceanu [7] has introduced a non-symmetric 

connection 𝛤𝑗𝑘
𝑖  (≠ 𝛤𝑘𝑗

𝑖 ) in an 𝑛-dimensional space 𝐴𝑛, 

we expand this concept to the theory of 𝑛-dimensional 

Finsler spaces. Suppose an 𝑛-dimensional Finsler space 

𝐹𝑛
∗ with non-symmetric connection  𝛤𝑗𝑘

𝑖  (≠ 𝛤𝑘𝑗
𝑖 ) 

which is based on a non-symmetric fundamental 

tensor  𝑔𝑖𝑗(𝑥, 𝑥̇) (≠ 𝑔𝑗𝑖  (𝑥, 𝑥̇)). 

 

Let us write  

 𝛤𝑗𝑘
𝑖  = 𝑀𝑗𝑘

𝑖  + 
1

2
 𝑁𝑗𝑘

𝑖  ,     (1.1) 

where  𝑀𝑗𝑘
𝑖  and 

1

2
 𝑁𝑗𝑘

𝑖  are respectively the symmetric 

and skew-symmetric parts of  𝛤𝑗𝑘
𝑖 .  

http://www.ijsrset.com/
https://doi.org/10.32628/IJSRSET22918
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We introduce another connection coefficient 

𝛤̃ 𝑗𝑘
𝑖 (𝑥, 𝑥̇) defined as   

                      𝛤̃ 𝑗𝑘
𝑖  = 𝑀𝑗𝑘

𝑖  -  
1

2
 𝑁𝑗𝑘

𝑖 . (1.2) 

Using (1.1) and (1.2), we get  

                    𝛤̃ 𝑗𝑘
𝑖  (𝑥, 𝑥̇) = 𝛤𝑘𝑗

𝑖 (𝑥, 𝑥̇). (1.3)    

Let a vertical stroke ( ⎸) by an index denotes covariant 

derivative with respect to 𝑥, we defined the covariant 

derivative of any contravariant vector field 𝑋𝑖(𝑥, 𝑥̇) is 

two distinct ways [8], as follows: 

 

𝑋 
𝑖 +⎸𝑗 = 𝜕𝑗𝑋𝑖 – (𝜕̇𝑚𝑋𝑖)  𝛤𝑘𝑗

𝑚 𝑥̇𝑘 + 𝑋𝑘 𝛤𝑘𝑗
𝑖  (1.4) 

and           𝑋 
𝑖 −⎸𝑗 = 𝜕𝑗𝑋𝑖 – (𝜕̇𝑚𝑋𝑖)  𝛤̃ 𝑘𝑗

𝑚  𝑥̇𝑘 +𝑋𝑘  𝛤̃ 𝑘𝑗
𝑖  . 

 

    (1.5) 

Using (1.3), the equation (1.5) can be written as: 

 

              𝑋 
𝑖 −⎸𝑗 = 𝜕𝑗𝑋𝑖 – (𝜕̇𝑚𝑋𝑖)  𝛤𝑗𝑘

𝑚 𝑥̇𝑘 + 𝑋𝑘 𝛤𝑗𝑘
𝑖  ,  (1.6) 

 

where, a positive sign below vertical stroke (|) by an 

index indicates that the covariant derivatives with 

respect to the connection 𝛤𝑗𝑘
𝑖  concerning that index. 

Similarly, a negative sign below an index vertical 

stroke (|)  by an index indicates that the covariant 

derivative with respect to the connection  𝛤̃𝑘𝑗
𝑖  

concerning that index. 

 

The covariant derivative defined in (1.4)  and (1.5) 

will be called  ⊕- covariant differentiation of 𝑋𝑖(𝑥, 𝑥̇) 

with respect to 𝑥̇𝑗 and ⊖- covariant differentiation of 

𝑋𝑖(𝑥, 𝑥̇) with respect to 𝑥̇𝑗  respectively throughout 

the thesis. Allowing ⊕- covariant differentiation in 

(1.4) with respect to 𝑥𝑘 and then using the part of the 

skew-symmetric result so obtained with respect to 𝑗 

and 𝑘, we get  

 

            𝑋𝑖 +⎸𝑗𝑘 − 𝑋𝑖 +⎸𝑘𝑗 = – (𝜕̇𝑚𝑋𝑖)  𝑅𝑝𝑗𝑘
𝑚  𝑥̇𝑝 + 𝑋𝑚 𝑅𝑚𝑗𝑘

𝑖  + 𝑋𝑖 +⎸𝑚 𝑁𝑘𝑗
𝑚,                 (1.7) 

where   

           𝑅𝑖𝑗𝑘
ℎ  ≝ 𝜕𝑘𝛤𝑖𝑗

ℎ- 𝜕𝑗𝛤𝑖𝑘
ℎ + 𝜕̇𝑚𝛤𝑖𝑘

ℎ 𝛤𝑠𝑗
𝑚 𝑥̇𝑠- 𝜕̇𝑚𝛤𝑖𝑗

ℎ 𝛤𝑠𝑘
𝑚 𝑥̇𝑠 + 𝛤𝑖𝑗

𝑝
 𝛤𝑝𝑘

ℎ - 𝛤𝑖𝑘
𝑝

 𝛤𝑝𝑗
ℎ  .                           (1.8)                                    

Similarly, ⊖-covariante differentiation with respect to 𝑥𝑘 and proceeding as above, we have 

             𝑋𝑖 −⎸𝑗𝑘 − 𝑋𝑖 −⎸𝑘𝑗 = – (𝜕̇𝑚𝑋𝑖)  𝑅̃𝑝𝑗𝑘
𝑚  𝑥̇𝑝 + 𝑋𝑚 𝑅̃𝑚𝑗𝑘

𝑖  + 𝑋𝑖 −⎸𝑚 𝑁𝑘𝑗
𝑚  ,                           (1.9) 

where,            𝑅̃𝑖𝑗𝑘
ℎ  = 𝜕𝑘𝛤̃𝑖𝑗

ℎ- 𝜕𝑗𝛤𝑖𝑘
ℎ + 𝜕̇𝑚𝛤̃𝑖𝑘

ℎ 𝛤𝑠𝑗
𝑚 𝑥̇𝑠- 𝜕̇𝑚𝛤̃𝑖𝑗

ℎ 𝛤𝑠𝑘
𝑚 𝑥̇𝑠 + 𝛤̃𝑖𝑗

𝑝
 𝛤̃𝑝𝑘

ℎ - 𝛤̃𝑖𝑘
𝑝
 𝛤̃𝑝𝑗

ℎ  .             (1.10) 

In view of (1.10) the above result can be rewritten as  

              𝑅̃𝑖𝑗𝑘
ℎ  = 𝜕𝑘𝛤𝑗𝑖

ℎ - 𝜕𝑗𝛤𝑘𝑖
ℎ + 𝜕̇𝑚𝛤𝑘𝑖

ℎ 𝛤𝑗𝑠
𝑚 𝑥̇𝑠- 𝜕̇𝑚𝛤𝑗𝑖

ℎ𝛤𝑘𝑠
𝑚 𝑥̇𝑠 + 𝛤𝑗𝑖

𝑝
𝛤𝑘𝑝

ℎ  - 𝛤𝑘𝑖
𝑝
 𝛤𝑗𝑝

ℎ .                       (1.11) 

Where the entities 𝑅𝑖𝑗𝑘
ℎ  and 𝑅̃𝑖𝑗𝑘

ℎ  respectively defined by (1.8) and (1.11) are said to be curvature tensors, which 

becomes the duality in the nature of covariant derivatives defined by (1.7) and  (1.9). 

Now, we shall use the following identities [2]: 

                        (a) 𝑥𝑖+⎸𝑘 = 𝑥̇𝑖 −⎸𝑘 = 0,              (b) 𝑅𝑗𝑘
𝑖  ≝ 𝑅ℎ𝑗𝑘

𝑖  𝑥̇ℎ,      (c) 𝑅𝑗
𝑖 ≝ 𝑅ℎ𝑗

𝑖  𝑥̇ℎ,        (1.12)   

                        (d)  𝑅ℎ𝑗𝑘
𝑖  =  - 𝑅ℎ𝑘𝑗

𝑖  ,                   (e) 𝑅𝑖
𝑖 = (n-1) R,              

                        (f)  𝑁𝑗𝑘
𝑖  = - 𝑁𝑘𝑗

𝑖  = 𝛤𝑗𝑘
𝑖  - 𝛤𝑘𝑗

𝑖 ,         (g) 𝛤ℎ𝑗𝑘
𝑖  ≝ 𝜕̇ℎ𝛤𝑗𝑘

𝑖    . 

Differentiating (1.4) partially with respect to 𝑥̇𝑘  and using the result thus obtained, we have the following 

commutation formula, 

            𝜕̇𝑘(𝑇𝑗
𝑖+|ℎ) - (𝜕̇𝑘𝑇𝑗

𝑖)+|ℎ  = 𝑇𝑗
𝑚  𝛤𝑘𝑚ℎ

𝑖  - 𝑇𝑚
𝑖   𝛤𝑘𝑗ℎ

𝑚  - (𝜕̇𝑚𝑇𝑗
𝑖) 𝛤𝑘𝑝ℎ

𝑚 𝑥̇𝑝,                                (1.13) 
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Differentiating (1.5) partially with respect to 𝑥̇𝑘 and using the result thus the set of equation (1.13), becomes 

             𝜕̇𝑘(𝑇𝑗  
𝑖 −|ℎ) - (𝜕̇𝑘𝑇𝑗

𝑖)−|ℎ  = 𝑇𝑗
𝑚  𝛤̃𝑘𝑚ℎ

𝑖  - 𝑇𝑚
𝑖   𝛤̃𝑘𝑗ℎ

𝑚  - (𝜕̇𝑚𝑇𝑗
𝑖) 𝛤̃𝑘𝑝ℎ

𝑚 𝑥̇𝑝,                              (1.14) 

Let 𝑣𝑖(𝑥)  is a vector field of class 𝐶2  defined over a region 𝑅  of  𝐹𝑛
∗  with this field we can associate an 

infinitesimal transformation of the form  

                  𝑥̅𝑖 = 𝑥𝑖 + 𝑣𝑖(x) d𝑡,                                                                                                  (1.15) 

where d𝑡 is to be stated as an infinitesimal constant. We can interpret (1.15) by associating to every point 𝑥𝑖 of 

𝐹𝑛
∗ a shift or displacement  

                     𝑑𝑥𝑖 = 𝑣𝑖(x) d𝑡                                                                                                      (1.16) 

where, it is natural to stipulate that the corresponding variation of the component 𝑥̇𝑖 of the element of support 

is represented by  

               𝑥̅̇𝑖 = 𝑥̇𝑖 +(𝜕ℎ𝑣𝑖) 𝑥̇ℎ d𝑡.                                                                                              (1.17) 

Let 𝑋𝑖(𝑥, 𝑥̇) be a vector field defined over region 𝑅 of 𝐹𝑛
∗. We suppose that 𝑋𝑖(𝑥, 𝑥̇) is homogeneous of degree 

zero with respect to 𝑥̇𝑘. This field shall be affected by variation (1.15) and (1.17). 

Let 𝑑𝜈𝑋𝑖 denote the following from (1.15) and (1.17) and therefore we obtain  

                 𝑑𝑣𝑋𝑖 =(𝜕𝑘𝑋𝑖) 𝑣𝑘 d𝑡 +(𝜕̇ℎ𝑋𝑖)(𝜕𝑘𝑣ℎ) 𝑥̇𝑘 d𝑡.                                                           (1.18) 

Cartan [8] has defined the covariant derivative of 𝑇𝑖𝑗(𝑥, 𝑥̇) with respect to 𝑥𝑘 as follows: 

            𝑇𝑖𝑗
−|ℎ = 𝜕ℎ𝑇𝑖𝑗 − 𝜕̇𝑘𝑇𝑖𝑗𝜕̇ℎ𝐺𝑘 − 𝑇𝑘𝑗 𝛤𝑖ℎ

∗𝑘 − 𝑇𝑖𝑘𝛤𝑗ℎ
∗𝑘 ,                                                     (1.19) 

where,            (a) 𝐺ℎ
𝑘    ≝ 𝜕̇ℎ𝐺𝑘 ,                                                                                             (1.20) 

                       (b) 2𝐺𝑘 ≝ 𝛾𝑖𝑗
𝑘  (𝑥, 𝑥̇) 𝑥̇𝑖𝑥̇𝑗 = 𝛤𝑖𝑗

∗𝑘(𝑥, 𝑥̇) 𝑥̇𝑖𝑥̇𝑗, 

In view of (1.19) and (1.20), the set of equation (1.18) can be rewritten as  

             𝑑𝑣𝑋𝑖 = (𝜕𝑘𝑋𝑖- 𝜕̇ℎ𝑋𝑖𝜕𝑘𝐺𝑙) 𝑣𝑘 d𝑡 + 𝜕̇ℎ𝑋𝑖 (𝑣 
ℎ  −|𝑘 𝑥̇𝑘) d𝑡.                                           (1.21) 

However, if we interpret (1.15) not as a general shift but only as an infinitesimal coordinate transformation with 

which (1.16) will be consistent and if we denote by 𝑋̅𝑖 the component of the field 𝑋𝑖 in the new coordinate 

system then we will have  

                  𝑋̅𝑖 = (𝜕̇𝑗𝑥̅𝑖)𝑋𝑗 = (𝛿𝑗
𝑖 + 𝜕𝑗𝑣𝑖 d𝑡)𝑋𝑗.    (1.22) 

We can say that, 𝑋̅𝑖 is the vector 𝑋𝑖 displaced from (𝑥, 𝑥̇) to (𝑥̅, 𝑥̅̇ ). Let us define 

                  𝑑𝑚𝑋𝑖 = 𝑋̅𝑖 - 𝑋𝑖 = (𝜕𝑗𝑣𝑖)𝑋𝑗 d𝑡.    (1.23)   

The Lie derivative of the vector field 𝑋𝑖 in the Finsler space 𝐹𝑛
∗.  can be defined by  

                 ʆ̵𝑣𝑋𝑖 ≝ 𝑑𝑣𝑋𝑖 - 𝑑𝑚𝑋𝑖/dt  (Rund [2]).    (1.24) 

With the help of (1.21) and (1.23),  ʆ̵𝑣𝑋𝑖 can be expressed as under: 

                ʆ̵𝑣𝑋𝑖 = (𝑋 
𝑖 +|𝑘)𝑣𝑘 – (𝑣 

𝑖 −|𝑘)𝑋𝑘 + (𝜕̇ℎ𝑋𝑖)(𝑣 
ℎ −|𝑘 )𝑥̇𝑘.   (1.25) 
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In view of (1.12) and (1.25), it can be easily verified that the Lie-derivative of directional argument 𝑥̇𝑖 vanishes 

identically, 1.e.,  

                 ʆ̵𝑣𝑥̇𝑖 = 0.                 (1.26) 

Also ʆ̵𝑣𝑋𝑖 can be expressed as under: 

               ʆ̵𝑣𝑋𝑖 = (𝑋𝑖
+|𝑘)𝑣𝑘 + (𝑣 

𝑘 −|𝑖)𝑋𝑘  + (𝜕̇ℎ𝑋𝑖)(𝑣 
ℎ −|𝑘 )𝑥̇𝑘 .   (1.27) 

In view of (1.25) and (1.27), the Lie derivative for the mixed tensor field 𝑇𝑗
𝑖(𝑥, 𝑥̇) can be written as 

             ʆ̵𝑣𝑇𝑗
𝑖 = (𝑇𝑗

𝑖 + |𝑘)𝑣𝑘 – (𝑣 
𝑖 −|𝑘)𝑇𝑗

𝑘 + (𝑣 
𝑘 −|𝑗)𝑇𝑘

𝑖 −  (𝜕̇ℎ𝑇𝑗
𝑖)(𝑣 

ℎ −|𝑘  )𝑥̇𝑘 .   (1.28) 

In a similar manner, we find the Lie-derivative of an arbitrary tensor  𝑇𝑗1𝑗2….𝑗𝑠

𝑖1𝑖2…𝑖𝑟   as given by       

           ʆ̵𝑣𝑇𝑗1𝑗2…𝑗𝑠

𝑖1𝑖2…𝑖𝑟   = 𝑣𝑘 𝑇𝑗1𝑗2…𝑗𝑠

𝑖1𝑖2……𝑖𝑟  +|𝑘   + 𝜕̇ℎ𝑇𝑗1𝑗2…𝑗𝑠

𝑖1𝑖2…𝑖𝑟(𝑣 
ℎ  −|𝑘𝑥̇𝑘)  +    

                           + ∑ 𝑇𝑗1𝑗2……𝑗𝜇−1 𝑚 𝑗
𝜇+1….𝑗𝑠

𝑖1𝑖2………………………..𝑖𝑟
𝜇 (𝑣 

𝑚  −|𝑗µ
) - ∑ 𝑇

𝑗1𝑗2……………………..𝑗𝑠

𝑖1𝑖2…𝑖𝜈−1 𝑚 𝑖
𝜈+1….𝑖𝑟

𝜈 (𝑣 
𝑖𝜈  −|𝑚) .              (1.29) 

Now, differentiating (1.28) partially with respect to 𝑥̇𝑘 and subtracting the expression thus obtained from (1.28) 

we get the following commutation formula 

            ʆ̵𝑣(𝜕̇𝑘𝑇𝑗
𝑖) − 𝜕̇𝑘(ʆ̵𝑣𝑇𝑗

𝑖) = 0,           (1.30) 

The relation (1.30) shows that the operations of Lie-differentiation and partial differentiation with respect to 

directional arguments commute with each other in the Finsler space 𝐹𝑛
∗ with non-symmetric connection with 

special reference to ⊝ − covariant derivative.    

Using (1.5) and (1.28), we get 

   ʆ̵𝑣(𝑇𝑗  
𝑖  −|𝑘) - (ʆ̵𝑣  𝑇𝑗

𝑖)−|𝑘  =  (𝑇𝑗
𝑖  − 

|𝑘ℎ − 𝑇𝑗
𝑖  − 

|ℎ𝑘)𝑣ℎ  + 𝑇𝑗
𝑖  − 

|ℎ 𝑣ℎ  −|𝑘   + {𝜕̇ℎ(𝑇𝑗
𝑖  −|𝑘) –                     

         −(𝜕̇ℎ𝑇𝑗
𝑖 )−|𝑘}𝑣ℎ −|𝑠𝑥̇𝑠 − 𝑇ℎ 

𝑖  (𝑣ℎ  −|𝑗)−|𝑘  + 𝑇𝑗 
ℎ  (𝑣𝑖  −|ℎ)−|𝑘 – (𝜕̇ℎ𝑇𝑗

𝑖 )(𝑣ℎ  −|𝑠)−|𝑘𝑥̇𝑠.   (1.31) 

Also the Lie derivative of connection parameter with non-symmetric connection with reference to ⊝

− covariant derivative (Rund [2]), we can write    

          ʆ̵𝑣  Γ̃𝑗𝑘
𝑖 = (𝑣𝑖  −|𝑗)−|𝑘 + (𝜕̇𝑟 Γ̃𝑘𝑗

𝑖 )(𝑣𝑟  −|ℎ)𝑥̇ℎ + 𝑣ℎ R̃𝑗𝑘ℎ
𝑖 .                                                 (1.32) 

In view of (1.14), (1.32) and (1.31) reduces to its simplest form as 

        ʆ̵𝑣(𝑇𝑗  
𝑖  −|𝑘) - (ʆ̵𝑣  𝑇𝑗

𝑖)−|𝑘 = 𝑇𝑗 
ℎ ʆ̵𝑣Γ𝑘ℎ

𝑖 − 𝑇ℎ 
𝑖 ʆ̵𝑣Γ𝑘𝑗

ℎ − (𝜕̇ℎ𝑇𝑗
𝑖 )(ʆ̵𝑣Γ𝑘𝑠

ℎ )𝑥̇𝑠.                                (1.33) 

II. 𝑹̅-CURVATURE COLLINEATION AND 𝑹̅-PROJECTIVE MOTION IN A FINSLER SPACE 𝑭𝒏
∗: 

           We will use following definitions in our discussions: 

DEFINITION(2.1):  

                         A Finsler space 𝐹𝑛
∗ equipped with non-symmetric connection is said to be 𝑅̅-symmetric or special 

symmetric if the curvature tensor 𝑅̃𝑗𝑘ℎ
𝑖  with respect to ⊝ − covariant derivative satisfying  

            𝑅̃ℎ𝑗𝑘
𝑖       − ⎸𝑚 =  0.         (2.1) 

On contracting (2.1) with respect to the indices 𝑖 and ℎ, we get 
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         𝑅̃𝑗𝑘
        − ⎸𝑚 = 0   where  𝑅̃𝑖𝑗𝑘

𝑖      = 𝑅̃𝑗𝑘
               (2.2) 

DEFINITION(2.2):  

                         A Finsler space 𝐹𝑛
∗  is said to be an 𝑅̅- affinely connected motion if  

           𝜕̇𝑙Γ̃𝑗𝑘
𝑖   =  0  .           (2.3) 

DEFINITION(2.3):  

                         The infinitesimal point transformation 𝑥̅𝑖 = 𝑥𝑖 + 𝑣𝑖 (𝑥)𝑑𝑡 is said to define a special  𝑅̅ -curvature 

collineation in a Finsler space 𝐹𝑛
∗ provided there exists a field 𝑣𝑖(𝑥) satisfying 

               ʆ̵𝑣𝑅̃𝑗𝑘ℎ
𝑖       = 0.    (2.4) 

DEFINITION(2.4): 

                   A Finsler space 𝐹𝑛
∗ is said to admit 𝑅̅- Ricci collineation provided there exists a field 𝑣𝑖(𝑥) satisfying 

            ʆ̵𝑣𝑅̃𝑘ℎ
        = 0.    (2.5) 

DEFINITION(2.5):  

                   The infinitesimal point transformation 𝑥̅𝑖  =𝑥𝑖  + 𝑣𝑖  (𝑥)𝑑𝑡  defines an infinitesimal  𝑅̅ - projective 

motion in an 𝐹𝑛
∗ if  

              ʆ̵𝑣  Γ̃𝑗𝑘
𝑖  = 𝛿𝑗

𝑖𝜆𝑘 + 𝛿𝑘
𝑖 𝜆𝑗 + 𝜆𝑗𝑘𝑥̇𝑖 ,        (2.6)   

Where 𝜆 is an arbitrarily chosen positively homogeneous scalar function of degree 1 in 𝑥̇  ′𝑠 and satisfying the 

following relations: 

               (a) 𝜕̇𝑗𝜆 = 𝜆𝑗  ,   (b) 𝜕̇𝑘 𝜆𝑗  = 𝜆𝑗𝑘  ,     (c)  𝜆𝑗𝑘 𝑥̇𝑘 = 𝜆𝑗 ,        (d) 𝜆𝑗𝑥̇𝑗 = 𝜆  .  (2.7) 

Using (2.6) and (1.15) in (1.33), we get 

            ʆ̵𝑣𝑅̃𝑗𝑘ℎ
𝑖      = 𝛿ℎ

𝑖 (𝜆𝑘
−|𝑗 − 𝜆𝑗

−|𝑘) + 𝛿𝑘
𝑖 𝜆ℎ

−|𝑗 − 𝛿𝑗
𝑖𝜆ℎ

−|𝑘 + 2𝑥̇𝑖𝜆[𝑘𝑗 −|ℎ],                         (2.8) 

where we have taken into account the fact that the ⊝ − covariant derivative of 𝑥̇𝑖 and 𝛿𝑗
𝑖 vanishes identically. 

Let us now assume that the Finsler space 𝐹𝑛
∗ admits a 𝑅̅ -projective motion as well as 𝑅̅ -curvature collineation 

then from (2.8), we get 

          𝛿ℎ
𝑖 (𝜆𝑘

−|𝑗 − 𝜆𝑗
−|𝑘) + 𝛿[𝑘

𝑖 𝜆ℎ
−|𝑗] + 2𝑥̇𝑖𝜆 [𝑘𝑗 −|ℎ ] = 0,                                                  (2.9) 

Contracting (2.9) with respect to the indices i and j and noting (2.7) therefore, we get 

           𝜆𝑘
−|ℎ − 𝑛𝜆ℎ

−|𝑘 + 𝜆 −|𝑘 = 0 .                   (2.10) 

We now make the equation obtained after commutating the indices ℎ and 𝑘 in (2.8), we get 

              (1 − 𝑛) 𝜆 [ℎ −|𝑘] = 0.                                                   (2.11) 

So, we now state our first result as below: 
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Theorem (2.1): 

             In an affinely connected 𝑹̅  –projective 𝑭𝒏
∗  , 𝑹̅  -projective motion must be 𝑹̅  -curvature collineation 

(2.11). 

Contracting equation (2.8) with respect to the indices 𝑖 and 𝑗 and get  

         ʆ̵𝑣𝑅̃𝑘ℎ
  = 𝜆𝑘

−|ℎ − 𝑛𝜆ℎ
−|𝑘 + 2𝑥̇𝑖𝜆𝑘  −|ℎ = 0.                           (2.12) 

Let us now make the assumption that the space 𝐹𝑛
∗ under consideration admits a 𝑅̅ − 𝑅𝑖𝑐𝑐𝑖 collineation then from 

(2.12), we get 

     𝜆𝑘
−|ℎ − 𝑛𝜆ℎ

−|𝑘 + 2𝑥̇𝑖𝜆𝑘 −|ℎ = 0.        (2.13)   

We now state our next results as: 

Theorem (2.2):  

                      In an affinely connected 𝑹̅ –projective 𝑭𝒏
∗ , the necessary and sufficient condition that 𝑹̅ -projective 

motion be 𝑹̅ -Ricci collineation is that form of function 𝝀(𝒙, 𝒙̇) is given by (2.13). 

           Applying the commutation formula (1.14) to the curvature tensor field 𝑅̃𝑗𝑘ℎ
𝑖  and thereafter use (2.1), (2.6) 

and (2.7) and get 

       ( ʆ̵𝑣𝑅̃𝑗𝑘ℎ
𝑖 )−|ℎ = (𝜕̇𝑞𝑅̃𝑗𝑘ℎ

𝑖 )𝜆𝑙𝑥̇𝑞 + (𝜕̇𝑙𝑅̃𝑗𝑘ℎ
𝑖 ) −|𝑝 + (𝜕̇𝑠𝑅̃𝑗𝑘ℎ

𝑖 ) + 𝜆ℎ𝑙𝑅̃𝑗𝑘𝑞
𝑖 𝑥̇𝑞 + 𝜆ℎ𝑅̃𝑗𝑘𝑙

𝑖 + 𝜆𝑘𝑙𝑅̃𝑗ℎ
𝑖 + 𝜆𝑘𝑅̃𝑗𝑙ℎ

𝑖 + 𝜆𝑗𝑙𝑅̃𝑘ℎ
𝑖 +

𝜆𝑗𝑅̃𝑙𝑘ℎ
𝑖 + 2𝜆𝑙𝑅̃𝑗𝑘ℎ

𝑖 − 𝜆𝑞𝑙𝑅̃𝑗𝑘ℎ
𝑞

𝑥̇𝑖 − 𝛿𝑙
𝑖𝜆𝑞𝑅̃𝑗𝑘ℎ

𝑞
 .     (2.14) 

Transvecting (2.14) successively by 𝑥̇𝑘 and 𝑥̇ℎ and thereafter using the equations given by (2.7), we get 

   (  ʆ̵𝑣𝑅̃𝑗𝑘ℎ
𝑖 )−|ℎ𝑥̇𝑘𝑥̇ℎ = 𝛿𝑙

𝑖𝜆𝑞𝑅̃𝑗𝑘ℎ
𝑞

𝑥̇ℎ𝑥̇𝑘 + 𝜆𝑞𝑙𝑅̃𝑗
𝑞

𝑥̇𝑖 − 3𝑅̃𝑗
𝑖 − 𝑅̃𝑙

𝑖𝜆𝑗 − 𝜆 𝑅̃𝑗𝑙𝑘
𝑖 𝑥̇ℎ + 𝜆 𝑅̃𝑗ℎ

𝑖 − (𝜕̇𝑠𝑅̃𝑗𝑘ℎ
𝑖 )𝜆𝑙𝑥̇ℎ𝑥̇𝑘 − 𝑅̃𝑗𝑘ℎ

𝑖 𝜆𝑠𝑙 . 

         (2.15) 

Now suppose the Finsler space 𝐹𝑛
∗ under consideration admits a special 𝑅̅-curvature collineation characterized 

by (2.4) then from (2.15) we get 

      𝛿𝑙
𝑖𝜆𝑞𝑅̃𝑗𝑘ℎ

𝑞
𝑥̇ℎ𝑥̇𝑘 + 𝜆𝑞𝑙𝑅̃𝑗

𝑞
𝑥̇𝑖 − 3𝑅̃𝑗

𝑖 − 𝑅̃𝑙
𝑖𝜆𝑗 − 𝜆 𝑅̃𝑗𝑙𝑘

𝑖 𝑥̇ℎ + 𝜆 𝑅̃𝑗ℎ
𝑖 − (𝜕̇𝑠𝑅̃𝑗𝑘ℎ

𝑖 )𝜆𝑙𝑥̇ℎ𝑥̇𝑘 − −𝑅̃𝑗𝑘ℎ
𝑖 𝜆𝑠𝑙 = 0 .   

        (2.16) 

Contracting (2.16) with respect to indices 𝑖 and 𝑗 and thereafter allowing a suitable interchange of the dummy 

indices, we get 

 𝑅̃𝑗𝑘ℎ
𝑞

𝜆𝑞𝑥̇ℎ𝑥̇𝑘 + 2𝜆𝑞𝑙𝑅̃𝑖
𝑞

𝑥̇𝑖 − 4𝑅̃𝑗
𝑖𝜆𝑙 − 𝜆 𝑅̃𝑙𝑘

 𝑥̇ℎ + 𝜆 𝑅̃𝑗ℎ
𝑖 − (𝜕̇𝑠𝑅̃𝑘ℎ

𝑖 )𝜆𝑙𝑥̇ℎ𝑥̇𝑘 − (𝜕̇𝑙𝑅̃𝑘ℎ
 )𝜆𝑠𝑥̇ℎ𝑥̇𝑘 − 

       −𝑅̃𝑘ℎ
 𝜆𝑠 = 0 .           (2.17) 

Now our last results is stated as below: 

Theorem (2.3): 

In a special 𝑹̅ −symmetric 𝑭𝒏
∗ , 𝑹̅-projective motion must be special  𝑹̅-curvature collineation given by equation 

(2.17) . 
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III. CONCLUSION 

 

In this paper we have studied 𝑅̅ -Projective motion in a Finsler space 𝐹𝑛
∗ equipped with non-symmetric 

connection with special reference to ⊝ − covariant derivative. We have studied  𝑅̅ - Curvature collineation and 

Ricci- Collineation  also in the above context . It has been found that in an affinely connected 𝑅̅ –projective  𝐹𝑛
∗ , 

the 𝑅̅ -projective motion consist of 𝑅̅ -curvature collineation and  𝑅̅ -Ricci collineation. We have also found that 

the 𝑅̅-projective motion will be a  special 𝑅̅-curvature collineation in a special 𝑅̅ − symmetric 𝐹𝑛
∗.  

 

 

 

IV. REFERENCES 

 

[1]. Davies, E.T . Lie-derivation in generalized metric 

spaces, Ann. Mat. Pura. Appl. 18, 261-274(1939) 

[2]. Rund, H. The differential geometry of Finsler 

spaces, Springer-Verlag., Berlin (1959). 

[3]. Yano, k . The theory of Lie-derivatives and its 

applications, North Holland Publ. Co., 

Amsterdam (1957). 

[4]. Katzin, G.H. Levine, J. and Davies, W.R . 

Curvature collineations of Finsler spaces, Tensor 

(NS) 3, 33-41 (1977). 

[5]. Pande, H.D. and Kumar, A. Special curvature 

collineation and projective symmetry in a Finsler 

space, Acad. Naz. dei Lincei Rend. Ser. XI, 52(1), 

37-45, (1973). 

[6]. Singh, U.P. and Prasad B.N. Special curvature 

collineation in a Finsler space, Acad. Naz. dei 

Lincei Rend. Ser. VIII, 50(2), 82-87, (1971). 

[7]. Vranceanu, G.H. Lectii de geometrie differentiala, 

Vol I, EDP, BUC, (1962). 

[8]. Cartan, E Les espace de Finsler, Actualities, 79, 

Paris (1934). 

 

 

 

 

 

 

 

 

Cite this article as : 

 

Sanjay K. Pandey, "R - Projective Motion in a Finsler 

Space Fn* with a Non-symmetric Connection", 

International Journal of Scientific Research in Science, 

Engineering and Technology (IJSRSET), Online ISSN : 

2394-4099, Print ISSN : 2395-1990, Volume 7 Issue 3, 

pp. 511-517, May-June 2020. Available at 

doi : https://doi.org/10.32628/IJSRSET22918           

Journal URL : https://ijsrset.com/IJSRSET22918  

https://doi.org/10.32628/IJSRSET22918
https://search.crossref.org/?q=10.32628/IJSRSET22918&from_ui=yes
https://ijsrset.com/IJSRSET22918

