N B Interpolation Technique for Improved Arbitrarily missing values in Data Mining

Dr. Darshanaben Dipakkumar Pandya ${ }^{1}$, Dr. Abhijeetsinh Jadeja ${ }^{2}$, Dr. Sheshang D. Degadwala ${ }^{3}$
${ }^{1}$ Assistant Professor, Department of Computer Science, Shri C.J Patel College of Computer Studies (BCA), Visnagar, Gujarat, India
${ }^{2}$ Principal(I/C), Department of Computer Science, Shri C.J Patel College of Computer Studies (BCA), Visnagar, Gujarat, India
${ }^{3}$ Head of Computer Department, Sigma Institute of Engineering, Vadodara, Gujarat, India

Abstract

Article Info Volume 9, Issue 2 Page Number : 79-85 Publication Issue : March-April-2022 Article History Accepted : 01 April 2022 Published: 05 April 2022

In data mining in order to reduce the numerical computations associated to the repeated application of the existing interpolation formula in computing a large number of interpolated values, a formula has been derived from Newton's backward interpolation formula for representing the numerical data on a arbitrarily missing vales in database. A suit approach of the formula to numerical data has been shown in the case of representing the data on the dataset global carbon dioxide emissions from fossil fuel burning by Fuel Type corresponding as a method of time. The formula is suitable in the situation where the values of the argument are at equal interval.

Keywords : Data Mining, Interpolation, Newton's Backward Interpolation Formula, Numerical Data.

I. INTRODUCTION

In the extraction of data, in the case of the interpolation by the existing formulas, and the value of the corresponding variable dependent on each value of the independent variable must be calculated again from the formula used putting in the value of the independent variable. It is true, interpolate the values of the corresponding variable dependent on an undetermined value of the independent variable by means of an existing interpolation form, if necessary to apply the formula for each separate value for, and, for the time being, the numerical value of the variable of
the dependent variable from personal data such as should be done in one of the casinos. To get rid of these repeated numerical calculations a part of the given data, if you can think of an approach that in the representation of the numerical data given for the salvation of lost values.

II. A Suit Approach of Newton Backward Interpolation method

The proposed method is based on replacing missing attribute values by the artificially generated values. The proposed method is based on replacing missing
attribute values by the artificially generated values. This method is very much useful for numerical attributes. In general, this method is search of closest fit value which is very close to the true mean of the attribute and closest to the value of just preceding and succeeding value of the missing values. In the process of generation of closest fit values for missing value
place, therefore, here it is possible to randomly take values as a table value for the direct interpolation table. Now searches for cases lost in the attribute begin. The first case of missing value is indicated by the subscript $\mathrm{X}[\mathrm{I}]$, the search for the corresponding missing value of $\mathrm{Y}[\mathrm{I}]$ is given.

First the searches of missing case in the attribute get start. The first missing value case is pointed by the subscript of the attribute and denoted by the variable, Pred is denoted from X[I]-1 . Now take $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \mathrm{X} 4, \mathrm{X} 5$ and their corresponding $\mathrm{Y} 0, \mathrm{Y} 1, \mathrm{Y} 2, \mathrm{Y} 3, \mathrm{Y} 4, \mathrm{Y} 5$ values from the database. here X 5 value is given but Y 5 is missing value. When search or scan pointer point out the empty subscript of the attribute, which is actually the missing values case in the attribute. The missing value case is pointed by the subscript of the attribute and is denoted by the variable. In this situation, the first subscript is given. We have to find empty or NULL values for Y corresponding to X . Now we have to point out on value which is corresponding value of Y in attribute X . Now, If ($\mathrm{X}[\mathrm{I}]==\mathrm{NULL}$) then $w e$ have to record the Preceding value as

$$
\begin{align*}
& \text { Pred }=X[I]-1 \ldots \tag{2.1}\\
& \text { Here } H \text { is called the interval of difference }, H=X[2]-X[1] \tag{2.2}
\end{align*}
$$

Here $\mathrm{P}[\mathrm{I}]$ is a array that is used for missing value Y their corresponding X value minus predecessor of missing value in $\mathrm{X}[\mathrm{I}]$ so , $\mathrm{P}[\mathrm{I}]=(\mathrm{X}[\mathrm{I}]-\mathrm{X}[$ Pred $]) / \mathrm{H}$
At the next step make a pass and obtained the difference table. The differentiation's are $\mathrm{y} 1-\mathrm{y} 0$,
$\mathrm{y} 2-\mathrm{y} 1, \mathrm{y} 3-\mathrm{y} 2, \ldots \ldots$. yn $-\mathrm{yn}-1$ when denoted by dy1, dy2, dy3,, dyn are respectively, called the first backward differences. At next step repeat a loop for $\mathrm{J}=1$ to $\mathrm{J}<\mathrm{N}$ then, Repeat for $\mathrm{I}=0$ to $\mathrm{I}<(\mathrm{N}-\mathrm{J})$ then

$$
\begin{equation*}
\mathrm{Y}[\mathrm{I}][\mathrm{J}] \leftarrow \mathrm{Y}[\mathrm{I}+1][\mathrm{J}-1]-\mathrm{Y}[\mathrm{II}][\mathrm{J}-1] \tag{2.4}
\end{equation*}
$$

Then make next iterations of I and J so , $\mathrm{I}=\mathrm{I}+1, \mathrm{~J}=\mathrm{J}+1$
At next step, Perform Missing value Recovery using backward interpolation method. Now initialize temp variable for predecessor data.

$$
\begin{equation*}
\text { Temp } \leftarrow \text { Pred } \tag{2.5}
\end{equation*}
$$

Now apply a Suit Approach of Newton Backward Interpolation method

$$
\begin{align*}
\mathrm{Y}[\mathrm{i}]= & \mathrm{Y}[\mathrm{I}][\mathrm{J}]+\left(\mathrm{P}[\mathrm{I}]^{*} \mathrm{Y}[\text { temp }][\mathrm{J}-1]\right)+\left(((\mathrm{P}[\mathrm{I}] * \mathrm{P}[\mathrm{I}]-1)(\mathrm{Y}[\text { temp }][\mathrm{J}-2])) /\left(2^{*} 1\right)\right)+ \\
& \left(\left(\left(\mathrm{P}[\mathrm{I}] * \mathrm{P}[\mathrm{I}]-1^{*} \mathrm{P}[\mathrm{I}]-2\right)(\mathrm{Y}[\text { temp }][\mathrm{J}-3])\right) /\left(3^{*} 2^{*} 1\right)\right)+ \\
& \left(\left(\left(\mathrm{P}[\mathrm{I}]{ }^{*} \mathrm{P}[\mathrm{I}]-1^{*} \mathrm{P}[\mathrm{I}]-2^{*} \mathrm{P}[\mathrm{I}]-3\right)(\mathrm{Y}[\text { temp }][\mathrm{J}-4])\right) /\left(4^{*} 3^{*} 2^{*} 1\right)\right) \tag{2.6}
\end{align*}
$$

Display the Y value for the corresponding missing value for X .

The proposed method is based on the replacement of the missing random values for the values generated by an application of Newton Backward Interpolation method. This method is very useful for numeric attributes. In general, this method is the search for randomly missing values that is very close to the real mean of the attribute and closer to the value than the original value of missing values. The below table shows the overall idea of backward difference table.

Table . 1 Backward Difference table for calculating the Y values of the corresponding X values using formula.

X	Y	$\nabla \mathrm{Y}$	$\nabla^{2} \mathrm{Y}$	$\nabla^{3} \mathrm{Y}$	$\nabla^{4} \mathrm{Y}$
X_{0}	Y_{0}				
X_{1}	Y_{1}	$\nabla \mathrm{Y}_{1}$			
X_{2}	Y_{2}	$\nabla \mathrm{Y}_{2}$	$\nabla^{2} \mathrm{Y}_{2}$		
X_{3}	Y_{3}	$\nabla \mathrm{Y}_{3}$	$\nabla^{2} \mathrm{Y}_{3}$	$\nabla^{3} \mathrm{Y}_{3}$	
X_{4}	Y_{4}	$\nabla \mathrm{Y}_{4}$	$\nabla^{2} \mathrm{Y}_{4}$	$\nabla^{3} \mathrm{Y}_{4}$	$\nabla^{4} \mathrm{Y}_{4}$

III. A Suit Approach for Newton Backward Interpolation method algorithm

The intended method is based on replacing missing attribute values by an applied Newton Raphson method. This method is very much helpful for numerical attributes. In general, this method is search of missing values and after searching its value is replaced by recovered value of the attribute in arbitrarily missing database.
Introduction: Given an array X and Y are of size $\mathrm{N}, \mathrm{N}=50$, this procedure replaces the missing values with the recovered data from data set. Here Prev is the predecessor of the missing data. Here two arrays are taken first is $\mathrm{X}[\mathrm{I}]$ and $\mathrm{Y}[\mathrm{I}][\mathrm{J}]$ is two dimension array which is used for storing differences of table. The variable I is used to index elements from 1 to N in a given data. The variable J is used to index column elements from 1 to N in a given data Following are the steps of the algorithm in detail:
Step 1: Select a dataset on which Missing values recovery is to be performed from the database.
Step 2: [Initialize the variables]
$\mathrm{I} \leftarrow$ NULL, $\mathrm{J} \leftarrow$ NULL, $\mathrm{N} \leqslant 50, \mathrm{H} \leftarrow \mathrm{NULL}, \mathrm{P}[\mathrm{i}]=\mathrm{NULL}$, Prev $\leqslant \mathrm{NULL}$, temp \leftarrow NULL.
Step 3: [Create a loop for N passes]
Repeat for $\mathrm{I}=0$ to $\mathrm{I}<\mathrm{N}$.
Read X [I] and Y [I][0].
If $(\mathrm{X}[\mathrm{I}]==\mathrm{NULL})$ then Pred $=\mathrm{X}[\mathrm{I}]-1 \quad / /$ Predecessor value of missing value.
And H = X [2] - X [1] // Interval of successor and Predecessor value
$\mathrm{P}[\mathrm{I}]=(\mathrm{X}[\mathrm{I}]-\mathrm{X}[$ Pred $]) / \mathrm{H} / /$ difference of $\mathrm{X}[\mathrm{I}]$ of missing data and predecessor value.
Step 4: [Make a Pass and Obtained difference table]
Repeat for $\mathrm{J}=1$ to $\mathrm{J}<\mathrm{N}$ then
Repeat for $\mathrm{I}=0$ to $\mathrm{I}<(\mathrm{N}-\mathrm{J})$ then

$$
\mathrm{Y}[\mathrm{I}][\mathrm{J}] \leftarrow \mathrm{Y}[\mathrm{I}+1][\mathrm{J}-1]-\mathrm{Y}[\mathrm{I}][\mathrm{J}-1] \text { then } \mathrm{I} \leftarrow \mathrm{I}+1, \mathrm{~J} \leftarrow \mathrm{~J}+1
$$

Step 5: [Display Backward difference table]
Repeat for $\mathrm{I}=0$ to $\mathrm{I}<\mathrm{N}$ then
Print X[I] and I $\leftarrow \mathrm{I}+1$
Repeat for $\mathrm{J}=0$ to $\mathrm{J}<(\mathrm{N}-\mathrm{J})$ then
Print $\mathrm{Y}[\mathrm{I}][\mathrm{J}]$ and $\mathrm{J}=\mathrm{J}+1$
Step 6: [Perform Missing value Recovery using backward interpolation method]
$\mathrm{Y}[\mathrm{i}] \leftarrow \mathrm{Y}[\mathrm{I}][\mathrm{J}]+\left(\mathrm{P}[\mathrm{I}]^{*} \mathrm{Y}[\right.$ temp $\left.][\mathrm{J}-1]\right)+\left(((\mathrm{P}[\mathrm{I}] * \mathrm{P}[\mathrm{I}]-1)(\mathrm{Y}[\right.$ temp $\left.][\mathrm{J}-2])) /\left(2^{*} 1\right)\right)+$
$\left(\left(\left(\mathrm{P}[\mathrm{I}] * \mathrm{P}[\mathrm{I}]-1^{*} \mathrm{P}[\mathrm{I}]-2\right)(\mathrm{Y}[\right.\right.$ temp $\left.\left.][\mathrm{J}-3])\right) /\left(3^{*} 2^{*} 1\right)\right)+$
$\left(\left(\left(\mathrm{P}[\mathrm{I}]{ }^{*} \mathrm{P}[\mathrm{I}]-1{ }^{*} \mathrm{P}[\mathrm{I}]-2{ }^{*} \mathrm{P}[\mathrm{I}]-3\right)(\mathrm{Y}[\right.\right.$ temp $\left.\left.][\mathrm{J}-4])\right) /\left(4^{*} 3^{*} 2^{*} 1\right)\right)$
Step 7: [Display the Y value for the corresponding missing value for X]

Print $\mathrm{Y}[\mathrm{i}]$

Step 8: Finished.

Stop.

IV. Discussion of Results

Measure of central tendency (mean): Table-1 shows the global carbon dioxide emissions from fossil fuel burning by fuel type coal, oil and natural gas from 1960-2009. The mean of global carbon dioxide emissions due to coal, oil and natural gas are 2109, 2262 and 879 respectively. After missing values at the randomly, the mean calculated from incomplete data sets are 2,106 for coal, 2,280 for oil and 886 for natural gas.

The proposed ratio based approach method is applied on the data sets of Table 1 to fill up the missing values. It is observed that mean values of coal, oil and natural gas are $2,100,2,246$ and 866 respectively. It is considerable that the mean values obtained after replacing the missing values by the proposed approach very close to the actual mean as given.
Standard Deviation: From the analysis of result of standard deviation it is found that after estimation of missing values, the values of standard deviation obtained are very similar to the standard deviation of standard dataset. On the basis of result we can say that proposed algorithm is appropriate for missing values estimation and recovery.
Coefficient of Variation: From the analysis of result of co-efficient of variation (CV) it is found that, after estimation of missing values, the values of co-efficient of variation is not significantly change or slightly decline which shows that the series is uniform now.
Analysis of Variance: We wish to test the hypothesis
$\mathrm{H} 0: \mu 1=\mu 2=\mu 3$ against the alternative
H 1 : at least two μ 's are different (i.e. at least one of the equalities does not hold).
For testing this hypothesis we setup the following analysis of variance for all the variables:

One Way ANOVA (COAL)

ANOVA

Source of Variation	SS	df	MS	F	P-value	Fcrit
Between Groups	2153.033	2	1076.517	0.003231	0.996774	3.060292
Within Groups	46981137	141	333199.6			
Total	46983290	143				

Table 1 Value :- $F(2,141)$ at 5% Level of Significance $=3.0718,1 \%$ Level of Significance $=$ 4.7865,

One Way ANOVA (OIL)

ANOVA						
Source of Variation	SS	$d f$	MS	F	P-value	F crit
Between Groups	26340.47	2	13170.24	0.032878	0.967664	3.060292
Within Groups	56481620	141	400578.9			
Total	56507961	143				

Table 2 Value :- F $(2,141)$ at 5% Level of Significance $=3.0718,1 \%$ Level of Significance $=4.7865$,
One Way ANOVA (NATURAL GAS)

Source of Variation	SS	$d f$	MS	F	P-value	F crit
Between Groups	9139.001	2	4569.5	0.027803	0.972585	3.060292
Within Groups	23173403	141	164350.4			
Total	23182542	143				

Table 3 Value :- $F(2,141)$ at 5% Level of Significance $=3.0718,1 \%$ Level of Significance $=$ 4.7865,

Decision and Conclusion: Since F (Calculated) < 3.0781 so accept H0 at 5% level of significance and Hence conclude that there is no significant difference among groups of Coal, Oil and Gas regarding Mean value.

Table 4. Table for A Suit Approach of Newton backward Interpolation method for Arbitarily missing values of data. Dataset Global Carbon Dioxide Emissions from Fossil Fuel Burning by Fuel Type, 1960-2009 (In Million Tones of Carbon Missing).

Standard Data
Missing Values
Recovered Values

S. \mathbf{N}	YEAR	COAL	OIL	NATURL GAS
		Million Tons of Carbon		
$\mathbf{1}$	$\mathbf{1 9 6 0}$	1,410	849	235
$\mathbf{2}$	$\mathbf{1 9 6 1}$	1349	904	254
$\mathbf{3}$	$\mathbf{1 9 6 2}$	1351	980	277
$\mathbf{4}$	$\mathbf{1 9 6 3}$	1396	1,052	300
$\mathbf{5}$	$\mathbf{1 9 6 4}$	1435	1,137	328
$\mathbf{6}$	$\mathbf{1 9 6 5}$	1460	1,219	351
$\mathbf{7}$	$\mathbf{1 9 6 6}$	1478	1,323	380
$\mathbf{8}$	$\mathbf{1 9 6 7}$	1448	1,423	410
$\mathbf{9}$	$\mathbf{1 9 6 8}$	1448	1,551	446
$\mathbf{1 0}$	$\mathbf{1 9 6 9}$	1486	1,673	487
$\mathbf{1 1}$	$\mathbf{1 9 7 0}$	1556	1,839	516
$\mathbf{1 2}$	$\mathbf{1 9 7 1}$	1559	1,946	554
$\mathbf{1 3}$	$\mathbf{1 9 7 2}$	1576	2,055	583

COAL	OIL	NATURAL GAS
Million Tons of Carbon		
1,410	849	235
1349	904	254
1351	980	277
1396	1,052	300
1435	1,137	328
1460		351
1478	1,323	380
1448	1,423	410
1448	1,551	
1486	1,673	487
1556	1,839	516
1559		554
	2,055	583

COAL	OIL	NATURAL GAS
Million Tons of Carbon		
1,410	849	235
1349	904	254
1351	980	277
1396	1,052	300
1435	1,137	328
1460	$\underline{\mathbf{9 3 4}}$	351
1478	1,323	380
1448	1,423	410
1448	1,551	$\underline{330}$
1486	1,673	487
1556	1,839	516
1559	$\underline{\mathbf{1 4 8 9}}$	554
$\mathbf{1 4 5 1}$	2,055	583

14	1973	1581	2,240	608	1581	2,240	608	1581	2,240	608
15	1974	1579	2,244	618	1579	2,244		1579	2,244	512
16	1975	1673	2,131	623	1673	2,131	623	1673	2,131	623
17	1976	1710	2,313	650	1710	2,313	650	1710	2,313	650
18	1977	1766	2,395	649	1766		649	1766	$\underline{2237}$	649
19	1978	1793	2,392	677		2,392	677	1637	2,392	677
20	1979	1887	2,544	719	1887	2,544	719	1887	2,544	719
21	1980	1947	2,422	740	1947	2,422		1947	2,422	665
22	1981	1921	2,289	756	1921	2,289	756	1921	2,289	756
23	1982	1992	2,196	746	1992	2,196	746	1992	2,196	746
24	1983	1995	2,177	745	1995		745	1995	2300	745
25	1984	2094	2,202	808		2,202	808	1960	2,202	808
26	1985	2237	2,182	836	2237	2,182	836	2237	2,182	836
27	1986	2300	2,290	830	2300	2,290		2300	2,290	784
28	1987	2364	2,302	893	2364	2,302	893	2364	2,302	893
29	1988	2414	2,408	936	2414	2,408	936	2414	2,408	936
30	1989	2457	2,455	972	2457		972	2457	$\underline{2455}$	972
31	1990	2409	2,517	1,026		2,517	1,026	2280	2,517	1,026
32	1991	2341	2,627	1,069	2341	2,627	1,069	2341	2,627	1,069
33	1992	2318	2,506	1,101	2318	2,506		2318	2,506	936
34	1993	2,265	2,537	1,119	2,265	2,537	1,119	2,265	2,537	1,119
35	1994	2,331	2,562	1,132	2,331	2,562	1,132	2,331	2,562	1,132
36	1995	2,414	2,586	1,153	2,414		1,153	2,414	2586	1,153
37	1996	2,451	2,624	1,208		2,624	1,208	2424	2,624	1,208
38	1997	2,480	2,707	1,211	2,480	2,707	1,211	2,480	2,707	1,211
39	1998	2,376	2,763	1,245	2,376	2,763		2,376	2,763	1122
40	1999	2,329	2,716	1,272	2,329	2,716	1,272	2,329	2,716	1,272
41	2000	2,342	2,831	1,291	2,342	2,831	1,291	2,342	2,831	1,291
42	2001	2,460	2,842	1,314	2,460	2,842	1,314	2,460	2,842	1,314
43	2002	2,487	2,819	1,349		2,819	1,349	2598	2,819	1,349
44	2003	2,638	2,928	1,399	2,638	2,928	1,399	2,638	2,928	1,399
45	2004	2,850	3,032	1,436	2,850	3,032	1,436	2,850	3,032	1,436
46	2005	3,032	3,079	1,479	3,032	3,079	1,479	3,032	3,079	1,479
47	2006	3,193	3,092	1,527	3,193	3,092	1,527	3,193	3,092	1,527
48	2007	3,295	3,087	1,551	3,295	3,087	1,551	3,295	3,087	1,551
49	2008	3,401	3,079	1,589	3,401	3,079	1,589	3,401	3,079	1,589
50	2009	3,393	3,019	1,552	3,393	3,019	1,552	3,393	3,019	1,552
	MEAN	2,109	2,262	879	2,106	2,280	886	2,100	2,246	866
	S.D	567.89	621.13	400.27	591.97	638.59	414.50	573.39	639.55	402.42
	C.V	0.27	0.27	0.46	0.28	0.28	0.47	0.27	0.28	0.46

V. CONCLUSION

In general, there is no universal and absolute technique for managing the values of missing attributes. The closest fitting method proposed is useful for the numerical attribute, with a deviation lower than the
average. This is the best way to recover arbitrarily missing values from the database. Accordingly, it is noted that the techniques for managing the values of missing attributes must be chosen individually or according to the nature and type of data.

VI. REFERENCES

[1]. Bathe KJ, Wilson EL. Numerical Methods in Finite Element Analysis, NJ, 1976.
[2]. Gaur, Sanjay and Dulawat, M.S., closer to the lack of principles of attributes of the mining approach, International Review of Advances in Science and Technology, Vol-2, Number-4, (2011).
[3]. Gerald CF, Wheatley PO. Analisi numerica applicata, fifth ed., Addison-Wesley Pub. Co., 1994.
[4]. Sharma, Swati and Gaur, Sanjay, agile contiguous approach to handling the strange mass format that is missing in data mining, "International Journal of Advanced Research in Computer Science, Vol. 4(11),pp.214-217(2013)
[5]. Gerald CF, Wheatley PO. Analysis numeric applicatation ,Addison-Wesley Pub. Co., 1994.
[6]. David R Kincard, Ward Chaney E. Numerical Analysis, Brooks / Cole, Pacific Grove, CA, 1991.
[7]. Endre S, David Mayers. An introduction to the numerical world, United Kingdom, 2003.

Cite this article as :

Dr. Darshanaben Dipakkumar Pandya, Dr. Abhijeetsinh Jadeja, Dr. Sheshang D. Degadwala, "N B Interpolation Technique for Improved Arbitrarily missing values in Data Mining", International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Online ISSN : 2394-4099, Print ISSN : 2395-1990, Volume 9 Issue 2, pp. 79-85, MarchApril 2022. Available at doi : https://doi.org/10.32628/IJSRSET229217 Journal URL : https://ijsrset.com/IJSRSET229217

