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ABSTRACT 

 

Medical image fusion can combine multi-modal images into an integrated 

higher-quality image, which can provide more comprehensive and accurate 

pathological information than individual image does. Traditional transform 

domain-based image fusion methods usually ignore the dependencies between 

coefficients and may lead to the inaccurate representation of source image. To 

improve the quality of fused image, a medical image fusion method based on 

the dependencies of quaternion wavelet transform coefficients is proposed. 

First, the source images are decomposed into low-frequency component and 

high-frequency component by quaternion wavelet transform. Then, a clarity 

evaluation index based on quaternion wavelet transform amplitude and phase 

is constructed and a contextual activity measure is designed. These measures 

are utilized to fuse the high-frequency coefficients and the choose-max fusion 

rule is applied to the lowfrequency components. Finally, the fused image can 

be obtained by inverse quaternion wavelet transform. The experimental results 

on some brain multi-modal medical images demonstrate that the proposed 

method has achieved advanced fusion result. 

Keywords : Medical Image Fusion, Quaternion Wavelet Transform, Context, 

Activity Measure 

 

I. INTRODUCTION 

 

Different imaging technologies can capture different 

information of human body. Generally, magnetic 

resonance imaging (MRI) can well show normal and 

pathological soft tissue; however, its resolution is low 

and cannot reflect skeletal information. T1-magnetic 

resonance imaging (T1-MR) is sensitive to bleeding site 

and is able to provide more dissection tissue 

information of human body. Magnetic resonance 

angiography (MRA) imaging can display the structural 

information of narrow and closed blood vessels. 

Computed tomography (CT) imaging prefers to show 

dense tissue information,1 which mainly reflects bone 

and other tissue information with high resolution. Due 

to the variation of imaging mode, how to integrate 

multi-modal, images into a synthesized image is an 

interesting researching topic. Medical image fusion can 

http://www.ijsrset.com/
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combine important information among multimodal 

images into a fused image, which provides more 

structure and texture and improves pathologic 

examination accuracy. Existing image fusion methods 

can be divided into two categories: the spatial domain-

based fusion methods and the transform domain-based 

methods. The spatial domain-based image fusion 

method directly fuses source images at the pixel level 

with overlapped image blocks; this operation might 

lead to spatial distortion.2 The transform domain-

based image fusion method usually transforms the 

source image into a transformed domain, in which 

some fusion rules are designed. With the development 

of multi-scale decomposition (MSD) theory, the MSD-

based image fusion method has become a research 

hotspot. Yang3 proposed a discrete wavelet transform 

(DWT)-based medical image fusion algorithm, which 

combines wavelet coefficients according to human 

visual system. Yan et al.4 designed a dual-tree complex 

wavelet transform (DT-CWT)-based image fusion 

method that uses the neighborhood energy as activity 

measure to fuse high-frequency coefficients. He et al.5 

employed contourlet transform to decompose the 

source images into several bands, then average fusion 

rule was used for low-frequency coefficients, and 

regional variance information was selected as activity 

measure for highfrequency coefficients. Zhang and 

Guo6 used nonsubsampled contourlet transform as a 

MSD tool for image fusion;the high- and low-

frequency coefficients are fused by the choose-max 

strategy and average strategy. The traditional MSD-

based image fusion methods make use of the 

advantages of MSD tools to some extent, but there are 

still some shortcomings. On the one hand, these MSD 

tools have their own limitations. For instance, DWT 

lacks phase description of image; in addition, due to the 

use of down-sampling operation in the decomposition 

process, translation invariance is absent. It may 

produce artifacts or false information in the fused 

image. CWT has only one phase angle, so it cannot 

solve the deviation in the vertical and horizontal 

directions. On the other hand, the construction of 

activity measurement ignores the relationship 

between the coefficients and fails to make full use of 

the feature information transmitted by decomposition 

coefficients. Therefore, it is necessary to make 

improvement in the following aspects: selecting a more 

superior multi-scale image decomposition tool and 

selecting more expressive image features Quaternion 

wavelet transform (QWT) is achieved by a local 

quaternion Fourier transform (QFT). The QFT is 

composed of three imaginary part and one real part7: 

the first two phases can describe the vertical and 

horizontal displacement of image features, another 

phase can describe the diagonal texture information of 

the image,8 and the amplitude has the characteristic of 

time-frequency localization and approximate 

translation invariance. In view of the superiority of 

QWT, many QWT-based image fusion methods have 

been proposed in the past few years. For example, Liu 

et al.9 proposed a region level-based multi-focus image 

fusion method using QWT that can use the local 

variance of the phases and structural similarity to 

locate the focus region. Zheng et al.10 constructed a 

quaternion wavelet contextual hidden Markov model 

to extract the statistical features for multi-focus image 

fusion. Thereafter, Chai et al.11 employed multiple 

QWT features to get fused image. This method 

improved the fusion quality by overcoming the 

inaccurate description for image caused by a single 

feature. The QWT-based method can produce much 

better fusion performance due to the better image 

representation from amplitude and phase of QWT. 

Hence, we further explore QWT-based feature 

extraction and apply them to fuse multi-modal medical 

images. To improve the representation from the 

texture features of QWT high-frequency coefficients, 

a clarity evaluation index based on the gradient of the 

lowfrequency amplitude, the phase of low frequency, 

and the phase of high frequency is proposed. 

Considering the dependence between QWT 

coefficients, a context based rule is designed for fusing 

the high-frequency coefficients.  
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The remainder of this paper is organized as follows: the 

next section introduces the QWT. The main 

framework of the proposed method and the design of 

fusion rules are described in the “The proposed fusion 

method” section. Experimental results and analyses are 

shown in the “Experimental results and analyses” 

section. Finally, we conclude this paper in the 

“Conclusion” section. 

 

II. Quaternion Wavelet Transform (QWT) 

 

In this section, we first briefly review the QWT and 

discuss its structure, then give a demonstration to show 

its capability on brain image decomposition.  

 

Quaternion theory 

 

I The concept of quaternion and its application in 

image processing were well studied.7 Suppose that 

there is a quaternion q, then it can be expressed as the 

form of q = a +bi +cj + dk, where a; b; c; and d are all 

real numbers. It is similar to the structure of the plural. 

The real part of quaternions is a; the imaginary part is 

the combination of the remaining three parts; and the 

i; j; and k in these three parts are orthogonal to each 

other and satisfy the following relationship. 

I2 = j2 = k2 = ijk = -1,ij = k, jk = I, ik = j (1) 

 

Another representation of quaternions is amplitude 

phase representation, which can be expressed as 

 

 
Formula 

 
III. Two-dimensional quaternion wavelet 

construction 

The quaternions definition of an image f(x,y) can be 

expressed by the following formula 

 

 

 

 

 

 
The following advantages of QWT transformation 

make it more suitable for the task of image fusion: 1. 
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Time-frequency localizing characteristic. Because 

quaternion wavelet is evolved from wavelet, it also 

retains the special property of wavelet timefrequency 

localization.  

 

Approximate translation invariance. Because 

quaternion wavelet transformation uses the double 

tree structure in Hilbert transform pair, it has unique 

translation invariant characteristics compared with 

wavelet, shear wave, contour wave, and other 

decomposition tools. 

 

Multiple coefficient information. A QWT is equivalent 

to four real DWTs, so at different scales, QWT can 

provide three phases and one amplitude of the original 

image.  

A T1-MR brain image (Figure 1) is taken as an example 

to illustrate the QWT decomposition in Figure 2.  

 

As can be seen from Figure 2, we can find that three 

phases of image reflect the texture structure 

information in vertical, horizontal, and diagonal 

directions. The high-frequency sub-bands of QWT 

mainly reflect the outline and structure information of 

images. In the  detail region, the corresponding 

amplitude is relatively large. On the contrary, in the 

smooth region, its corresponding amplitude is 

relatively small. 

 

IV. The proposed fusion method 

 

As illustrated in Figure 3, the whole fusion process 

consists of four stages: decomposition with QWT 

 

Figure 1. Brain T1-MR image. 

 

 
Figure 2.The QWT decomposition results of T1-MR 

brain image. (a) LL amplitude, (b) LL vertical phase, 

(c) LL horizontal phase, (d) LL diagonal phase, (e) LH 

amplitude, (f) LH vertical phase, (g) LH horizontal 

phase, (h) LH diagonal phase, (i) HL amplitude, (j) HL 

vertical phase, (k) HL horizontal phase, (l) HL 

diagonal phase, (m) HH amplitude, (n) HH vertical 

phase, (o) HH horizontal phase, and (p) HH diagonal 

phase 

 

 
Figure 3. The framework of the proposed method. 

QWT: quaternion wavelet transform 

 

fusion on low-frequency coefficients and on 

highfrequency coefficients, respectively, inverse 

transformation with QWT on fused coefficients. The 

detailed steps are listed as follows: 

 1. Decompose the pre-registered paired image A and B 

into low-frequency sub-bands Cn A;L; Cn B;L and 

highfrequency sub-bands Cj;k;n A;H; Cj;k;n B;H , 

where j is the decomposition scale, k is the direction, 
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and n represents the number of sub-bands in a 

direction.  

2. Fuse the low-frequency coefficients with choose-

max fusion rule and get the fused low-frequency 

coefficients. 

 3. Fuse the high-frequency coefficients with our 

proposed fusion rule and get the fused high-frequency 

coefficients.  

4. Combine the fused low-frequency coefficients and 

the fused high-frequency coefficients with QWT 

inverse transformation and get the fused image. 

The fusion rule for low-frequency sub-band 

coefficients The QWT low-frequency sub-band 

reflects the general shape of image which contains 

most of energy of the original image. The more 

prominent part can be preserved by formula (7) 

 

 
 

The fusion rule for high-frequency sub-band 

coefficients  

 

Generally, the high-frequency sub-bands obtained by 

QWT transformation reflect the detailed texture 

information of image. These detail information should 

be transmitted as much as possible to the fused image. 

In this section, we introduce an amplitude and 

phasebased clarity evaluation index, then the 

highfrequency sub-bands fusion rule based on this 

index and the contextual relationship of coefficients. 

The clarity evaluation index based on amplitude and 

phase. To preserve the texture details in the high-

frequency sub-bands as much as possible and identify 

the clarityof image, a clarity metric based on phase and 

amplitude is proposed. First, the gradient of the 

amplitude of the low-frequency sub-band in the 

horizontal, vertical, and diagonal directions is 

calculated, respectively. The gradient indicates the 

texture change of image in three directions. The 

horizontal, vertical, and diagonal texture changes are 

measured by the horizontal phase of LH sub-band, the 

vertical phase of HL sub-band, and the diagonal phase 

of HH sub-band. For fully expressing the texture 

feature of image, a clarity evaluation index based on 

the low-frequency amplitude and three directional 

phase information from high frequency and low 

frequency is designed as follows 

 
where W represents an area of image with clarity value 

to be computed. QWT transformation is carried out to 

obtain the amplitude and phase information of the 

high- and low-frequency sub-bands. GradLhor; 

GradLver; GradLdia represent the gradient 

information of low-frequency amplitude in horizontal, 

vertical, and diagonal directions, respectively. 

PhaseLHhor; PhaseHLver; PhaseHHdia represent the 

phases of low-frequency coefficients in horizontal, 

vertical, and diagonal directions, respectively. 

PhaseLLhor; PhaseLLver; PhaseLLdia represent the 

phases information in the horizontal direction of the 

high-frequency LH sub-band, the vertical direction of 

the HL sub-band, and the diagonal direction of the HH 

sub-band, respectively. 

 

The contextual activity measure of high-frequency 

sub-band coefficient. The MSD coefficients are related 

with the adjacent scale and direction.10,12 The 

contextual relationship of QWT coefficients is shown 

in Figure 5. The left part is the coarser scale, and the 

right part is the finer scale in three directions. Let X be 

the current coefficient, NA and NB are the eight 

nearest adjacent coefficients, PX is the parent 

coefficient, and CX is the cousin. X and PX, X and NA, 

NB, X and CX describe make the value of the activity 
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measure belong to (0,1). Its definition is shown as 

follows 

 
Figure 5. The context relationship schematic diagram 

of QWT coefficients.Figure 6. Curve graph of the erf 

function 

 

 

 

 
where x is the input variable and the curve is shown in 

Figure 6. The output range of erf function is (0,1), and 

within the range of the coefficients are monotonically 

increasing,down-sampling operation with a sampling 

factor of 2. For the high-frequency coefficient with 

decomposition scale of 1, the contextual activity 

measure is calculated directly in combination with the 

clarity of its neighborhood coefficient. Otherwise, the 

calculation of activity measure should be considered 

the clarity of corresponding coefficient in the previous 

scale. Because the size of previous scale is different 

with the current scale, so a down-sampling operation 

is necessary. Then, compare the activity measure value 

of current coefficient with the parent coefficient, the 

larger clarity value is taken as the activity measure for 

fusion rule. Figure 7 describes the process in detail. 

 

 
Figure 7.The calculation of active measure for high-

frequency coefficient. QWT: quaternion wavelet 

transform. 

 

After obtaining the activity measure of high-frequency 

coefficient, the fusion rule can be made as formula (11). 

The coefficient with the bigger activity measure value 

is taken as the fused high-frequency sub-band 

coefficient 

 
 

V. Experimental results and analyses 

 

In this section,The proposed fusion method is 

evaluated on four groups of medical images. All 

experiments are run on MATLAB R2015b of a PC 

(Pentium 3.5 GHz CPU, 8 GB RAM). Comparison of 

fusion methods include weighted average,13 principal 

component analysis,14 DWT,3 gradient pyramid 

transformation,15 contrast pyramid (CON),16 Q-

CHMM,10 and QWT-Avg-Max.17 The parameters of 

the comparison method are set according to the 

corresponding references. In addition, the objective 

evaluation metrics include standard deviation, entropy, 

average gradient (AG), spatial frequency (SF), mutual 

information (MI), and edge information evaluation 

factor (Qabf). 
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A. Medical image fusion experiments on MRI–CT 

 

Figure 8(a) and (b) shows a pair of pre-registered MRI 

and CT brain images. Their fusion results are shown in 

Figure 8(c) to (j) and the objective evaluation indexes 

are listed in Table 1, where the bold value indicates the 

best winner. As can be seen from Table 1, our proposed 

method wins on most metrics except on SF and MI. 

Figure 8(g) obtained by the CON method wins onSF 

metric; the reason is that the missing brightness 

information of MRI image leads to large grayscale 

variation. Figure 8(d) is almost completely similar to 

MRI images; few components of CT image are 

introduced into the fused image. Figure 8(c) and (i) 

loses many important detail information of the original 

image. Figure 8(e) and (f) loses some texture of the MRI 

image and results in the dark fused images. Many 

details of MRI image are lost in Figure 8(h). Figure 8(j) 

shows the fusion result of the proposed method. The 

fused image holds most information of the original 

images; the brightness and the contrast of original 

images are well preserved. Thus, the proposed method 

achieves better result in both subjective effect and 

objective evaluation 

 

B. Medical image fusion experiments on the first group 

of T1-MR and MRA T1-MR and MRA 

Images are shown in Figure 9(a) and (b). Figure 9(c) to 

(i) shows the fused image obtained by the comparison 

methods and the proposed method. Table 2 lists the 

objective evaluation indexes. It is obvious that Figure 

9(c) has a low contrast. MI and Qabf represent the 

correlation between the fusion image and the original 

image. These two indexes get the best values because 

Figure 9(d) biases toward T1-MR image. Figure 9(e) 

preserves lots of useful information from source images, 

but some detail information within the T1-MR image 

outline is lost. In addition, Figure 9(e) to (g) is dark and 

has low contrast. The visual effect of Figure 9(h) is poor. 

Lots of detail information are lost such as the crooked 

outlines in the left part of the MRA image in Figure 

9(i). Figure 9(j) obtained by the proposed method has 

the best subjective effect and optimal object indexes. 

Figure 8. (a) and (b) MRI–CT medical images and 

their fusion results: (c) AVG, (d) PCA, (e) DWT, (f) 

GRA, (g) CON, (h) Q-CHMM, (i) QWT-Avg-Max, 

and (j) proposed. 

  

 
C. Medical image fusion experiments on the second 

group of T1-MR and MRA 

Figure 10(a) and (b) shows the second group T1-MR 

and MRA medical images, which contain more 

complex tissues. Their fusion results are shown in 

Figure 10(c) to (i) and their corresponding objective 

evaluation indexes are listed in Table 3. As can be seen 

from Figure 10, Figure 10(c) and (d) loses many texture 

details. Figure 10(e) is not as smooth and clear as the 

T1-MR image. Figure 10(f) loses some outline 

information of T1-MR image and the brightness 
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Figure 9.The fusion results of medical image (a) T1-MR 

and (b) MRA and the fused results based on various 

methods: (c) AVG, (d) PCA, (e) DWT, (f) GRA, (g) 

CON, (h) Q-CHMM, (i) QWT-Avg-Max, and (j) 

proposed information of MRA image. The outline 

information in Figure 10(g) is almost lost, such as the 

white line in the right side of the T1-MR image and 

the outline in the left side of MRA image. The 

grayscale of Figure 10(h) is unbalanced. Figure 10(i) 

contains some of useful information of two original 

images, but somedetails of MRA image are lost. Figure 

10(j) preserves the outline, details, and useful features 

of the original images, as well as brightness and 

contrast, without information loss or false information. 

The object indexes of Figure 10(j) are consistent with 

subjective perception. 

 

 
 

 

 
Figure 10. The fusion results of the second group of (a) 

T1-MR and (b) MRA medical image and thefused 

results based on various methods: (c) AVG, (d) PCA, (e) 

DWT, (f) GRA, (g) CON, (h) Q-CHMM 

   

D. Medical image fusion experiments on the third 

group of T1-MR and MRA 

 

Figure 11(a) and (b) holds more complex tissue 

structure and texture. Their fused results are shown in 

Figure 11(c) to (i) and their objective evaluation 

indexes are listed in Table 4. Figure 11(c) seriously 

loses the texture details information and outline 

information of the original images and has low contrast, 

as a result, its all objective indexes are small. Figure 

11(d) is excessively biased toward T1-MR images and 

the MI and Qabf indexes of Figure 11(d) achieve the 

maximum  

 

Figure 11. The fusion results of the third group of (a) 

T1-MR and (b) MRA medical image and the fused 

results based on various methods: (c) AVG, (d) PCA, (e) 
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DWT, (f) GRA, (g) CON, (h) Q-CHMM, (i) QWT-Avg-

Max and (j) proposed values. 

 

Figure 11(e) not only has low contrast but also loses 

some details information, such as the two circular areas 

in the MRA image. Figure 11(f) is dark and blurred, 

and the objective evaluation indexes conform to the 

subjective perception. Figure 11(g) is unsmooth 

because of noise, which causes the AG and SF indexes 

win the best values. Figure 11(h) loses lots of useful 

information existing in source images. Figure 11(i) is 

blurred because it loses some small details. Due to 

adopting the QWT transform tool and considering the 

correlation between QWT coefficients, the proposed 

method gets the best subject perception and objective 

evaluation values. 

VI. Conclusion 

A novel medical image fusion method based on QWT 

has been proposed. The QWT can decompose a 

medical image into richer low-frequency coefficients 

and high-frequency coefficients. The absolute value 

choose-max fusion rule was adopted to fuse the 

lowfrequency coefficients. In addition, a clarity metric 

based on amplitude and phase was proposed. We have 

also built a novel activity measure based on the 

proposed clarity metric and the correlation between 

QWT coefficients for the high-frequency coefficients. 

Experimental results demonstrate that the fused 

medical images obtained by the proposed method 

preserve the important contour and texture details of 

the original images. Four groups of experiments on 

various multi-modal medical images show that the 

proposed method can achieve superior fusion quality 

in terms of both visual perception and objective 

evaluation. 
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