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ABSTRACT 

 

This paper investigates an optimum strategy of two-phase M/M/1 queueing system with server dormant, start 

up and breakdowns. The server first starts batch service where the customers arrive according to Poisson 

process and in second-phase it gives individual service.  The server is turned off each time the system empties.  

When the queue length reaches or exceeds M, the server will be in dormant state and when it reaches to N or 

more than N batch service starts. During both batch as well as individual services the server may breakdown at 

any time according to a Poisson process and repair will be immediately done. Explicit expressions for the steady 

state distribution of the number of customers in the system are obtained and also derived various system 

measures.  

Keywords : Vacation, N-Policy, Two-phase Queueing System, Server Breakdowns. 

 

I. INTRODUCTION 

 

We consider two-phase M/M/1 queuing system with 

N-policy and server breakdowns that operates as 

follows. Customers arrive individually according to a 

Poisson process and receive batch service in first 

phase and individual service in second phase. The 

server is turned off each time the system empties, as 

and when the queue length reaches or exceeds N 

(threshold) batch service starts. Before the batch 

service, the system requires a dormant period 

followed by a random startup time for pre-service. 

When the number of customers in the queue is less 

than or equal to M-1, the server is in vacation, when 

the number of customers in the queue is greater than 

or equal to M and up to N-1 server is in dormant  and 

when the number of customers become N it goes to a 

startup period for pre service. Arrivals during pre-

service are also allowed to enter the batch. As soon as 

the startup period is over the server starts the batch 

service followed by individual service to all customers 

in the batch. During both batch as well as individual 

services, the server may breakdown at any time 

according to a Poisson process and if the server fails, 

it is immediately sent for repair. After repair the 

server resume service. 

 

A practical problem related to a manufacturing 

system is presented for illustration purpose. Consider 

a production system where the items are produced on 

order. The orders are collected as and when their 

number reaches M the production process alerts and 

their number reaches N the production process gets 

initiated. Service may require two phases, such as 

preliminary checking of orders followed by the actual 

production. When there are no orders the production 

process is stopped and is resumed only when N orders 

accumulate. Before each production cycle the 

machine may need certain startup time and it may 

breakdowns due to some unforeseen problems. 
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Krishna and Lee (1990) first introduced the two-phase 

M/M/1 queueing system. Doshi (1991) studied the 

two-phase M/G/1 queueing system. Selvam and 

Sivasankaran (1994) introduced the two-phase 

queueing system with server vacations. Kim and Chae 

(1998) analyzed the two-phase queueing system with 

N-policy. Wang (1995) first proposed a Markovian 

queueing system under the N-Policy with server 

breakdowns. Wang (1997) and Wang et al. (1999) 

extended the model proposed by Wang (1995) to 

M/Ek/1 and M/H2/1 queueing systems respectively. Ke 

(2003) presented the optimal control policy in batch 

arrival queue with server breakdowns and multiple 

vacations. Wang and Li (2008) studied a retrial queue 

with general retrial times, Bernoulli vacations, setup 

times and two-phase service. Anantha Lakshmi et. al. 

(2008) presented the optimal strategy analysis of an 

N-policy bulk arrival queueing system with a 

removable and non-reliable server.  Jau-Chuan Ke 

(2006) derived the p.g.f. of the number of customers 

for the (m, N) policy M/G/1 queueing systems with an 

unreliable server and single vacation. He also studied 

other important system characteristics. Vasanta 

Kumar and Chandan (2007) and (2008) presented the 

optimal control policy  of two-phase M/M/1 and 

M/Ek/1 queueing systems with N-policy. Vasanta 

Kumar et al. (2011) studied Two-phase N-policy 

Mx/M/1 queueing system with startup times and 

server breakdowns and also some of the system 

performance measures are derived. 

 

This paper extends the work of Anantha Lakshmi et al. 

(2008) to an N-policy two-phase M/M/1 queueing 

system with startup times and server breakdowns. 

 

The objectives of this paper are: 

(i) to establish the state equations to obtain the 

steady state probability distribution of the 

number of units in the system. 

(ii) to derive system characteristics such as 

expected number of units in the system when 

the server is in vacation, in setup, at batch 

service, at individual service and breakdown 

states respectively and expected system length. 

 

II. THE SYSTEM AND ASSUMPTIONS 

Customers are assumed to arrive according to a 

Poisson process with mean arrival rate 𝜆 and join the 

batch queue. When the batch size reaches M (≥1and 

≤N-1 ) the server will spend a random dormant period 

t1, which is assumed to follow an exponential 

distribution with mean 1/𝜃1 and  when it reaches to N  

the server will spend a random startup time t2 for pre-

service, which is assumed to follow an exponential 

distribution with mean 1/𝜃. As soon as the period of 

startup is over, the server begins batch service in first 

phase. While serving in batch queue, the server may 

breakdown at any time with a Poisson breakdown 

rate ξ1. When the server fails it is immediately 

repaired at a repair rate ξ2, where the repair times are 

exponentially distributed. Upon completion of batch 

service the server proceeds to the second phase to 

serve all customers in the batch individually. 

Individual queue is served in FIFO mode. Batch 

service time is assumed to be exponentially 

distributed with mean 1/𝛽  and is independent of 

batch size. Individual service times are also assumed 

to be exponentially distributed with mean 1/𝜇. While 

serving in individual queue, the server may 

breakdown at any time with a Poisson breakdown 

rate 𝛼 1. When the server fails it is immediately 

repaired at a repair rate𝛼2, where the repair times are 

exponentially distributed. After repair the server 

immediately resumes service in individual queue. On 

completion of individual service the server returns to 

the batch queue to serve the customers who have 

arrived. If the customers are waiting, the server starts 

the cycle by providing them batch service followed 

by individual service. If no customer is waiting, the 

server takes a vacation and return from vacation only 

after M customers accumulate in the batch queue and 

start pre-service work. 
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III. STEADY – STATE ANALYSIS 

In steady – state the following notations are used. 

P0, i, 0 = The probability that there are i 

customers in the batch queue when 

the server is on vacation, where i = 

0,1,2,3,…,M-1 

P1, i, 0 = The probability that there are i 

customers in the batch queue when 

the server is in dormant period, where 

i= M,M+1,……N-1 

P2, i, 0 =  The probability that there are i 

customers in the batch queue when 

the server is doing pre-service (startup 

work), where i = N, N+1, 

N+2,…………. 

P3, i, 0 = The probability that there are i 

customers in the batch queue when 

the server is in batch service where i = 

1,2,3,…   

P4,i,0 = The probability that there are i 

customers in batch queue when the 

server is working but found to be 

broken down, where i = 1,2,3,…   

P5,i,j       =    The probability that there are i customers in 

the batch queue and j customers in 

individual queue when the server is in 

individual service, where i = 0,1,2,… 

and j = 1,2,3,… 

P6,i,j       =   The probability that there are i customers in 

the batch queue and j customers in 

individual queue when the server is 

working but found to be broken down, 

where i = 0,1,2,… and j = 1,2,3, … 

 

The steady-state equations satisfied by the system size probabilities are as follows: 

   𝜆 P0, 0, 0 = 𝜇 P5,0,1 . (1) 

   𝜆 P0, i, 0           = 𝜆P0, i -1, 0,   1 ≤ i ≤ M – 1. (2) 

          (𝜆 +𝜃1) P1, M, 0   =𝜆 P0,M-1, 0 . (3) 

    (𝜆 +𝜃1) P1, i, 0  = 𝜆P1, i -- 1, 0,     M+1≤ i ≤N-1. (4) 

(𝜆 +𝜃) P2, N, 0    = 𝜆 P1, N-1, 0 . (5) 

(𝜆 +𝜃) P2, i, 0=𝜆P2, i -- 1, 0,     i > N  .  (6) 

(𝜆 +𝛽 +ξ1) P3, i, 0     = ξ2 P4, i, 0+𝜆P3 , i - 1, 0 + 𝜇P5, i, 1 ,1≤ i ≤ N – 1 . (7) 

(𝜆 +𝛽 +ξ1) P3, i, 0     = ξ2 P4, i, 0+𝜆P3 , i - 1, 0 + 𝜇P5, i, 1+  𝜃 P2, i, 0,  i ≥ N . (8) 

 (𝜆 +ξ2) P4, i, 0      = 𝜆P4, i - 1, 0 + ξ1 P3, i, 0,     i ≥ 1. (9) 

     (𝜆 +𝛼1+𝜇)P5,0,j=𝜇P5,0,j+1+𝛽P3,j,0+𝛼2P6,0,j,      j≥1.                                    (10) 

     (𝜆 +𝛼1+𝜇)P5,i,j=𝜇P5,i,j+1+𝜆P5,i-1,j+𝛼2P6,i,j, i,j≥1.                                       (11) 
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    (𝜆 +𝛼2) P6, 0, j    =𝛼1P5,0,j  ,    j≥1.                                                                   (12) 

    (𝜆 +𝛼2) P6, i, j       =  𝛼1P5,i,j+𝜆P6,i-1,j,        i,j≥1 .                                             (13) 

The following probability generating functions are defined 

                G0 (z)  = 𝛴

𝑖=0
𝑀−1

P0, i, 0  z
i , |z| ≤1 , G1 (z) = ∑

𝑖=𝑀
𝑁−1

 P1, i, 0  z
i , |z| ≤1 , 

                G2 (z) = ∑

𝑖=𝑁
∞

 P2, i, 0  z
i , |z| ≤1 ,  

                G3 (z) = ∑

𝑖=1
∞

 P3, i, 0  z
i , |z| ≤1 ,  

                G4 (z) = ∑

𝑖=1
∞

 P4, i, 0  z
i , |z| ≤1 ,  

                G5 (z, y) = ∑

𝑖=0
∞

 ∑

𝑗=1
∞

 P5, i, j𝑧𝑖𝑦𝑗 , |z| ≤1, and |y|≤|  , 

                G6 (z, y) = 


=


0i

∑

𝑗=1
∞

 P6, i, j𝑧𝑖𝑦𝑗 , |z|≤1 and |y| ≤ 1 , 

                 Rj  (z) = ∑

𝑖=0
∞

 P5, i, j z i, |z| ≤ 1  and Sj (z) = ∑

𝑖=0
∞

P6, i, j z
i, |z| ≤1. 

 

Multiplication of equation (1.2) by zi and adding over i (1 ≤i≤M-1) gives 

                     Go (z) = 
(1−𝑧𝑀)

(1−𝑧)
 P0, 0, 0.                                            (14) 

Multiplication of equations (1.3 ) and (1.4) by zi and adding over i (i≥N) gives 

                    G1 (z) = 
𝜆(𝑍𝑀−𝑍𝑁(

𝜆

𝜆+𝜃1
)
𝑁−𝑀

)

(𝜆(1−𝑍)+𝜃1)
 P0, 0, 0.                         (15) 

Multiplication of equations (1.5) and (1.6) by zi and adding over i (i ≥N) gives 

(𝜆 (1-z) +𝜃 G2 (z)=  (
𝜆

𝜆+𝜃1
)
𝑁−𝑀

ZN P0, 0, 0  .                                (16) 

Multiplication of equations (1.7) and (1.8) by zi and adding over i (i ≥1) gives 

(𝜆 (1-z) +𝛽 + ξ1) G3 (z)  =  ξ2 G4 (z)  +𝜇S1 (z) + 𝜃 G2 (z) - 𝜆 P0, 0, 0.       (17) 

Multiplication of equation (1.9) by zi and adding over i (i≥1) gives 

(𝜆 (1-z)  + ξ2) G4 (z)  = ξ1 G3 (z) .  (18) 

Multiplication of equation (1.11) by zi and adding over i (i≥1)  

and using (1.10) gives 

(𝜆 (1-z) +𝛼1+𝜇) Rj (z)=𝜇Rj+1 (z) +  𝛼2 Sj (z) + 𝛽 P3, j, 0. (19) 

Multiplication of this equation by yj and adding over j (j≥1) gives 

 [𝜆y (1-z)+𝛼1y -𝜇 (1-y)] G5 (z, y) = y𝛼2 G6 (z,y) +𝛽y G3 (y) - 𝜇y R1(z)...(20)   

Multiplication of equation (1.13) by zi and adding over i (i≥1) 

 and using (1.12) gives 

                    (𝜆 (1-z) +𝛼2) Sj (z) = 𝛼1 Sj (z). (21) 

Multiplication of this equation by yj and adding over j (j≥1) gives 

                    (𝜆 (1-z) +𝛼2) G6 (z ,y) = 𝛼1G5 (z, y ). (22) 

The total probability generating function G(z, y) is given by 

G (z ,y) = G0 (z) + G1 (z) + G2 (z) + G3 (z) + G4 (z) + G5 (z ,y) + G6 (z ,y)   

The normalizing condition is 

G (1,1) =G0(1)+G1(1)+ G2 (1) + G3(1) + G4 (1)+G5(1,1) + G6(1, 1) =  1 . (23) 

From equations (1.14) to (1.22)  

     

G0 (1)   =  M P0, 0,0  ,  (24) 

G1 (1)   = 
𝜆

𝜃1
 (1 − (

𝜆

𝜆+𝜃1
)
𝑁−𝑀

)P0, 0, 0  , (25) 
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G2 (1)   =  



(

𝜆

𝜆+𝜃1
)
𝑁−𝑀

 P0, 0, 0  . (26) 

 

G3 (1)  = 


1
[𝜇𝑅1(1) + ((

𝜆

𝜆+𝜃1
)
𝑁−𝑀

− 1) 𝜆𝑃0,0,0]. (27) 

G4 (1)  = 
𝜉1

𝜉2
G3 (1)  .   (28) 

G5 (1 ,1)  = 
(𝛼2𝛽𝐺31(1)−𝜆𝛼2𝜇𝑅1

1(1))

(𝜇𝛼2−𝜆(𝛼1+𝛼2))
  .   (29) 

and  G6 (1,1) = 
𝛼1

𝛼2
 G5(1,1)  , (30) 

where  P0, 0, 0 = 
[1−

𝜆

𝜇
(1+

𝛼1

𝛼2
)−

𝜆

𝛽
(1+

𝜉1

𝜉2
)]

(𝑀+
𝜆

𝜃1
−
𝜆

𝜃1
(

𝜆

𝜆+𝜃1
)
𝑁−𝑀

+
𝜆

𝜃
(

𝜆

𝜆+𝜃1
)
𝑁−𝑀

)
  . 

Normalizing condition (1.23) gives 

 R1(1)=  
{
 
 
 
 

 
 
 
 
𝜆

𝜇
(1+

𝛼1

𝛼2
)+

𝜆

𝛽
(1+

𝜉1

𝜉2
)−

𝜆2

𝜃

(𝛼1+𝛼2)

(𝜇𝛼2−𝜆(𝛼1+𝛼2))
(1−

𝜃

𝜉2
)(

𝜆

𝜆+𝜃1
)
𝑁−𝑀

𝑃0,0,0−

𝑁𝜆(𝛼1+𝛼2)

(𝜇𝛼2−𝜆(𝛼1+𝛼2))
(

𝜆

𝜆+𝜃1
)
𝑁−𝑀

𝑃0,0,0−
𝜆2

𝜉2

(𝛼1+𝛼2)

(𝜇𝛼2−𝜆(𝛼1+𝛼2))
𝑃0,0,0−

𝜆

𝛽
[((

𝜆

𝜆+𝜃1
)
𝑁−𝑀

−1)[(1+
𝜉1

𝜉2
)+

(1+
𝛼1
𝛼2
)(1+

𝛽
𝜉2
+
𝜉1
𝜉2
)

(𝜇𝛼2−𝜆(𝛼1+𝛼2))
𝜆𝛼2]]

}
 
 
 
 

 
 
 
 

[
𝜇

𝛽
[(1+

𝜉1

𝜉2
)+

(1+
𝛼1
𝛼2
)

(𝜇𝛼2−𝜆(𝛼1+𝛼2))
(1+

𝛽

𝜉2
+
𝜉1

𝜉2
)𝜆𝛼2]−

𝜇𝜆(𝛼1+𝛼2)

𝜉2(𝜇𝛼2−𝜆(𝛼1+𝛼2))
]

. 

Substituting the value of R1 (1) in (1.27), (1.28), (1.29) and (1.30) gives G2 (1), G3(1), G4 (1), G5 (1,1),  G6 

(1,1) .                  

  

Under steady state conditions, let P0, P1, P2, P3,P4 , P5 and P6 be the probabilities that the server is in 

vacation, Dormant, startup, in batch service, in batch service  with break down, in individual service and 

breakdown states respectively. Then, 

 

          P0 = G0 (1) = M P0, 0, 0, 

          P1 = 
𝜆

𝜃1
 (1 − (

𝜆

𝜆+𝜃1
)
𝑁−𝑀

)P0, 0, 0  . 

          P2 = 



(

𝜆

𝜆+𝜃1
)
𝑁−𝑀

 P0, 0, 0   . 

          P3 = 


1
[𝜇𝑅1(1) + ((

𝜆

𝜆+𝜃1
)
𝑁−𝑀

− 1) 𝜆𝑃0,0,0] . 

          P4 = 
𝜉1

𝜉2
G3 (1). 

          P5= 

(

G3 (1)(𝜆𝛼2+
𝜆𝛼2𝛽

𝜉2
+
𝜆𝛼2𝜉1

𝜉2
)+𝐺2 (1)(𝜆𝛼2−

𝜆𝛼2𝜃

𝜉2
)−

𝜇𝛼2𝜆

𝜉2
𝑅1(1)+𝑁𝛼2𝜆(

𝜆

𝜆+𝜃1
)
𝑁−𝑀

𝑃0, 0, 0 + 𝜆2
𝛼2

𝜉2
P0, 0, 0  

)

(𝜇𝛼2−𝜆(𝛼1+𝛼2))
.and   

          P6=
𝛼1

𝛼2
𝐺5(1,1). 

 

IV. EXPECTED NUMBER OF CUSTOMERS IN THE SYSTEM 

 

Using the probability generating functions expected number of customers in the system at different states 

are presented below. 

Let L0, L1, L2, L3, L4,L5 and L6 be the expected number of customers in the system when the server is in 

idle, Dormant, startup, batch service, batch service, break down in batch service, individual service and 

breakdown states respectively. 
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Then 

L0 = ∑

𝑖=0
𝑀−1

 i P0, i, 0 =   G0
1 (1) = 

𝑀(𝑀−1)

2
 P0, 0, 0  . (31) 

L1= ∑

𝑖=𝑀
𝑁−1

iP1,i,0 =G1
1 (1) = [

𝑀𝜆1

𝜃1
+ (

𝜆

𝜃1
)
2
(1 − (

𝜆

𝜆+𝜃1
))

𝑁−𝑀−1

−
𝜆

𝜃1
(𝑁 − 1) (

𝜆

𝜆+𝜃1
)
𝑁−𝑀

]P0,0,0  .  

 (32) 

L2= ∑

𝑖=𝑁
∞

iP2,i,0=G2
1(1) 

= 
𝜆

𝜃
(

𝜆

𝜆+𝜃1
)
𝑁−𝑀

(
𝜆+𝑁𝜃

𝜃
)𝑃0,0,0. (33) 

L3 = ∑

𝑖=𝑁
∞

  iP3,i, 0  = G3
1 (1)   

 

=      

𝜆𝜇

𝛽2
(1+

𝜉1
𝜉2
)𝑅1(1)+

𝜆

𝛽
(

𝜆

𝜆+𝜃1
)
𝑁−𝑀

(
𝜆+𝑁𝜃

𝜃
)𝑃0,0,0−

𝜆𝜃

𝛽𝜉2
𝐺2(1)

+
𝜆2

𝛽2
𝑃0,0,0[[(

𝜆

𝜆+𝜃1
)
𝑁−𝑀

−1][1+
𝜉1
𝜉2
+
𝛽

𝜉2
]+

𝛽

𝜉2
]

(1−
𝜆

𝜇𝛼2
(𝛼1+𝛼2))

  .     

  

L4 = ∑

𝑖=1
∞

𝑖𝑃4,𝑖,0 = G4
1 (1) 

 =
( ) ( )11 32

2

11

3

2

1 GG







+

                                                                   (34) 

 

L5=


=


0i

∑

𝑗=1
∞

 (i + j) P5, i, j = G5
1 (1 ,1)   =  

[
 
 
 
 
 
 
 
 
 
 
2(𝜆(𝛼1+𝛼2+𝜇)−𝜆

2)𝛼2
(𝛽𝐺3

1(1)−𝜇𝑆1
1(1))

(𝜇𝛼2−𝜆(𝛼1+𝛼2))

+2(𝛼2−𝜆)(𝛽𝐺3
1(1)−𝜇𝑆1

1(1))+𝛼2

{
 
 
 
 

 
 
 
 
1

𝜉2
[2𝜆(𝛽+𝜉1+𝜉2)]−2𝜆𝛽(

𝛼1+𝛼2
𝜇𝛼2

)𝐺3
1(1)

+
𝜆

𝜃
(
𝜆+𝑁𝜃

𝜃
)(

𝜆

𝜆+𝜃1
)
𝑁−𝑀

(2𝜆𝑃0,0,0−
2𝜆𝜃

𝜉2
)

+𝜆𝑁(𝑁−1)(
𝜆

𝜆+𝜃1
)
𝑁−𝑀

𝑃0,0,0−
2𝜆2

𝜉2

𝜇

𝛽
𝑆1(1)

−
2𝜆3

𝜉2
[(

𝜆

𝜆+𝜃1
)
𝑁−𝑀

−1]𝑃0,0,0
}
 
 
 
 

 
 
 
 

]
 
 
 
 
 
 
 
 
 
 

(2(𝜇𝛼2−𝜆(𝛼1+𝛼2)))
                                                                                                                                                                                    

(35) 

L6=


=


0i

∑

𝑗=1
∞

 (i + j) P6, i, j = G6
1 (1 ,1)  

      =
( ) ( )1,11,1 52

2

11

5

2

1 GG







+

.                           (36)   

 

Thus the expected number of units in the system 

 

L(N*)=L0+ L1+ L2+ L3+ L4+ L5+ L6 

=
𝑀(𝑀−1)

2
 P0, 0, 0  + [

𝑀𝜆1

𝜃1
+ (

𝜆

𝜃1
)
2
(1 − (

𝜆

𝜆+𝜃1
))

𝑁−𝑀−1

−
𝜆

𝜃1
(𝑁 − 1) (

𝜆

𝜆+𝜃1
)
𝑁−𝑀

]P0,0,0  + 
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𝜆

𝜃
(

𝜆

𝜆+𝜃1
)
𝑁−𝑀

(
𝜆+𝑁𝜃

𝜃
)𝑃0,0,0.+ 

 
𝜆𝜇

𝛽2
(1+

𝜉1
𝜉2
)𝑅1(1)+

𝜆

𝛽
(

𝜆

𝜆+𝜃1
)
𝑁−𝑀

(
𝜆+𝑁𝜃

𝜃
)𝑃0,0,0−

𝜆𝜃

𝛽𝜉2
𝐺2(1)

+
𝜆2

𝛽2
𝑃0,0,0[[(

𝜆

𝜆+𝜃1
)
𝑁−𝑀

−1][1+
𝜉1
𝜉2
+
𝛽

𝜉2
]+

𝛽

𝜉2
]

(1−
𝜆

𝜇𝛼2
(𝛼1+𝛼2))

+ 

 

( ) ( )11 32

2

11

3

2

1 GG







+

+ 

[
 
 
 
 
 
 
 
 
 
 
 
2(𝜆(𝛼1 + 𝛼2 + 𝜇) − 𝜆

2)𝛼2
(𝛽𝐺3

1(1) − 𝜇𝑆1
1(1))

(𝜇𝛼2 − 𝜆(𝛼1 + 𝛼2))

+2(𝛼2 − 𝜆) (𝛽𝐺3
1(1) − 𝜇𝑆1

1(1)) + 𝛼2

{
 
 
 
 

 
 
 
 
1
𝜉2
[2𝜆(𝛽 + 𝜉1 + 𝜉2)] − 2𝜆𝛽 (

𝛼1 + 𝛼2
𝜇𝛼2

)𝐺3
1(1)

+
𝜆
𝜃
(
𝜆 + 𝑁𝜃
𝜃

) (
𝜆

𝜆 + 𝜃1
)
𝑁−𝑀

(2𝜆𝑃0,0,0 −
2𝜆𝜃
𝜉2
)

+𝜆𝑁(𝑁 − 1) (
𝜆

𝜆 + 𝜃1
)
𝑁−𝑀

𝑃0,0,0 −
2𝜆2

𝜉2

𝜇
𝛽
𝑆1(1)

−
2𝜆3

𝜉2
[(

𝜆
𝜆 + 𝜃1

)
𝑁−𝑀

− 1]𝑃0,0,0
}
 
 
 
 

 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 

(2(𝜇𝛼2 − 𝜆(𝛼1 + 𝛼2)))
 

+ ( ) ( )1,11,1 52

2

11

5

2

1 GG







+   .                                      (37) 

 

V. CHARACTERISTIC FEATURES OF THE 

SYSTEM 

 

In this section, we obtain the expected system length 

when the server is in different states. Let 

𝐸0, 𝐸1, 𝐸2, 𝐸3, 𝐸4 𝑎𝑛𝑑 𝐸5denote the expected length of 

vacation period,  dormant period, startup period, 

batch service period , batch service breakdown period, 

individual service period, and waiting period for 

repair during individual service respectively. Then 

the expected length of a busy cycle is given by

 

𝐸𝑐 = 𝐸0 + 𝐸1 + 𝐸2 + 𝐸3 + 𝐸4 + 𝐸5 + 𝐸6.

 

 

The long run fractions of time the server is in 

different states are as follows: 
𝐸0

𝐸𝑐
= 𝑝0,  

𝐸1

𝐸𝑐
= 𝑝1, 

𝐸2

𝐸𝑐
= 𝑝2,  

𝐸3

𝐸𝑐
= 𝑝3, 

𝐸4

𝐸𝑐
= 𝑝4, 

𝐸5

𝐸𝑐
= 𝑝5, 

𝐸6
𝐸𝑐
= 𝑝6 

Expected length of vacation period is given by 

𝐸0 =
𝑁

𝜆
 .  

Hence,  

𝐸𝑐 =
1

(𝜆𝑝0,0,0)
 .  

 

VI. COST FUNCTION 

In this section, we determine the long run average 

cost function for the two- phase M/M/1, N-policy 

queue with server break downs. It is as follows 

Let T (N*) be the average cost per unit of time, 

then 

𝑇(𝑁 ∗) = 𝐶ℎ𝐿(𝑁) + 𝐶𝑜 (
𝐸3

𝐸𝑐
+
𝐸5

𝐸𝑐
) +

𝐶𝑚 (
𝐸𝑆

𝐸𝑐
)+𝐶𝑏1 (

𝐸4

𝐸𝑐
)+𝐶𝑏2 (

𝐸6

𝐸𝑐
)+ 𝐶𝑠 (

1

𝐸𝑐
)

 
                   -𝐶𝑟 (

𝐸0

𝐸𝑐
).        
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Where 

𝐶ℎ= Holding cost per unit time for each customer 

present in the system, 

𝐶𝑜 = Cost per unit time for keeping the server on and 

in operation, 

𝐶𝑚= Startup cost per unit time, 

𝐶𝑠 = Setup cost per cycle, 

𝐶𝑏1 = Break down cost per unit time for the 

unavailable server in batch service mode,  

𝐶𝑏2 = Break down cost per unit time for the 

unavailable server in individual service mode, 

𝐶𝑟= Reward per unit time as the server is doing 

secondary work in vacation. 

 

A computational algorithm translated in MATLAB 

is used to obtain the numerical values. 

 

VII. SENSITIVITY ANALYSIS 

 

In order to verify the efficiency of our analytical 

results, we perform numerical experiment by using 

MATLAB. The variations of different parameters 

(both monetary and non-monetary) on the mean 

number of jobs in the system and total expected cost 

are shown. 

Parameters for which the model is relatively sensitive 

would require more attention of researchers, as 

compared to the parameters for which the model is 

relatively insensitive or less sensitive.  

We perform the sensitivity analysis by fixing 

Non –monetary parameters as 

λ=0.5, µ=8,α1=0.2,α2=0.5,ξ1=0.2,ξ2=0.3,θ=6,β=12 and 

monetary parameters as 

Cr=15,Cb1=50,Cb2=75,Cm=200,Ch=5,Cs=1000; 

The values are shown in tables 1-15 in Appendix 

and summary is stated here 

• With increase in values of λ:Mean number of 

customers in the system and expected costs are 

increasing.  

• With increase in values of µ:Mean number of 

customers in the system are increasing, 

expected cost is decreasing. 

• With increase in values of α1:Mean number of 

customers in the system is increasing and 

expected cost is decreasing. 

• With increase in values of α2,: both mean 

number of customers in the system and 

expected cost are decreasing. 

• With increase in values of ξ1, :, Mean number of 

customers in the system is decreasing and 

expected cost is increasing. 

• With increase in values of ξ2: Mean number of 

customers in the system is increasing and 

expected cost is also increasing. 

• With increase in values of θ :Mean number of 

customers in the system and expected cost 

are decreasing. 

• With increase in values of β: Mean number of 

customers in the system is increasing and 

expected cost is decreasing. 

• With increase in values of Cr: Mean number of 

customers in the system is slightly increasing 

and expected cost is decreasing.  

• With increase in values ofCb1: Mean number of 

customers in the system is increasing and 

expected cost is insensitive. 

• With increase in values ofCb2: mean number of 

customers in the system are decreasing and 

expected cost is slightly increasing. 

• With increase in values of Cm : mean number of 

customers in the system and expected cost 

are   increasing.  

• With increase in values ofCo: Mean number of   

customers in the system is decreasing and 

expected cost is increasing.  

• With increase in values of Ch  :mean number of 

customers in the system are decreasing and 

expected cost is increasing.  

• With increase in values of Cs : mean number of 

customers in the system and expected cost are 

increasing. 
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VIII. CONCLUSION 

 

Two-phase (M, N) -Policy of M/M/1 queueing 

systems with server dormant, start up and 

breakdowns is studied. Explicit expressions for the 

steady state distribution of the number of customers 

in the system are obtained and also explored the 

impact of various parameters on system constants.  
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Appendix 

 

Effect of variation in the non-monetary parameters 

(i)Variation in λ 

Table 1: Effect of λ on expected system length and expected cost   

  0.9 1.3 1.7 2.1 2.5 2.9 

L(N*) 6 7 7 8 9 9 

T(N*) 53.58 69.7 83.97 96.12 107.39 117.67 

(ii)Variation in μ 

Table 2: Effect of μ on expected system length and expected cost   

Μ 9 10 11 12 13 14 

L(N*) 4 4 4 4 4 4 

T(N*) 
33.71 33.58 33.48 33.39 33.31 33.25 

 

(iii) Variation in α1 

Table 3: Effect of α1 on expected system length and expected cost    

α1 0.205 0.21 0.215 0.220 0.225 0.230 

L(N*) 4 4 4 4 4 4 

T(N*) 33.92 33.92 33.92 33.93 33.93 33.93 

 

 (iv)Variation in α2 

Table 4: Effect of α2 on  expected system length and expected cost    

 

 

 

 

 

 

α2 3.1 3.2 3.3 3.4 3.5 3.6 

L(N*) 4 4 4 4 4 4 

T(N*) 33.87 33.87 33.86 33.86 33.86 33.85 
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(v)Variation in ξ1 

Table 5: Effect of ξ1 on  expected system length and expected cost    

ξ1 0.3 0.4 0.5 0.6 0.7 0.8 

L(N*) 4 4 4 4 4 4 

T(N*) 33.87 33.91 34.00 34.16 34.39 34.7 

 (vi)Variation in ξ2 

Table 6: Effect of ξ2 on  expected system length and expected cost    

ξ2 0.305 0.31 0.315 0.320 0.325 0.330 

L(N*) 4 4 4 4 4 4 

T(N*) 33.92 33.91 33.91 33.91 33.91 33.91 

(vii) Variation in θ 

Table 7: Effect of θ on  expected system length and expected cost    

θ 7 8 9 10 11 12 

L(N*) 4 4 4 4 4 4 

T(N*) 33.72 33.64 33.58 33.54 33.51 32.89 

viii)Variation in β 

Table 8: Effect of β on expected system length and expected cost    

Β 12.05 12.10 12.15 12.20 12.25 12.30 

L(N*) 4 4 4 4 4 4 

T(N*) 33.92 33.91 33.91 33.91 33.91 33.91 
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Effect of variation in the monetary parameters 

ix)Variation in Cr 

Table 9: Effect of Cr on expected system length and expected cost    

Cr 17 19 21 23 25 27 

L(N*) 4 4 4 4 4 4 

T(N*) 32.06 29.97 28.04 26.02 24.03 22.36 

 

x)Variation in Cb1 

Table 10: Effect of Cb1 on expected system length and expected cost    

Cb1 52 54 56 58 60 62 

L(N*) 4 4 4 4 4 4 

T(N*) 33.88 33.88 33.88 33.88 33.88 33.88 

 
Xi) Variation in Cb2 

Table 11: Effect of Cb2on  expected system length and expected cost    

Cb2 80 85 90 95 100 105 

L(N*) 4 4 4 4 4 4 

T(N*) 33.87 33.89 33.91 33.92 33.92 33.93 

xii) Variation in cm 

Table 12: Effect of Cm on  expected system length and expected cost    

 

 

 

 

 

 

xiii)Variation in Co 

Table 13: Effect of coon expected system length and expected cost    

Cm 215 230 245 260 275 290 

L(N*) 4 4 4 4 4 4 

T(N*) 33.93 33.98 34.04 34.09 34.15 34.20 



International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com) 

V.  Naga Rama Devi Int J S Res Sci. Engg. Tech. 2017 Mar-Apr; 3(2) : 970-983 
 

 

 983 

Co 55 60 65 70 75 80 

L(N*) 4 4 4 4 4 4 

T(N*) 34.00 34.12 34.15 34.17 34.50 34.62 

 

xiv)Variation in ch 

Table 14: Effect of Ch on expected system length and expected cost    

Ch 6 7 8 9 10 11 

L(N*) 4 3 3 3 3 3 

T(N*) 39.70 41.18 44.38 49.36 50.16 52.8 

xv)Variation in cs 

Table 15: Effect of cs on expected system length and expected cost    

Cs 1100 1200 1300 1400 1500 1600 

L(N*) 4 4 5 5 6 6 

T(N*) 32.23 36.02 39.06 41.83 43.64 45.39 

 

 


