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ABSTRACT 

 

Chaotic dynamics of Rayleigh-Duffing oscillator has been described with the help of Melnikov’s method of 

perturbation. Critical observation shows that depending on system parameters, value an external force signal 

chaotic oscillation can be generated in the system. Analytically, range of value of different system parameters and 

external signal strength required for chaotic oscillation can be determined. All the analytical predictions have 

been verified by solving the system equation of the oscillator numerically.  
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I. INTRODUCTION 

 

In recent years, researchers are interested to quantify 

and characterise the nonlinear behaviour of different 

nonlinear oscillator by theoretical, numerical, and 

experimental techniques. This increased interest is due 

to the fact that this nonlinear phenomenon appears in 

various fields, from mathematics, physics, chemistry, to 

engineering, biology, economics, medicine etc. [1]. By 

using the chaos theory so many phenomenon such as 

nature of atmospheric weather, intensity of solar 

activity, nonlinear oscillation in different electrical and 

mechanical systems, etc. can be explained properly [2].  

 

To describe different physical system, different 

oscillators have been designed mathematically. Duffing 

oscillator (DO) is one such model, which is used to 

describe nonlinear behaviours of many physical 

systems [3-4]. The forced Duffing oscillator is used as a 

prototype model for various physical and engineering 

problems such as different electrical circuit, Josephson 

junctions, plasma oscillations, optical bistability, etc.[5-

6].  The potential of DO is of double well type and its 

chaotic behaviour is highly dependent on a nonlinear 

velocity damping term. Such damping can, in some 

systems, change the sign depending on velocity or 

displacement values, and provide excitation energy to 

the examined system [7].  Now, to describe some other 

physical systems such as, Brusselator, Selkov, rolling 

response, certain micro-electromechanical systems 

(MEMS) a cubic power of the velocity dissipative 

function is introduced in the system equation of 

Duffing oscillator [8-10]. This cubic power of velocity 

damping term is known as Rayleigh dissipation and 

with this dissipation terms, the Duffing oscillator is 

known as Rayleigh-Duffing oscillator (RDO). Potential 

of RDO is same as the double well potential like a DO 

and the two systems are differing by term of Rayleigh 

dissipation. Chaotic responses in Duffing oscillator are 

very common event and so many articles have been 

reported on the chaotic dynamics of DO [11-12]. 

Dynamics of RDO has been also reported in different 

articles [13-15].   Studies on chaotic dynamics of this 

system is important, since it might be useful to model 
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many physical and engineering systems, and in the 

context of chemical and biological oscillators. In [15], 

chaotic dynamics of RDO has been explained by the 

Melnikov’s method of homoclinic bifurcation. How the 

fractal basin boundaries arise and are modified as the 

damping coefficient is varied has been studied here. In 

most of the work the mechanisms by which the strange 

attractors arise and are modified with the variation of 

system parameters have been studied. If one sees the 

system equation of microwave Gunn oscillator (GO) 

then, it is basically the system equation of RDO.  

 

Different experimental and numerical observation on 

the chaotic dynamics of GO in under biased (non 

oscillatory) condition have been reported recently in 

different articles [16-19]. In [17], it has been reported 

that in under biased non oscillatory state presence of 

sync signal of very low strength makes the system 

dynamics chaotic. It has been also reported in [18], at 

the time of growth and quenching of oscillation a 

hysteresis occurs. Coefficient of different damping and 

restoring terms depends on dimension of cavity and dc 

biasing voltage. So, to explain different experimental 

evidences by the theory of RDO, one has to take the 

different values of damping and restoring coefficients. 

In this paper attempt has been made to explore the 

dynamics of RDO by considering both positive and 

negative values of damping factors. The condition for 

stable oscillation and how hysteresis occurs have been 

explained with proper analytical and numerical results. 

Again, by using the Melnikov theory of homoclinic 

bifurcation [20-24], chaotic dynamics of forced RDO 

has been explained in different parameter space. 

Although in [15], chaotic dynamics of RDO has been 

explained by the theory of Melnikov method, but 

analysis has been done for same value of cubic and 

linear damping coefficients. Also, the effect of only 

damping term has been studied. But in this paper, we 

have explained chaotic dynamics, by considering 

different values of damping coefficients. Also, we have 

shown the effects of strength and frequency of external 

periodic forced signal on the dynamics of RDO. This 

study could be quite helpful to explain the dynamics of 

different nonlinear oscillator systems like GO.        

 

The system equation of RDO is a second order 

differential equation of a class of nonlinear oscillators 

in terms of a state variable q the generalised system 

equation is given as.   
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Here,  is the normalized time and a, b, c and d are 

parameters used to express the relative strengths of 

respective restoring and dissipating forces.  

 

II. Method and Materials  

2.1. Analytical Study by Melnikov Method: 

We perform an analytical study on the dynamics of the driven R-D oscillator described by (1) using well 

known Melnikov method [22-24]. Here an integral, called Melnikov function (MF), is calculated for a set given 

parameters of the system. If the MF be a negative quantity for all time within the period of perturbation, the 

perturbed orbit lies inside the unperturbed one.  On the other hand, if the MF be a positive quantity, the 

perturbed orbit always lies outside of the unperturbed orbit. When the MF is simple zero value or changes its 

sign from positive to negative or vice versa during the perturbation period, then the intersection of perturbed 

and unperturbed orbits occur and it represents the chaotic oscillation in the system [24]. We rewrite (1) in the 

following form, 

                                                            q p=                                                                  (2a)   

                                                 ( ) ( , , )p f q g q p = +                                                (2b) 
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Where, ( , , )g q p   represents the perturbed term in terms of the velocity dependent damping forces and 

external forcing term.   is a small parameter written to ensure the smallness of the perturbation. For this type 

of system, the MF is written as, 

                              
0 0 0 0 0 0 0( ) ( ) [ ( ), ( ), ]M p g q p d        



−

= − − −                         (3) 

Here 0q  and 0p  are the state variables representing the unperturbed trajectory in the phase plane. In the 

unperturbed case, this system equation takes the following form, 

                                                              q p=                                                                    (4a) 

                                                        3
p aq bq= −                                                              (4b)  

Using Hamilton’s canonical equation, the unperturbed Hamiltonian for the system (Eq.5) is, 

                                                  2 2 4

0

1 1 1
( , )

2 2 4
H q p p aq bq= − +                                   (5)   

Equating the unperturbed Hamiltonian to zero, the parametric equation for the homoclinic orbit is obtained as,   

                                                          ( )
2

sec
a

q h a
b

=                                           (6a) 

                                             ( ) ( )
2

sec tanp a h a h a
b

 =                                 (6b) 

Using equation (9a) and (9b), the MF for this system would be written as, 

                                          3

0 0( ) [ cos ( )]s sM p cp dp q d   


−

= − +  +                   (7) 

After simplification of the integral, the MF for the driven R-D oscillator can be written as, 

                           3/2 7/2

0 02

4 16 2
( ) sin( )sec

3 35 2

s
s s s

c d
M a a q h

b b b a


  

 
= − −    

 
   (8) 

Here, 0  is the time, at which first transverse intersection occurs between unstable and stable orbit. If for any 

real value of 0 , MF shows simple zero or change of its sign, then system dynamics becomes chaotic. The effects 

of external sync signal and system parameters on chaotic dynamics of the system can be predicted by observing 

the variation of MF with different values of system parameters as well as the strength and the frequency of the 

external forcing signal.  

 

2.2. Effect of the parameter c: 

We have drawn a parameter space ( )sq c− , based on computed values of the MF for fixed values of other 

parameters used. The parameter space is shown in Fig-1 and it consists of three zones where the MF is negative 

(black region), or positive (yellow region) or zero and changes sign (combination of black and yellow region).  

Now from the criterion of Melnikov method, we conclude that, the region containing both colours represents 

chaotic oscillation zone as in this region MF shows the change of its value and which indicates the transverse 

intersection of unstable orbit with stable one.  
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Fig.1. Parameter space ( )sq c− , indicating different zones (stable oscillatory and chaotic). 

[ 1, 1, 0.015, 1.2]sa b d= = =  =  

 

Negative value of MF indicates the unstable manifold lies inside the stable homoclinic orbit. So, negative value 

of MF indicates steady oscillatory state or a stable point solution of the system. This behaviour is observed for 

slight large negative value of damping parameterc . For more large negative value of c , the oscillation would be 

quenched to a stable point. When value of c  is increased towards the positive value, unstable orbit moves near 

about stable homoclinic orbit and for some range of c  value, transverse intersection occurs between the two 

orbits. In this region MF changes its sign, which represents the chaotic oscillatory state of the system. For large 

value of c , unstable orbit moves out side to the stable orbit and no transverse intersection between stable and 

unstable orbits would occur. In this region, MF always remains positive by indicating a stable oscillatory state 

of the system.    

From Fig-1, it is seen that for a particular value of strength and other parameters, if the value of c is increased 

from negative to positive, then there exists a range of c, in which MF changes its sign. In this range of c, the 

system dynamics would be chaotic in nature. With further increase of c, we have the zone in which MF always 

remains positive, indicating steady or quasi periodic oscillation. It is also seen that, the higher is the strength of 

the external signal, the more is the range of c, leading to chaotic oscillations. The chaotic zone is extended from 

negative value to positive value of c. This means that chaotic oscillations could be generated in a non-

oscillatory Rayleigh-Duffing oscillator (when c<0), if it be driven by an external forcing signal of proper 

strength and frequency. Using (8), the range of c, in which the system shows chaotic oscillations, can be 

obtained as, 

                                   7/2

03/2 2

3 16 2
sin( )sec

4 35 2

s
s s s

b d
c a q h

a b b a


 

  
    

  

                   (13) 

Effects of other parameters on the system dynamics can also be understood by observing the variation of MF in 

a similar way. 

 

2.3. Effect of the strength of forcing signal: 

The variation of the MF with the strength of the external forcing signal ( )sq  has been computed keeping other 

system parameters and the forcing signal frequency fixed. It is observed that for a negative value of c  MF 

changes its sign from negative to positive for increasing sq . However with positive value of c, the MF changes 
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sign from positive to negative at some other value of 
sq  with all other parameters kept unchanged.  The 

variation of the MF with 
sq  for c<0 and c>0 are shown in Fig.2 and Fig.3 respectively.  

 

Fig.2. Variation of MF with the strength of sync signal for negative value of c, [ 1, 1, 0.015, 1.2]sa b d= = =  =  

 
Fig.3. Variation of MF with the strength of sync signal for positive value of c, [ 1, 1, 0.015, 1.2]sa b d= = =  =  

 

So applying Melnikov’s theory, it can be concluded that the oscillation would be chaotic, when strength of the 

external signal is greater than some critical value. The required critical strength is different for non-oscillating 

and oscillating R-D oscillator. The minimum value of the required strength (considering 0sin( ) = 1) for 

chaotic oscillation can be obtained from (8) as,  
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III. Numerical Analysis of the System 

 

Varying the parameter c from a negative to positive value with other parameters fixed, we note the (q-p) phase 

plane plot and the frequency spectrum of q variable. In phase plane plot we have also plotted the phase plane 

unperturbed homoclinic orbit. Numerically simulated phase plane plot along with unperturbed homoclinic 

path of the RDO and corresponding power spectrum are shown in Fig.4 to Fig.5. It is seen that after a critical 

value of c the output is chaotic and finally becomes periodic at some frequency and strength of the driving RF 

signal through sequence of quasi-periodic states. Fig 4(a) and 4(b) show the phase plane plot and frequency 

spectrum for periodic oscillation. 

 
Fig. 4: Numerically simulated (a) Phase plane, and (b) Power spectrum 

[ 1, 1, 0.05, 0.015, 1.2, 0.2]s sa b c d q= = = − =  = =  

 
Fig. 5: Numerically simulated (a) Phase plane, and (b) Power spectrum

[ 1, 1, 0.02, 0.015, 1.2, 0.2]s sa b c d q= = = − =  = =  

 In the figure (Fig.4) the orbit shown by the red colour represents the unperturbed homoclinic orbit and the 

orbit shown by blue colour represents the perturbed orbit. From this figure it is observed that the perturbed 

orbit lies inside the unperturbed one and there is no intersection of perturbed and unperturbed orbit. So, there 

is no occurrence of chaotic oscillation and the corresponding frequency spectrum shows one peak representing 

period-1 oscillation. In Fig.5, perturbed and unperturbed orbits intersect each other and corresponding 



International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)  

 

 

1402 

frequency spectrum is broad in nature representing a chaotic oscillation. For some higher value of c ( 0.025)=

phase plane plot and frequency spectrum are shown in Fig.6.  

 
Fig. 6: Numerically simulated (a) Phase plane, and (b) Power spectrum

[ 1, 1, 0.025, 0.015, 1.2, 0.2]s sa b c d q= = = =  = =  

From this figure, one observes that the perturbed orbit lies outside the stable unperturbed orbit and there is no 

intersection of the two types of orbits. The corresponding frequency spectrum shows one peak representing 

stable period-1 oscillation again.  

 

 

IV. CONCLUSION 

 

Chaotic dynamics of Rayleigh Duffing oscillator has 

been analysed in this paper. By using the linear 

technique of stability to produce self-oscillation role 

of different damping terms has been discussed. 

Analytical result shows that in non-oscillatory state 

by the presence of any external periodic force the 

system dynamics may be chaotic. Numerical results 

also agree with the analytical prediction. This study 

is helpful to estimate the value of amplitude and 

frequency range of the external force in which 

system shows chaotic oscillation. This study has two 

fold applications. From designer point of view, this 

study is important to design such type of a system, 

which is free from chaos and can be used in stable 

oscillatory condition. So, generation of chaotic signal 

is another important field of research. Particularly, to 

generate microwave carrier signal from Gunn 

oscillator, the theory of RDO is suitable to choose the 

proper values of system parameters and external sync 

signal so that chaotic carrier signal can be generated 

in a control manner.        
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