Special $\overline{\boldsymbol{R}}$-Projective Motion in a Finsler Space

Sanjay K. Pandey ${ }^{1}$, B. K. Sharma ${ }^{2}$
${ }^{1}$ Department of Mathematics, Shri L. B. S. Degree College, Gonda, Uttar Pradesh, India
${ }^{2}$ Department of Mathematics, University of Allahabad, Prayagraj, Uttar Pradesh, India

Article Info

Volume 8 Issue 1
Page Number : 331-335
Publication Issue :
January-February-2021
Article History
Accepted : 02 Feb 2021
Published : 18 Feb 2021

Abstract

We have studied the Special \bar{R}-Projective motion in a Finsler space $F_{n}{ }^{*}$ equipped with a non-symmetric connection. New results, in the view of Special \bar{R} - Curvature collineation and Ricci- Collineation, has been obtained and presented. Keywords: Non-Symmetric Connection, \bar{R}-Projective Motion, \bar{R}-Curvature Collineation, Ricci- Collineation.

I. INTRODUCTION

Use of infinitesimal transformations, which in terms defines motion, has been discussed in details by Misra [1]. Davies [2] has also studied similar problem where he has generalized the Lie-derivatives to the Finsler space and its application to the theory of subspaces. By considering the infinitesimal point transformation in Liederivatives of an arbitrary vector $X^{i}(x, \dot{x})$ and the symmetric connection parameter $\Gamma_{j k}^{* i}(x, \dot{x})$, has been discussed in details by Rund, [3] and Yano, [4]. The concept of curvature collineation in a Riemannian space and its properties is discussed in detail by Katzin, Levine and Davis [5]. They showed that a Riemannian space V_{n}, admits a curvature collineation provided that there exists a vector \& $v^{i}(x)$ such that $f_{v} R_{j k h}^{i}=0$ where $R_{j k h}^{i}$ is the Riemannian curvature tensor. Recently Pandey [6] has studied Projective motion in a Finsler space equipped with a non-symmetric connection in some special cases.
A non-symmetric connection $\Gamma_{j k}^{i}\left(\neq \Gamma_{k j}^{i}\right)$ in an n-dimensional space A_{n} was introduced by Vranceanu [7]. In the present work we expand this concept to the theory of n-dimensional Finsler spaces.
Consider an n-dimensional Finsler space with non-symmetric connection $\Gamma_{j k}^{i}\left(\neq \Gamma_{k j}^{i}\right)$ which is based on a nonsymmetric fundamental tensor $g_{i j}(x, \dot{x})\left(\neq g_{j i}(x, \dot{x})\right)$.

Let us write

$$
\begin{equation*}
\Gamma_{j k}^{i}=M_{j k}^{i}+\frac{1}{2} N_{j k}^{i}, \tag{1.1}
\end{equation*}
$$

where $M_{j k}^{i}$ and $\frac{1}{2} N_{j k}^{i}$ are the symmetric and skew-symmetric parts of $\Gamma_{j k}^{i}$ respectively.
Now introducing another connection coefficient $\tilde{\Gamma}_{j k}^{i}(x, \dot{x})$ defined as

[^0]\[

$$
\begin{equation*}
\tilde{\Gamma}_{j k}^{i}=M_{j k}^{i}-\frac{1}{2} N_{j k}^{i} . \tag{1.2}
\end{equation*}
$$

\]

Equations (1.1) and (1.2) together yields

$$
\begin{equation*}
\tilde{\Gamma}_{j k}^{i}(x, \dot{x})=\Gamma_{k j}^{i}(x, \dot{x}) \tag{1.3}
\end{equation*}
$$

Now suppose a vertical stroke (\mid) denotes covariant derivative with respect to x. We define the covariant derivative of any contravariant vector field $X^{i}(x, \dot{x})$ is two distinct ways (see [8] for details), as follows:

$$
\begin{equation*}
\left.X^{i+}\right|_{j}=\partial j X^{i}-\left(\dot{\partial}_{m} X^{i}\right) \Gamma_{k j}^{m} \dot{x}^{k}+X^{k} \Gamma_{k j}^{i}, \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.X^{i-}\right|_{j}=\partial j X^{i}-\left(\dot{\partial}_{m} X^{i}\right) \tilde{\Gamma}_{k j}^{m} \dot{x}^{k}+X^{k} \tilde{\Gamma}_{k j}^{i} \tag{1.5}
\end{equation*}
$$

Using equation (1.3) we can write (1.5) as

$$
\begin{equation*}
\left.X^{i-}\right|_{j}=\partial j X^{i}-\left(\dot{\partial}_{m} X^{i}\right) \Gamma_{j k}^{m} \dot{x}^{k}+X^{k} \Gamma_{j k}^{i} \tag{1.6}
\end{equation*}
$$

where, a positive sign below vertical stroke (\mid) by an index indicates that the covariant derivatives with respect to the connection $\Gamma_{j k}^{i}$ concerning that index and a negative sign below an index vertical stroke (\mid) by an index indicates that the covariant derivative with respect to the connection $\tilde{\Gamma}_{k j}^{i}$ concerning that index. The covariant derivative defined in (1.4) and (1.5) will be known as \oplus - covariant differentiation of $X^{i}(x, \dot{x})$ with respect to \dot{x}^{j} and \ominus - covariant differentiation of $X^{i}(x, \dot{x})$ with respect to \dot{x}^{j} respectively throughout the thesis. Allowing \oplus - covariant differentiation in (1.4) with respect to x^{k} and then using the part of the skew-symmetric result so obtained with respect to j and k, we get

$$
\begin{equation*}
\left.X^{i+}\right|_{j k}-\left.X^{i+}\right|_{k j}=-\left(\dot{\partial}_{m} X^{i}\right) R_{p j k}^{m} \dot{x}^{p}+X^{m} R_{m j k}^{i}+\left.X^{i+}\right|_{m} N_{k j}^{m} \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{i j k}^{h} \stackrel{\text { def }}{=} \partial_{k} \Gamma_{i j}^{h}-\partial_{j} \Gamma_{i k}^{h}+\dot{\partial}_{m} \Gamma_{i k}^{h} \Gamma_{s j}^{m} \dot{x}^{s}-\dot{\partial}_{m} \Gamma_{i j}^{h} \Gamma_{s k}^{m} \dot{x}^{s}+\Gamma_{i j}^{p} \Gamma_{p k^{-}}^{h} \Gamma_{i k}^{p} \Gamma_{p j}^{h} . \tag{1.8}
\end{equation*}
$$

and is known as curvature tensor.
Similarly, \ominus-covariant differentiation with respect to x^{k} and proceeding as above, we have

$$
\begin{equation*}
\left.X^{i-}\right|_{j k}-\left.X^{i-}\right|_{k j}=-\left(\dot{\partial}_{m} X^{i}\right) \tilde{R}_{p j k}^{m} \dot{x}^{p}+X^{m} \tilde{R}_{m j k}^{i}+\left.X^{i-}\right|_{m} N_{k j}^{m} \tag{1.9}
\end{equation*}
$$

where, $\quad \tilde{R}_{i j k}^{h}=\partial_{k} \tilde{\Gamma}_{i j}^{h}-\partial_{j} \Gamma_{i k}^{h}+\dot{\partial}_{m} \tilde{\Gamma}_{i k}^{h} \Gamma_{s j}^{m} \dot{x}^{s}-\dot{\partial}_{m} \tilde{\Gamma}_{i j}^{h} \Gamma_{s k}^{m} \dot{x}^{s}+\tilde{\Gamma}_{i j}^{p} \tilde{\Gamma}_{p k}^{h} \tilde{\Gamma}_{i k}^{p} \tilde{\Gamma}_{p j}^{h}$.
note that $\tilde{R}_{i j k}^{h}$ is also known as curvature tensor.
With the help of the equation (1.3) we can write equation (1.10) as

$$
\begin{equation*}
\tilde{R}_{i j k}^{h}=\partial_{k} \Gamma_{j i}^{h}-\partial_{j} \Gamma_{k i}^{h}+\dot{\partial}_{m} \Gamma_{k i}^{h} \Gamma_{j s}^{m} \dot{x}^{s}-\dot{\partial}_{m} \Gamma_{j i}^{h} \Gamma_{k s}^{m} \dot{x}^{s}+\Gamma_{j i}^{p} \Gamma_{k p}^{h}-\Gamma_{k i}^{p} \Gamma_{j p}^{h} \tag{1.11}
\end{equation*}
$$

Now, we shall use the following identities (for details see [3])
(a) $\left.x^{i+}\right|_{k}=\left.\dot{x}^{i-}\right|_{k}=0$,
(b) $R_{j k}^{i} \stackrel{\text { def }}{=} R_{h j k}^{i} \dot{x}^{h}$,
(c) $R_{j}^{i} \stackrel{\text { def }}{=} R_{h j}^{i} \dot{x}^{h}$,
(d) $R_{h j k}^{i}=-R_{h k j}^{i}$,
(e) $R_{i}^{i}=(\mathrm{n}-1) \mathrm{R}$,
(f) $N_{j k}^{i}=-N_{k j}^{i}=\Gamma_{j k}^{i}-\Gamma_{k j}^{i}$,
(g) $\Gamma_{h j k}^{i} \stackrel{\text { def }}{=} \dot{\partial}_{h} \Gamma_{j k}^{i}$.

Let $v^{i}(x)$ is a vector field of class C^{2} defined over a region R of $F_{n}{ }^{*}$ with this field we can associate an infinitesimal transformation of the form

$$
\begin{equation*}
\bar{x}^{i}=x^{i}+v^{i}(\mathrm{x}) \mathrm{d} t \tag{1.13}
\end{equation*}
$$

where $\mathrm{d} t$ is to be stated as an infinitesimal constant.
The Lie derivative for the mixed tensor field $T_{j}^{i}(x, \dot{x})$ can be written as [6]

$$
\mathcal{L}_{v} T_{j}^{i}=\left(\left.T_{j}^{i+}\right|_{k}\right) v^{k}-\left(\left.v^{i-}\right|_{k}\right) T_{j}^{k}+\left(\left.v^{k-}\right|_{j}\right) T_{k}^{i}-\left(\dot{\partial}_{h} T_{j}^{i}\right)\left(\left.v^{h-}\right|_{k}\right) \dot{x}^{k}
$$

Also the Lie derivative of connection parameter with non-symmetric connection with reference to Θ - covariant derivative (Rund [3]), we can write

$$
\begin{equation*}
f_{v} \widetilde{\Gamma}_{j k}^{i}=\left.\left(\left.v^{i-}\right|_{j}\right)^{-}\right|_{k}+\left(\dot{\partial}_{r} \tilde{\Gamma}_{k j}^{i}\right)\left(\left.v^{r-}\right|_{h}\right) \dot{x}^{h}+v^{h} \widetilde{\mathrm{R}}_{j k h}^{i} . \tag{1.15}
\end{equation*}
$$

Differentiating (1.15) Θ - covariant derivative, we get

$$
\begin{align*}
\left.\left(f_{v} \widetilde{\Gamma}_{h j}^{i}\right)^{-}\right|_{k} & -\left.\left(f_{v} \widetilde{\Gamma}_{h k}^{i}\right)^{-}\right|_{j}=\left.\left(\left.v^{i-}\right|_{h}\right)^{-}\right|_{k} N_{k j}^{r}+\left.\Gamma_{r j h}^{i} v^{r-}\right|_{l} \dot{x}^{l}+\left.\Gamma_{r j h}^{i}\left(\left.v^{r-}\right|_{l}\right)^{-}\right|_{k} \dot{x}^{l} \\
& +\left.v^{i-}\right|_{h} \widetilde{\mathrm{R}}_{h l j}^{i}+\left.v^{l} \widetilde{\mathrm{R}}_{h l j}^{i}\right|_{k}-\left.\left.\Gamma_{r k \bar{h}}^{i}\right|_{j} v^{r-}\right|_{l} \dot{x}^{l}-\left.\Gamma_{r k h}^{i}\left(\left.v^{r-}\right|_{l}\right)^{-}\right|_{j} \dot{x}^{l} \\
& -\left.v^{i-}\right|_{j} \widetilde{\mathrm{R}}_{h l k}^{i}-v^{l} \widetilde{\mathrm{R}}_{h l k}^{i}-\left.\right|_{j}-\dot{\partial}_{r}\left(\left.v^{i-}\right|_{j}\right) \widetilde{\mathrm{R}}_{j k}^{r}+\left.v^{r-}\right|_{h} \widetilde{\mathrm{R}}_{r k j}^{i}-\left.v^{i-}\right|_{r} \widetilde{\mathrm{R}}_{h k j}^{r} . \quad(1.16) \tag{1.16}
\end{align*}
$$

From (1.14), we get

$$
\begin{align*}
\mathrm{f}_{v} \widetilde{\mathrm{R}}_{h j k}^{i}= & \left.\widetilde{\mathrm{R}}_{h l k}^{i}\right|_{l} v^{l}-\left.\widetilde{\mathrm{R}}_{h j k}^{r} v^{i-}\right|_{r}+\left.\widetilde{\mathrm{R}}_{r j k}^{i} v^{r-}\right|_{h}+\left.\widetilde{\mathrm{R}}_{h r k}^{i} v^{r-}\right|_{j}+ \\
& +\widetilde{\mathrm{R}}_{h j k}^{i} v^{r}-\left.\right|_{k}+\left(\dot{\partial}_{r} \widetilde{\mathrm{R}}_{h j k}^{i}\right)\left(\left.v^{r-}\right|_{s}\right) \dot{x}^{s} . \tag{1.17}
\end{align*}
$$

We can also verify the following
$\dot{\partial}_{r}\left(\left.v^{i}{ }^{-}\right|_{j}\right)=\Gamma_{r m h}^{i} v^{m}$
$\left.v^{i+}\right|_{j}-v^{i}-\left.\right|_{j}=v^{m} N_{m j}^{i}$.
Using (1.17), (1.18), (1.19) and (1.15), the set of equation (1.16) becomes

$$
\begin{align*}
\left.\left(f_{v} \widetilde{\Gamma}_{h j}^{i}\right)^{-}\right|_{k}-\left.\left(f_{v} \tilde{\Gamma}_{h k}^{i}\right)^{-}\right|_{j}= & f_{v} \widetilde{\mathrm{R}}_{h j k}^{i}+\dot{x}^{l} \Gamma_{r j h}^{i} f_{v} \Gamma_{k l}^{r} \dot{x}^{l} \Gamma_{r k h}^{i} f_{v} \Gamma_{j l}^{r}+ \\
& +N_{k j f_{\nu}}^{r} \Gamma_{r h}^{i}+\left.P_{p j h k}^{i} v^{p-}\right|_{s} \dot{x}^{s}, \tag{1.20}
\end{align*}
$$

where
$P_{p j h k}^{i}=-\dot{\partial}_{p} \widetilde{\mathrm{R}}_{h j k}^{i}+\left.\Gamma_{p j h}^{i}{ }^{-}\right|_{k}-\left.\Gamma_{p k h}^{i}{ }^{-}\right|_{j}-\Gamma_{p k l}^{r} \Gamma_{r j h}^{i} \dot{x}^{l}+\Gamma_{p j l}^{r} \Gamma_{r k h}^{i} \dot{x}^{l}-\Gamma_{p r h}^{r} \mathrm{~N}_{j k}^{r}$.
It can be easily be verified that the right hand member of (1.21) vanishes and hence $P_{p j h k}^{i}=0$.
After making use of (1.22), the set of equation (1.20) assume the following form
$\left.\left(\mathrm{f}_{v} \tilde{\Gamma}_{h j}^{i}\right)^{-}\right|_{k}-\left.\left(\mathrm{f}_{v} \tilde{\Gamma}_{h k}^{i}\right)^{-}\right|_{j}=\mathrm{f}_{\nu} \widetilde{\mathrm{R}}_{h j k}^{i}+\dot{x}^{l} \Gamma_{r j h}^{i} f_{\nu} \Gamma_{k l}^{r}-\dot{x}^{l} \Gamma_{r k h}^{i} \mathrm{f}_{\nu} \Gamma_{j l}^{r}+N_{k j}^{r} \mathrm{f}_{\nu} \Gamma_{r h}^{i}$.

2. SPECIAL $\overline{\boldsymbol{R}}$-PROJECTIVE MOTION IN A FINSLER SPACE $\boldsymbol{F}_{\boldsymbol{n}}{ }^{*}$:

In our later discussions we will use following definitions:

DEFINITION(2.1):

A Finsler space $F_{n}{ }^{*}$ equipped with non-symmetric connection is called \bar{R}-symmetric or special symmetric if the curvature tensor $\tilde{R}_{j k h}^{i}$ with respect to Θ - covariant derivative satisfying

$$
\begin{equation*}
\left.\tilde{R}_{h j k}^{i}{ }^{-}\right|_{m}=0 . \tag{2.1}
\end{equation*}
$$

On contracting (2.1) with respect to the indices i and h, we can get

$$
\begin{equation*}
\tilde{R}_{j k}-\left.\right|_{m}=0 \text { where } \tilde{R}_{i j k}^{i}=\tilde{R}_{j k} \tag{2.2}
\end{equation*}
$$

DEFINITION(2.2):

A Finsler space $F_{n}{ }^{*}$ equipped with non-symmetric connection is called \bar{R} - affinely connected motion if

$$
\begin{equation*}
\dot{\partial}_{l} \tilde{\Gamma}_{j k}^{i}=0 . \tag{2.3}
\end{equation*}
$$

DEFINITION(2.3):

The infinitesimal point transformation $\bar{x}^{i}=x^{i}+v^{i}(x) d t$ is said to define a special \bar{R}-curvature collineation in a Finsler space $F_{n}{ }^{*}$ provided there exists a field $v^{i}(x)$ satisfying

$$
\begin{equation*}
f_{V} \tilde{R}_{j k h}^{i}=0 . \tag{2.4}
\end{equation*}
$$

DEFINITION(2.4):

A Finsler space $F_{n}{ }^{*}$ equipped with non-symmetric connection is called \bar{R} - Ricci collineation provided there exists a field $v^{i}(x)$ satisfying

$$
\begin{equation*}
f_{v} \tilde{R}_{k h}=0 . \tag{2.5}
\end{equation*}
$$

DEFINITION(2.5):

The infinitesimal point transformation $\bar{x}^{i}=x^{i}+v^{i}(x) d t$ defines an infinitesimal \bar{R} - projective transformation in a Finsler space $F_{n}{ }^{*}$, if

$$
\begin{equation*}
f_{v} \tilde{\Gamma}_{j k}^{i}=\delta_{j}^{i} \lambda_{k}+\delta_{k}^{i} \lambda_{j}-g_{j k} g^{i l} d_{l}, \tag{2.6}
\end{equation*}
$$

where $b_{j}(x, \dot{x})$ and $d_{l}(x, \dot{x})$ are vector fields satisfying the following
(a) $\dot{\partial}_{j} \lambda=\lambda_{j}$,
(b) $\dot{\partial}_{k} \lambda_{j}=\lambda_{j k}$,
(c) $\lambda_{j k} \dot{x}^{k}=\lambda_{j}$,
(d) $\lambda_{j} \dot{x}^{j}=\lambda$,
(e) $\dot{\partial}_{j} d=d_{j}$,
(f) $\dot{\partial}_{k} d_{j}=d_{j k}$,
(g) $d_{j k} \dot{x}^{k}=d_{j} \quad$ and
(h) $d_{j} \dot{x}^{j}=\mathrm{d}$.

With the help of (1.23) the Lie-derivative of $\tilde{R}_{h j k}^{i}$ in an affinely connected \bar{R} - projective space is given by

$$
\begin{equation*}
f_{v} \tilde{R}_{j k h}^{i}=\left(f_{v} \tilde{\Gamma}_{k h}^{i}\right)-I_{j}-\left(f_{v} \tilde{\delta}_{j h}^{i}\right)-\left.\right|_{k} . \tag{2.8}
\end{equation*}
$$

We now make use of (2.6) in (2.8) and get

$$
\begin{equation*}
f_{v} \tilde{R}_{j k h}^{i}=\left.\delta_{k}^{i} \lambda_{h}{ }^{-}\right|_{j}-\left.\delta_{j}^{i} \lambda_{h}{ }^{-}\right|_{k}-g^{i l}\left(\left.g_{k h} d_{l}{ }^{-}\right|_{j}-\left.g_{j h} d_{l}{ }^{-}\right|_{k}\right), \tag{2.9}
\end{equation*}
$$

where, we have taken into account the fact that the covariant derivative of δ_{j}^{i} and $g^{i j}$ vanish. At this stage, if we assume that the Finsler space F_{n}^{*} under consideration admits \bar{R} - projective motion as well as \bar{R} - curvature collineation then (2.9) gives
$\left.\delta_{k}^{i} \lambda_{h}{ }^{-}\right|_{j}-\left.\delta_{j}^{i} \lambda_{h}{ }^{-}\right|_{k}-g^{i l}\left(\left.g_{k h} d_{l}{ }^{-}\right|_{j}-\left.g_{j h} d_{l}{ }^{-}\right|_{k}\right)=0$.
Contracting (2.10) with respect to the indices i and j, we get

$$
\begin{equation*}
\left.d_{h}{ }^{-}\right|_{k}=\left.(n-1) \lambda_{h}{ }^{-}\right|_{k}-\left.g^{j l} g_{k h} d_{l}{ }^{-}\right|_{j} . \tag{2.11}
\end{equation*}
$$

So, we get our first result as below:
Theorem (2.1):
If \bar{R}-Projective motion in a Finsler space F_{n}^{*} is \bar{R}-curvature collineation, then the set of equation (2.11) must hold.
Again Contracting equation (2.9) with respect to the indices i and j and get

$$
\begin{equation*}
f_{v} \tilde{R}_{k h}^{*}=\left.\lambda_{h}{ }^{-}\right|_{k}-\left.n \lambda_{h}{ }^{-}\right|_{k}-g^{j l}\left(\left.g_{k h} d_{l}{ }^{-}\right|_{j}-\left.g_{j h} d_{l}{ }^{-}\right|_{k}\right)=0 . \tag{2.12}
\end{equation*}
$$

At this stage, Let us now make the assumption that the Finsler space F_{n}^{*} under consideration admits \bar{R} projective motion as well as \bar{R} - Ricci collineation then from (2.12), we get

$$
\begin{equation*}
\lambda_{h}-\left.\right|_{k}=d_{h}-\left.\right|_{k}-\frac{g^{j l}\left(g_{k l} d_{h}-\left.\right|_{j}-g_{j h} d_{l}-\left.\right|_{k}\right)}{n-1} . \tag{2.13}
\end{equation*}
$$

Conversely, if we assume that $\left.\lambda_{h}{ }^{-}\right|_{k}$ is given by (2.13) then the relation (2.12) yields
$f_{v} \widetilde{R}_{k h}^{*}=0$.
We now state our next results as below:

Theorem (2.2):

In an affinely connected $\overline{\boldsymbol{R}}$-projective F_{n}^{*}, the necessary and sufficient condition that $\overline{\boldsymbol{R}}$ projective motion be \bar{R}-Ricci collineation is that form of function $\lambda(x, \dot{x})$ is given by (2.13).

In a symmetric Finsler space the commutation formula (1.23) may be written as $\left.\quad\left(f_{v} \tilde{R}_{j k h}^{i}\right)^{-}\right|_{l}=$ $\tilde{R}_{j k h}^{m} \mathscr{V}_{\nu} \tilde{\Gamma}_{m l}^{i}-\tilde{R}_{m k h}^{i} \mathscr{f}_{\nu} \tilde{\Gamma}_{j k}^{m}-\tilde{R}_{j m h}^{i} \mathscr{f}_{\nu} \tilde{\Gamma}_{k l}^{m}-\tilde{R}_{j k m}^{i} \mathcal{L}_{\nu} \tilde{\Gamma}_{h l}^{m}-\left(\dot{\partial}_{m} \tilde{R}_{j k h}^{i}\right)\left(\mathcal{L}_{\nu} \tilde{\Gamma}_{s l}^{m}\right) \dot{x}^{s}$.

Making use of the equations (2.6) and (2.7) in (2.15) we get
$\left.\left(\quad f_{v} \tilde{R}_{j k h}^{i}\right)^{-}\right|_{l}=\left(\delta_{l}^{i} \lambda_{m}-g_{m l} g^{i r} d_{r}\right) \tilde{R}_{j k h}^{m}-\tilde{R}_{l k h}^{i} \lambda_{j}+g_{j l} g^{i r} d_{r} \tilde{R}_{m k h}^{i}-2 \tilde{R}_{j k h}^{i} \lambda_{l}-\tilde{R}_{j l k}^{i} \lambda_{h}+g_{k l} g^{m r} d_{r} \tilde{R}_{m j h}^{i}-$ $\tilde{R}_{j k l}^{i} \lambda_{h}+g_{h l} g^{m r} d_{r} \widetilde{R}_{j k m}^{i}-\lambda\left(\dot{\partial}_{l} \tilde{R}_{j k h}^{i}\right)+g_{s l} g^{m r} d_{r}\left(\dot{\partial}_{m} \widetilde{R}_{j k h}^{i}\right) \dot{x}^{s}$.
Trnsvecting (2.15) successively by \dot{x}^{h} and \dot{x}^{k} and thereafter using (1.13), we get

$$
\begin{align*}
& \left(\delta_{l}^{i} \lambda_{m}-g_{m l} g^{i r} d_{r}\right) \tilde{R}_{j k h}^{m} \dot{x}^{h} \quad \dot{x}^{k}-\lambda_{j} \tilde{R}_{l k h}^{i} \dot{x}^{h} \quad \dot{x}^{k}+g_{j l} g^{i r} d_{r} \tilde{R}_{m k h}^{i} \dot{x}^{h} \quad \dot{x}^{k}-2 \lambda_{l} \tilde{R}_{j k h}^{i} \dot{x}^{h} \quad \dot{x}^{k}-\tilde{R}_{j l k}^{i} \lambda_{h} \dot{x}^{h} \quad \dot{x}^{k}+ \\
& g_{k l} g^{m r} d_{r} \widetilde{R}_{m j n}^{i} \dot{x}^{h} \dot{x}^{k}-\lambda \tilde{R}_{j k l}^{i} \dot{x}^{k}+g_{h l} g^{m r} d_{r} \tilde{R}_{j k m}^{i} \dot{x}^{h} \dot{x}^{k}-\lambda\left(\dot{\partial}_{l} \widetilde{R}_{j k h}^{i}\right) \dot{x}^{h} \dot{x}^{k}+g_{s l} g^{m r} d_{r}\left(\dot{\partial}_{m} \widetilde{R}_{j k h}^{i}\right) \dot{x}^{s} \dot{x}^{h} \dot{x}^{k} . \tag{2.17}
\end{align*}
$$

Contracting (2.17) with respect to the indices i and j, we get

$$
\begin{gather*}
\tilde{R}_{i k h}^{m}\left(\delta_{l}^{i} \lambda_{m}-g_{m l} g^{i r} d_{r}\right) \dot{x}^{h} \dot{x}^{k}+\tilde{R}_{l k h}^{i} \lambda_{i} \dot{x}^{h} \dot{x}^{k}+d_{l} \tilde{R}_{m k h}^{i} \dot{x}^{h} \quad \dot{x}^{k}-2 \lambda_{l} \tilde{R}_{k k} \dot{x}^{h} \quad \dot{x}^{k}-p \tilde{R}_{l h} \dot{x}^{h}+ \\
+g_{k l} g^{m r} d_{r} \tilde{R}_{m h} \dot{x}^{h} \dot{x}^{k}-\lambda \tilde{R}_{k l} \dot{x}^{k}+g_{h l} g^{m r} d_{r} \tilde{R}_{k m} \dot{x}^{h} \dot{x}^{k}-\lambda\left(\dot{\partial}_{l} \tilde{R}_{k h}\right) \dot{x}^{h} \dot{x}^{k}++g_{s l} g^{m r} d_{r}\left(\dot{\partial}_{m} \tilde{R}_{k h}\right) \dot{x}^{s} \dot{x}^{h} \dot{x}^{k} . \tag{2.18}
\end{gather*}
$$

where, $\tilde{R}_{i k h}^{i}=\tilde{R}_{k h}$.
Now our last result is stated as below:

Theorem (2.3):

In a special \bar{R} - projective symmetric F_{n}^{*}, \bar{R}-projective motion will be a special \bar{R}-curvature collineation if the Ricci tensor $\widetilde{R}_{k h}(x, \dot{x})$ and the scalar $\lambda(x, \dot{x})$ are connected by the equation (2.18) . CONCLUSION:

In this paper we have studied special \bar{R}-Projective motion in a Finsler space $F_{n}{ }^{*}$ equipped with nonsymmetric connection with special reference to Θ - covariant derivative. In this context we have studied \bar{R} Curvature collineation and Ricci- Collineation. We have found new results in the form of the \bar{R}-projective motion consisting of \bar{R}-curvature collineation and \bar{R}-Ricci collineation in an affinely connected \bar{R}-projective F_{n}^{*}. We have also found that the \bar{R}-projective motion will be a special \bar{R}-curvature collineation in a special \bar{R}-symmetric F_{n}^{*}.

REFERENCES

[1] Misra, R.B. : Groups Of Transformations In Finslerian Spaces, International Atomic Energy Agency And Nations Educational Scientific and Cultural Organization International Centre For Theoretical Physics, 312(93), p.1-19, (1993).
[2] Davies, E.T . : Lie-derivation in generalized metric spaces, Ann. Mat. Pura. Appl. 18, 261-274(1939)
[3] Rund, H. : The differential geometry of Finsler spaces, Springer-Verlag., Berlin (1959).
[4] Yano, k . : The theory of Lie-derivatives and its applications, North Holland Publ. Co., Amsterdam (1957).
[5] Katzin, G.H. : Curvature collineations of Finsler spaces, Tensor (NS) 3, p. 33-41
Levine, J. (1977).
and
Davies, W.R .
[6] Pandey, S.K.
[7] Vranceanu, G.H. : Lectii de geometrie differentiala, Vol. I, EDP, BUC, (1962).
[8] Cartan, E : Les espace de Finsler, Actualities, 79, Paris (1934).

[^0]: Copyright : © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited

