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ABSTRACT 
 

In this paper CCW Method used for study the motion of cylindrical weak shock waves with strong magnetic 

field in a self-gravitating gas in the presence of constant axial and azimuthal components of magnetic field. 

Consider density (𝜌0 = 𝜌′𝑟−𝜔 ) decrease in atmospheric strong magnetic field and derive the analytical 

expression for flow variables of weak shock with strong magnetic field. In the end of e.o.d behind the flow 

variables have been included and modified forms of analytical expression for flow variables so obtained have 

been numerically computed only at psfl. 

Keywords :  

  e.o.d → Effect of overtaking disturbances  

 0 0
, zH H → Axial magnetic and azimuthal magnetic field. 

 0 0zH H = = constant. 

 FD→ Free propagation  

 Psfl→ Permissible shock front location 

 0 r   −=  → Density distribution  

 

 

1.1  INTRODUCTION : 

 The study focus on method of characteristics and similarity have been used for the motion of 

shock/hydro magnetic weak shock wave through uniform and non-uniform media. similarity method 

work only for strong shocks but characteristics method works for both weak  and strong shocks. 

 In the paper the e.o.d. behind the flow on the propagation of diverging cylindrical weak shocks 

waves through an ideal and electrically perfectly conducting self-gravitating gas 

 

in the presence of a strong magnetic field having constant axial (
0

H ) and azimuthal (
0zH ) components. 

The density in the unperturbed state has been consider as 
0 r   −=   where   density at the plane / exes 

of symmetry,   non-dimensional constant. 

 The propagation of diverging cylindrical shock wave has been studied by CCW method for weak 

shock with strong magnetic field only. 
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 The analytical relation for shock strength, shock velocity and pressure have been  detect for strong 

magnetic field. 

 

1.2  PRIMARY EQUATION : 

 The equation governing the cylindrical flow at the gas and constant axial and azimuthal  

components  are written as. 
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 Where r → radial co-ordinate , , , ,Zu H H    and m are. respectively, the velocity of particle, 

thy density, the pressure,  azimuthal and axial components at magnetic field, permeability of gas and mass 

inside a cylinder of unit cross-section.  

1.3 BOUNDARY LIMITATION : 

The Boundary limitation for diverging cylindrical weak shock waves written in term of single 

parameter. 
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where 'o' stande for the state immediately ahead of the shock front, U is the shock strength, 0a  is the 

sound speed 0

0

p



 

 
 

 and 0b  is the alfven speed 

1
22
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
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.  

1.4  CONDITION FOR WEAK SHOCK:-For every  weak shock  

 0/ 1 ( )r  = +         (3) 

 But  ( ) 1.r   now we consider when magnetic field is strong 

 then 
2 2 2

0 0 0 0, . .,b a i e H p     by using equation (3) 

 The Boundary condition written as  
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( ) ( ) ( )
0 00 1 , 1 , 1 ,z zH H H H     = + = + = +  (4) 

 

( )0 0 0

3
1 , 1

4
U b P P and u b  

 
= + = + =  

 

1.5 CHARACTERISTIC EQUATION : For diverging cylindrical weak shock characteristic form of 

the system of equation (1) is easily obtained by forming a linear combination of first and  third equation 

of (1) in only one direction in (r, t,) plane can be written as. 

 

2 2

2
0z z

dr u dr Gm dr
dp H dH H dH cdu H c c

r u c r u c r
       + + + + + + =

+ +
   (5)  

 The equation (5) represent the characteristic form of the system of equation (1) for diverging 

shock. In order to estimate the strength of overtaking disturbances and independent C+ characteristic is 

considered.  

 The differential relation valid across C+ disturbances obtained by replacing  c by -c in equation 

(5) and written as.  
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 (6) 

 equation (6) represent characteristic form of equation (1) for Conversing shock.  

 

1.6   ANALYTICAL RELATIONS FOR FLOW VARIABLES : 

 

 To substitute the shock condition (4) in to (5) and (6) and a first order differential equation in  

( )r or U is obtained which is the determine the shock the equilibrium state of the gas as. 
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 with the help of equation (7) and first of (1) pressure as.  
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   it the density at the plane of symmetry in unperturbed state and G is universal Gravitational 

constant.  

1.7 CONDITION FOR WEAK SHOCK WITH STRONG MAGNETIC FIELD (WSSMF) : 

 By using equation (4), (5)  we get 
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 with help of (11) we get 
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A

r K r+ =    (For Free propagation) (12)  
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equation (12) describes for Free Propagation similarly the propagation parameter       (r)  which  include 

the e.o.d.,  behind  the flow on the motion of weak shock in strong magnetic field written as.  

 2*
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1.8 ANALYTICAL EXPRESSIONS FOR FLOW VARIABLES FOR SS : 

 The analytical expression for flow variable of weak cylindrical shock in strong magnetic field may 

obtain with the help of equation (12), (13) and (14) we get for both F.P. and e.o.d. 

 Flow variable for F.P  
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 Flow variable for e.o.d.  
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1.9 TABLE AND GRAPHS FOR FLOW VARIABLES OF WSSMF : 

 

S.N. Variation of flow variable  F.P. EOD C.P. % 
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 2

2  Increase Decrease 

 2  Increase Increase 

   Decrease Decrease 

 

 Flow variables also increase with  . 

 

 

GRAPHS FOR FLOW VAFIABLES: 
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1.9 RESULT AND DISCUSSION: 

 

 

The modified analytical expression include the e.o.d. behind the flow on the motion of the diverging 

cylindrical shock waves in a self-gravitating gas in presence of strong magnetic field ( 2 ).  

 Overall the strength of shock, the velocity of shock and the velocity of particle increase whereas 

as the pressure and the density decrease with propagation distance r. Increasing in 2

2  from 1.5 to 2.0 lead 

the decrease the strength of shock the velocity of GRAshock, the particle velocity. 

 all flow variable increase with increase in 2 ,  .  

 for above result taking - 
 2 2

0 2( ) 0.00223 0.8, 1.4, 0.4 , 1.5,2.0, 0.9,1.1,r at r P G    = = = = = =  2
120,130,140 =  

 (strong magnetic field) and including the e.o.d. results varying from -3.912% to 

 4.4427%. 
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