

An Applied N C Differentiation Interpolation technique for improved random Anomalous values in Data Mining

Dr. Darshanaben Dipakkumar Pandya¹, Dr. Abhijeetsinh Jadeja², Dr. Sheshang D. Degadwala³

¹Assistant Professor, Department of Computer Science, Shri C.J Patel College of Computer Studies (BCA),

Visnagar, Gujarat, India

²Principal(I/C), Department of Computer Science, Shri C.J Patel College of Computer Studies (BCA), Visnagar, Gujarat, India

³Head of Computer Department, Sigma Institute of Engineering, Vadodara, Gujarat, India

ABSTRACT

Article Info

Volume 9, Issue 2 Page Number : 86-92

Publication Issue : March-April-2022

Article History Accepted : 01 April 2022 Published: 05 April 2022 In data mining, the word "interpolation" refers to interpolating some anonymous information from a given set of known information. The method of interpolation is extensively used as a valuable tool in science and engineering. The predicament is a classical one and dates back to the time of Newton, who needed to solve such a problem in analyzing data on the numerical computations. Numerical applications of interpolation include derivation of computational techniques for numerical differentiation, numerical integration and numerical solutions of differential equations. In this paper a closest fit Application of the formula to numerical data for recovering haphazard Anomalous values in Data Mining has been shown in the case of representing the data on the dataset global carbon dioxide emissions from fossil fuel burning by Fuel Type corresponding as a method of time. The formula is suitable in the situation where the values of the argument are at equal interval. Keywords : Data mining, Interpolation, Anomalous value, Newton's central interpolation formula, numerical data

I. INTRODUCTION

Interpolation is the process of calculating the intermediate values of a function from the set of tabulated data values or function. For example, the set of global carbon dioxide emissions from fossil fuel fuels is the time method for global carbon dioxide emissions from fuel type for the last five years 1961,1962,1963,1965 and 1970. the process of calculating the combustion of fossil fuels per type of

fuel for the year 1964 is called interpolation. The interpolation process is very interesting and useful for all branches of science, humanities, business and technical branches. There are several methods of interpolation, but Newton provides the most suitable interpolation formulas. Newton interpolation formulas introduced three, known as Newton direct interpolation, Newton interpolation and Newton general interpolation formula.

Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

It is true, interpolate the values of the corresponding variable dependent on an undetermined value of the independent variable by means of an existing interpolation form, if necessary to apply the formula for each separate value for, and, for the time being, the numerical value of the variable of the dependent variable from personal data such as should be done in one of the casinos. To get rid of these repeated numerical calculations a part of the given data, if you can think of an approach that in the representation of the numerical data given for the salvation of lost values.

II. A closest fit Application of Newton Central Difference Interpolation method

The proposed method is based on the replacement of values of abnormal attributes with artificially generated values. This method is very useful for numeric attributes. In general, this method is the search for the nearest adjustment value that is very close to the real mean of the attribute and closer to the value of the previous and next fair value of the missing values. In the process of generating the nearest adjustment values for the position of the anomalous value, therefore, it is possible here to take the values randomly as a table value for the direct interpolation table. Now searches for cases lost in the attribute begin. The first case of missing value is indicated by the subscript X [I], the search for the corresponding missing value of Y [I] is given.

First the searches of missing case in the attribute get start. The first missing value case is pointed by the subscript of the attribute and denoted by the variable, first Predecessor value is denoted as PredX0 as X[I]-1. second Predecessor value is denoted as PredX1 as X[I]-2 Now take X0,X1,X2,X3 and their corresponding Y0, Y1, Y2, Y3 values from the database. here middle value is given and their corresponding value have to find. When search or scan pointer point out the empty subscript of the attribute, which is actually the missing values case in the attribute. The missing value case is pointed by the subscript of the attribute and is denoted by the variable. We have to find empty or NULL values for Y corresponding to X. Now we have to point out on value which is corresponding value of Y in attribute X. Now, If (X [I] = NULL) then we have to record the first Preceding and second preceding value as

$PredX_0 = X [I] - 1$ (2.1)
$PredX_1 = X [I] - 2$ (2.2)
Here H is called the interval of difference , $H = X [PredX_0] - X [PredX_1] \dots (2.3)$
Here P[I] is a array that is used for missing value Y their corresponding X value minus predecessor of missing
value in X[I] so , $P[I] = (X [I] - X[PredX_0]) / H$ (2.4)
At the next step make a pass and obtained the difference table. The differentiation's are $y1 - y0$ and
$y^2 - y^1$, $y^3 - y^2$,, $y^n - y^{n-1}$ when denoted by dy^1 , dy^2 , dy^3 ,, dy^n are in that order, called the first
backward differences. At next step repeat a loop for $J = 1$ to $J < N$ then , Repeat for $I = 0$ to $I < (N-J)$ then
Initialize I and J variables with predecessor and successor value so,
$I \leftarrow PredX_0$ (2.5)
$J \leftarrow Succ \dots $

	Then , corresponding Y[I][J] is
$Y[I][J] \leftarrow Y[I+1][J-1] - Y[I][J-1]$	(2.7)

Then make next iterations of I and J so , I = I+1 , J=J+1

At next step, Perform Missing value Recovery using central difference interpolation method. a closest fit Application of Newton central Interpolation method

$$\begin{split} Y[I] \leftarrow Y[I][J] + (Y[I+1][J-2]) + ((Y[I-1][J-2]))/2 * P[I])) + \\ ((P[I]^2/(2^*1)) * Y[I-1][J-3])) \dots (2.8) \end{split}$$

Display the Y value for the corresponding missing value for X.

The proposed method is based on the replacement of the haphazard haphazard values for the values generated by an application of Newton central Interpolation method. This method is very useful for numeric attributes. In general, this method is the search for haphazard haphazard values that is very close to the real mean of the attribute and closer to the value than the original value of missing values. The below table shows the overall idea of central difference table.

X	Y	ΔΥ	Δ²Y	Δ^{3} Y	Δ ⁴ Y
X-2	Y-2				
		Δ Y-2			
X-1	Y-1		Δ² Y-2		
		Δ Y-1		Δ ³ Υ-2	
Xo	Yo		Δ^2 Y-1		Δ ⁴ Υ-2
		Δ Υ0		Δ ³ Y-1	
X_1	Y1		$\Delta^2 Y_0$		
		ΔY_1			
X2	Y2				

Table 1. Central Difference table for calculating the Y values of the corresponding X values using formula.

III. An Application for Newton Central Difference Interpolation method algorithm

The intended method is based on replacing missing attribute values by an Application of Newton Raphson method. This method is very much helpful for numerical attributes. In general, this method is search of anomalous values and after searching its value is replaced by recovered value of the attribute in randomly missing database.

Introduction: Given an array X and Y are of size N, N= 50, this procedure replaces the missing values with the recovered data from data set. Here $PredX_0$ is the first predecessor of the missing data and $PredX_1$ is the second predecessor of the missing data. Here two arrays are taken first is X[I] and Y[I][J] is two dimension array which is used for storing differences of table. The variable I is used to index elements from 1 to N in a given data. The variable J is used to index column elements from 1 to N in a given data Following are the steps of the algorithm in detail:

Step 1: Select a dataset on which Missing values recovery is to be performed from the database.

Step 2: [Initialize the variables]

I \leftarrow NULL, J \leftarrow NULL, N \leftarrow 50, H \leftarrow NULL, P[i]=NULL,

 $PredX_0 \leftarrow NULL, PredX_1 \leftarrow NULL.$

```
Step 3: [Create a loop for N passes]
        Repeat for I = 0 to I < N.
        Read X [I] and Y [I][0].
       If (X[I] = = NULL) then
        PredX_0 = X [I] - 1 // First Predecessor value of missing value.
        PredX_1 = X[I] - 2 // Second Predecessor value of missing value.
        And H = X [PredX_0] - X [PredX_1] // Interval of successor and Predecessor value
        P[I] = (X [I] - X[PredX_0]) / H // difference of X[I] of missing data and predecessor value.
Step 4: [Make a Pass and Obtained central difference table]
         Repeat for J = 1 to J < N then
         Repeat for I = 0 to I < (N-J) then
          I ← PredX<sub>0</sub>, J ← Succ // Initialize I and J variables with predecessor and successor value
                Y[I][J] \leftarrow Y[I+1][J-1] - Y[I][J-1] then I \leftarrow I+1, J \leftarrow J+1
Step 5: [Display Central difference table]
           Repeat for I = 0 to I < N then
             Print X[I] and I \leftarrow I+1
             Repeat for J = 0 to J < (N-J) then
               Print Y[I][J] and J= J+1
Step 6: [Perform Missing value Recovery using central difference interpolation method]
        Y[I] \leftarrow Y[I][J] + (Y[I+1][J-2]) + ((Y[I-1][J-2]))/2 * P[I])) +
                ((P[I]<sup>2</sup>/ (2*1)) * Y[I-1][J-3]))
Step 7: [Display the Y value for the corresponding missing value for X]
          Print Y[i]
 Step 8: Finished.
```

Stop.

IV. Discussion of Results

Measure of central tendency (mean): Table-1 shows the global carbon dioxide emissions from fossil fuel burning by fuel type coal, oil and natural gas from 1960-2009. The mean of global carbon dioxide emissions due to coal, oil and natural gas are 2109, 2262 and 879 respectively. After missing values at the randomly, the mean calculated from incomplete data sets are 2,125 for coal, 2,257 for oil and 906 for natural gas.

The proposed ratio based approach method is applied on the data sets of Table 1 to fill up the missing values. It is observed that mean values of coal, oil and natural gas are 2,109, 2,259 and 875 respectively. It is considerable that the mean values obtained after replacing the missing values by the proposed approach very close to the actual mean as given.

Standard Deviation: From the analysis of result of standard deviation it is found that after estimation of missing values, the values of standard deviation obtained are very similar to the standard deviation of standard dataset. On the basis of result we can say that proposed algorithm is appropriate for missing values estimation and recovery.

Coefficient of Variation: From the analysis of result of co-efficient of variation (CV) it is found that, after estimation of missing values, the values of co-efficient of variation is not significantly change or slightly decline which shows that the series is uniform now.

Analysis of Variance: We wish to test the hypothesis

H0: $\mu 1 = \mu 2 = \mu 3$ against the alternative

H1: at least two μ 's are different (i.e. at least one of the equalities does not hold).

For testing this hypothesis we setup the following analysis of variance for all the variables:

One Way ANOVA (COAL)

ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	2153.033359	2	1076.517	0.003231	0.996774	3.060292
Within Groups	46981137.13	141	333199.6			
Total	46983290.16	143				
Гаble 1 Value :- F(2, 141) at 5% Level of Sig	gnificance =	= 3.0718 , 1% L	evel of Signifi	cance =	
4.7865,						
One Way ANOVA (OIL)						
ANOVA						
Source of Variation	SS	df	MS	F	<i>P-value</i>	F crit
Between Groups	26340.47	2	13170.24	0.032878	0.967664	3.060292
Within Groups	56481620	141	400578.9			
Total	56507961	143				
Table 2 Value :- F(2, 141)	at 5% Level of Sig	nificance =	3.0718 , 1% Le	vel of Signific	ance = 4.7865,	
One Way ANOVA (NAT	URAL GAS)					
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	9139.001	2	4569.5	0.027803	0.972585	3.060292
Within Groups	23173403	141	164350.4			
Total	23182542	143				

Table 3 Value :- F(2, 141) at 5% Level of Significance = 3.0718, 1% Level of Significance =

4.7865,

Decision and Conclusion : Since F (Calculated) < 3.0781 so accept H0 at 5% level of significance and Hence conclude that there is no significant difference among groups of Coal, Oil and Gas regarding Mean value.

Table-4. Table for A Suit Approach of Newton Central Interpolation method for haphazard Anomalous values of data. Dataset Global Carbon Dioxide Emissions from Fossil Fuel Burning by Fuel Type, 1960-2009 (In Million Tones of Carbon Missing).

Standard Data						Missing	g Values		Recovered Values				
S. N	YEAR	COAL	OIL	NATURL GAS		COAL	OIL	NATURAL GAS		COAL	OIL	NATURAL GAS	
		Million Ton	s of Carbor	1		M	illion Tons	of Carbon	Million Tons of Carbon				
1	1960	1,410	849	235		1,410	849	235		1,410	849	235	
2	1961	1349	904	254		1349	904	254		1349	904	254	
3	1962	1351	980	277		1351	980			1351	980	<u>262</u>	
4	1963	1396	1,052	300		1396	1,052	300		1396	1,052	300	
5	1964	1435	1,137	328		1435		328		1435	<u>1,147</u>	328	
6	1965	1460	1,219	351		1460	1,219	351		1460	1,219	351	
7	1966	1478	1,323	380		1478	1,323	380		1478	1,323	380	
8	1967	1448	1,423	410			1,423	410		<u>1430</u>	1,423	410	
9	1968	1448	1,551	446		1448	1,551			1448	1,551	<u>427</u>	
10	1969	1486	1,673	487		1486	1,673	487		1486	1,673	487	
11	1970	1556	1,839	516		1556	1,839	516		1556	1,839	516	
12	1971	1559	1,946	554		1559	1,946	554		1559	1,946	554	
13	1972	1576	2,055	583		1576	2,055	583	-	1576	2,055	583	
14	1973	1581	2,240	608			2,240	608	-	<u>1562</u>	2,240	608	
15	1974	1579	2,244	618		1579	2,244	618	-	1579	2,244	618	
16	1975	1673	2,131	623		1673	2,131	623	-	1673	2,131	623	
17	1976	1710	2,313	650		1710	2,313	650		1710	2,313	650	
18	1977	1766	2,395	649		1766			-	1766	<u>2,210</u>	<u>623</u>	
19	1978	1793	2,392	677		1793	2,392	677	-	1793	2,392	677	
20	1979	1887	2,544	719		1887	2,544	719		1887	2,544	719	
21	1980	1947	2,422	740		1947	2,422	740	-	1947	2,422	740	
22	1981	1921	2,289	756			2,289	756		<u>1932</u>	2,289	756	
23	1982	1992	2,196	746		1992	2,196	746		1992	2,196	746	
24	1983	1995	2,177	745		1995	2,177	745		1995	2,177	745	
25	1984	2094	2,202	808		2094	2,202	808		2094	2,202	808	
20	1985	2237	2,182	836		2237	2,182	836		2237	2,182	836	
21	1986	2300	2,290	830		2300		830	-	2300	<u>2,322</u>	830	
20	1987	2364	2,302	893		2364	2,302	893	-	2364	2,302	893	
29	1988	2414	2,408	936		2414	2,408	936	-	2414	2,408	<u>846</u>	
30	1989	2457	2,455	972		2457	2,455	972		2457	2,455	972	
31	1990	2409	2,517	1,026		2409	2,517	1,026		2409	2,517	1,026	
32	1991	2341	2,627	1,069		2341	2,627	1,069	-	2341	2,627	1,069	
33	1992	2318	2,506	1,101		2318	2,506	1,101		2318	2,506	1,101	
34 35	1993	2,265	2,537	1,119		2,265	2,537	1,119		2,265	2,537	1,119	
35	1994	2,331	2,562	1,132		2,331	2,562	1,132		2,331	2,562	1,132	
30	1995	2,414	2,586	1,153			2,586	1,153		<u>2,385</u>	2,586	<u>1,184</u>	
3/	1996	2,451	2,624	1,208		2,451	2,624	1,208		2,451	2,624	1,208	
3ð 20	1997	2,480	2,707	1,211		2,480	2,707	1,211		2,480	2,707	1,211	
39	1998	2,376	2,763	1,245		2,376		1,245		2,376	<u>2,633</u>	1,245	
40	1999	2,329	2,716	1,272		2,329	2,716	1,272		2,329	2,716	1,272	

41	2000	2,342	2,831	1,291		2,342	2,831	1,291		2,342	2,831	1,291
42	2001	2,460	2,842	1,314		2,460	2,842	1,314		2,460	2,842	1,314
43	2002	2,487	2,819	1,349			2,819	1,349		2,520	2,819	1,349
44	2003	2,638	2,928	1,399		2,638		1,399		2,638	3,055	1,399
45	2004	2,850	3,032	1,436		2,850	3,032	1,436		2,850	3,032	1,436
46	2005	3,032	3,079	1,479		3,032	3,079	1,479		3,032	3,079	1,479
47	2006	3,193	3,092	1,527		3,193	3,092	1,527		3,193	3,092	<u>1,465</u>
48	2007	3,295	3,087	1,551		3,295	3,087	1,551		3,295	3,087	1,551
49	2008	3,401	3,079	1,589		3,401	3,079	1,589		3,401	3,079	1,589
50	2009	3,393	3,019	1,552]	3,393	3,019	1,552		3,393	3,019	1,552
MEAN	2,10	9 2,	262	879		2,125	2,257	906	2	.,109 2	2,259	875
S.D	567.	.89 62	21.13	400.27		580.06	620.20	396.00	56	8.79	621.73	399.92
C.V	0.27	0.	27	0.46		0.27	0.27	0.44		0.27	0.28	0.46

V. CONCLUSION

In this work the problem of detecting haphazard Anomalous values in streams of data has been addressed. In general, there is no universal and absolute technique for managing the values of missing attributes. The closest fitting method proposed is useful for the numerical attribute, with a deviation lower than the average. This is the best way to recover haphazard Anomalous values from the database. Accordingly, it is noted that the techniques for managing the values of Anomalous attributes must be chosen individually or according to the nature and type of data.

VI. REFERENCES

- Numerical Methods for Scientists and Engineers by Richard Hamming, Second Edition, Dovers Publications.
- [2]. M.K. Jain, S.R.K. Iyengar, R.K. Jain, "Numerical Methods for Scientific and Engineering Computation", New Age International Publishers. Applied Numerical Methods, 3rd Edition by Steven C. Chapra, Raymond P. Canale, Tata McGraw Hill Education.
- [3]. David B. Thompson, "Numerical Methods 101 Convergence of Numerical Models". USGS Staff, University of Nebraska – Lincoln.
- [4]. SIAM Journal on Numerical Analysis- Developing and Analyzing Numerical Methods. ISSN 1095 – 7170.

- [5]. Fundamentals of Numerical Methods and statistical techniques by Anshuman and Jaspal. ISBN: 81 – 89510-32-0.
- [6]. T.E. Simos ," New closed Newton Cotes type formulae as multilayer and symplectic Integrators", THE JOURNAL OF CHEMICAL PHYSICS 104108, P 133, 2010.
- [7]. T.E. Simos, "New Stable Closed Newton -Cotes Trigonometrically Fitted Formulae for Long -Time Integration", Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2012, Article ID 182536, 15 pages.
- [8]. Nasrin Akter Ripa, "investigation of Newton's Forward Interpolation Formula ", International Journal of Computer Science & Emerging Technologies (E-ISSN:2044-6004)12 Volume 1, Issue 4, December 2010.

Cite this article as :

Dr. Darshanaben Dipakkumar Pandya, Dr. Abhijeetsinh Jadeja, Dr. Sheshang D. Degadwala, "An Applied N C Differentiation Interpolation technique for improved random Anomalous values in Data Mining", International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Online ISSN : 2394-4099, Print ISSN : 2395-1990, Volume 9 Issue 2, pp. 86-92, March-April 2022. Available at doi :

https://doi.org/10.32628/IJSRSET229218 Journal URL : https://ijsrset.com/IJSRSET229218