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ABSTRACT 

The concept of generalized derivations is a ring was generalized as strong generalized derivations by the 

authors. The properties of strong generalized derivations is semi-prime rings are studied and more generalized 

results are obtained. 
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I. INTRODUCTION 

 

Let R be an arbitrary ring. An additive mapping 𝑑 ∶ 𝑅 → 𝑅 is called a derivation of 𝑅 if  𝑑(𝑥𝑦) = 𝑑(𝑥)𝑦 +

𝑥𝑑(𝑦) for all 𝑥, 𝑦 ∈ 𝑅. Following Bresar [3] an additive mapping 𝐷 ∶ 𝑅 → 𝑅 is called a generalized derivation 

on R if there exists a derivation on various algebraic structures. H.E.Bell [1] proved that if N be a 3-prime, 2- 

torsion free near ring admitting a non-zero generalized derivation 𝑓  such that 𝑓(𝑁) ⊂ 𝑍,  then N is a 

commutative ring. He also proved that if N is a 3- prime 2 – torsion – free near – ring admitting a generalized 

derivation 𝑓 associated with a non-zero derivation D of N satisfying 𝑓(𝑥)𝑓(𝑦) =  𝑓(𝑦)𝑓(𝑥) for all 𝑥, 𝑦 ∈ 𝑁 , 

then N is a commutative ring. H.E.Bell and N.U.Rehman [2], G.Gopalakrishnamoorthy, G .Shakila Chitra Selvi 

and V.Thirupurasundari [5] N.U. Rehmann [7] and many others have studied and published many results on 

generalized derivations. Mehsin Jabel Atteya and Dalal Ibrahim Reshan [6] have proved many results regarding 

generalized derivations in semi-prime rings assuming that the semi-prime has cancellation properties. It is 

noted that the property of semi-prime is not at all used is their proof and logically the proof seems to be not 

good. 

In this paper we investigate all those results and prove more stronger results by omitting the condition. “ The 

ring has to satisfy cancellations Laws”. Throughout  this paper R denote an arbitrary ring, Z its multiplicative 

center. A ring R is said to be prime if 𝑎𝑅𝑏 = 0 implies either 𝑎 = 0 (𝑜𝑟)𝑏 = 0. It is said to be semi prime if 

𝑎𝑅𝑎 = 0 implies 𝑎 = 0, Every prime ring is semi-prime. 
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II. PRELIMINARIES 

 

In this section we shall see some definitions and results which we use in our proof. 

Definition 2.1 

Let R be any ring for 𝑥, 𝑦 ∈ 𝑅. 𝑑𝑒𝑓𝑖𝑛𝑒 [𝑥, 𝑦] = 𝑥𝑦 − 𝑦𝑥; called commutator of  𝑥 𝑎𝑛𝑑 𝑦. 

Lemma 2.2 

Let R be any ring. 

(i) [𝑥, 𝑦] = −[𝑦, 𝑥]   ∀ 𝑥, 𝑦 ∈ 𝑅 

(ii) [𝑥, 𝑦 + 𝑧] = [𝑥, 𝑦] + [𝑥, 𝑧]  ∀ 𝑥, 𝑦 𝑧 ∈ 𝑅 

(iii) [𝑥, 𝑦𝑧] =  𝑦[𝑥, 𝑧] +  [𝑥, 𝑦]𝑧   ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑅 

(iv) [𝑥, 𝑦] =  0  ∀ 𝑥, 𝑦 ∈ 𝑅  iff R is Commutative  

(v) [𝑥, 𝑥] = 0       ∀ 𝑥 ∈ 𝑅 

Definition 2.3 

Let R be any ring for 𝑥, 𝑦 ∈ 𝑅 define 𝑥 𝑦 = 𝑥𝑦 + 𝑦𝑥 called the anti-commutator of 𝑥 𝑎𝑛𝑑 𝑦 

Definition 2.4 

Let R be any ring. Then 𝑧 = {𝑥 ∈
𝑅

𝑥𝑦=𝑦𝑥 
 ∀ 𝑦 ∈ 𝑅} is called the centre of R. R is commutative iff Z=R. 

 

III. MAIN RESULTS 

 

Theorem 3.1 

Let R be a semi-prime ring admitting a non-zero strong generalized derivation F associated with a non-zero 

additive map 𝑓: 𝑅 → 𝑅  and a non-zero derivation d of R. If  𝐹([𝑥, 𝑦]) = 𝑓([𝑥, 𝑦]) = [𝑥, 𝑦] for all 𝑥, 𝑦 ∈ 𝑅, then 

R is commutative if d is an onto map. 

Proof : 

 By the hypothesis  

 𝐹([𝑥, 𝑦]) = 𝑓([𝑥, 𝑦]) = [𝑥, 𝑦]    ∀ 𝑥, 𝑦 ∈ 𝑅   ……………….(1) 

Replace 𝑥 by 𝑥𝑧 we get 

𝐹([𝑥 𝑧, 𝑦]) = [𝑥𝑧, 𝑦]     ∀ 𝑥, 𝑦, 𝑧  ∈ 𝑅 

𝐹(𝑥[𝑧, 𝑦] + [𝑥, 𝑦]𝑧) =  𝑥[𝑧, 𝑦] + [𝑥, 𝑦]𝑍 

𝐹 (𝑥[𝑧, 𝑦]) + 𝐹([𝑥, 𝑦]𝑧) = 𝑥[𝑧, 𝑦] + [𝑥, 𝑦]𝑧 

𝑓(𝑥)[𝑧, 𝑦] + 𝑥 𝑑([𝑧, 𝑦]) + 𝑓([𝑥, 𝑦])𝑧 + [𝑥, 𝑦]𝑑(𝑧) = 𝑥[𝑧, 𝑦] + [𝑥, 𝑦]𝑧 

using (1) we get 

𝑓(𝑥)[𝑧, 𝑦] + 𝑥𝑑([𝑧, 𝑦]) +  [𝑥, 𝑦] 𝑑(𝑧) = 𝑥[𝑧, 𝑦] 

Replacing z by y we get 

[𝑥, 𝑦]𝑑(𝑦) = 0    ∀ 𝑥, 𝑦 ∈ 𝑅 

Since d is onto we have 
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          [𝑥, 𝑦]𝑢 = 0   ∀ 𝑥, 𝑦, 𝑢 ∈ 𝑅 

(ie)    [𝑥, 𝑦]𝑢[𝑥, 𝑦] = 0   ∀ 𝑥, 𝑦, 𝑢 ∈ 𝑅   

Since R is semi prime, [𝑥, 𝑦] = 0  ∀  𝑥, 𝑦 ∈ 𝑅 

(ie)   R is commutative. 

Remark 3.2 

Taking f=F, we get Theorem 3.1[8] 

Theorem 3.3 

Let R be a semi-prime ring admitting a non-zero strong generalized derivation F associated with a non-zero 

additative map 𝑓 ∶ 𝑅 → 𝑅 and a non-zero derivation d of R. If 𝐹([𝑥, 𝑦]) =  𝑓([𝑥, 𝑦]) = −[𝑥, 𝑦] for all 𝑥, 𝑦 ∈ 𝑅  

then R is commutative provided d is an onto map. 

Proof : 

 By the hypothesis 

 𝐹([𝑥, 𝑦]) = 𝑓([𝑥, 𝑦]) =  −[𝑥, 𝑦]   ∀ 𝑥, 𝑦 ∈ 𝑅 

(ie) 𝐹([𝑥, 𝑦]) = 𝑓([𝑥, 𝑦]) = [𝑦, 𝑥]    ∀ 𝑥, 𝑦 ∈ 𝑅                       ………………..(1) 

Replacing y by yz we get 

 𝐹[𝑥, 𝑦𝑧] = [𝑦𝑧, 𝑥] 

 𝐹(𝑦[𝑥, 𝑧] + [𝑥, 𝑦]𝑧) = 𝑦[𝑧, 𝑥] + [𝑦, 𝑥]𝑧 

 𝑓(𝑦)[𝑥, 𝑧] + 𝑦𝑑([𝑥, 𝑧]) + 𝑓([𝑥, 𝑦])𝑧 + [𝑥, 𝑦]𝑑(𝑧) =  𝑦[𝑧, 𝑥] +  [𝑦, 𝑥]𝑧 

using (1) we get 

 𝑓(𝑦)[𝑥, 𝑧] + 𝑦𝑑[𝑥, 𝑧]) + [𝑥, 𝑦]𝑑(𝑧) = 𝑦[𝑧, 𝑥] 

Replacing z by 𝑥 we get 

 [𝑥, 𝑦]𝑑(𝑥) = 0   ∀ 𝑥, 𝑦 ∈ 𝑅 

Since d is onto we get 

 [𝑥, 𝑦]𝑢 = 0     ∀ 𝑥, 𝑦, 𝑢 ∈ 𝑅 

(ie) [𝑥, 𝑦]𝑢[𝑥, 𝑦] = 0   ∀ 𝑥, 𝑦 𝑢 ∈ 𝑅  

Since R is semi-prime, we get 

 [𝑥, 𝑦] = 0    ∀ 𝑥, 𝑦  ∈ 𝑅 

(ie) R is commutative. 

 

Remark 3.4 

Taking f=F, we get Theorem 3.2[8] 

Theorem 3.5 

Let R be a semi-prime ring. If R admits a non-zero strong generalized derivation F associated with a non-zero 

additive map 𝑓: 𝑅 → 𝑅 and a non-zero derivation d of R such that 𝐹(𝑥 ∘ 𝑦) = 𝑓(𝑥 ∘ 𝑦) = 𝑥 ∘ 𝑦 for all 𝑥, 𝑦 ∈ 𝑅, 

then R is anti-commutative provided d is an onto map. 

Proof :- 

 By the hypothesis 

 𝐹(𝑥 ∘ 𝑦) = 𝑓(𝑥 ∘ 𝑦) = 𝑥 ∘ 𝑦 

(ie) 𝐹(𝑥𝑦 + 𝑦𝑥) = 𝑓(𝑥𝑦 + 𝑦𝑥) = 𝑥𝑦 + 𝑦𝑥    ∀  𝑥, 𝑦 ∈ 𝑅 

𝐹(𝑥𝑦) + 𝐹(𝑦𝑥) = 𝑓(𝑥𝑦) + 𝑓(𝑦𝑥) = 𝑥𝑦 + 𝑦𝑥     ∀ 𝑥, 𝑦 ∈ 𝑅                          ……………(1) 
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Replace 𝑥 by 𝑥𝑦 we get 

𝐹(𝑥𝑦2) + 𝐹(𝑦𝑥𝑦) = 𝑥𝑦2 + 𝑦𝑥𝑦 

𝑓(𝑥𝑦)𝑦 + 𝑥𝑦𝑑(𝑦) + 𝑓(𝑦𝑥)𝑦 + 𝑦𝑥𝑑(𝑦) = 𝑥𝑦2 + 𝑦𝑥𝑦 

(𝑓(𝑥𝑦) + 𝑓(𝑦𝑥))𝑦 + (𝑥𝑦 + 𝑦𝑥)𝑑(𝑦) = 𝑥𝑦2 + 𝑦𝑥𝑦 

using (1) we get 

(𝑥𝑦 + 𝑦𝑥)𝑑(𝑦) = 0        ∀ 𝑥, 𝑦 ∈ 𝑅 

Since d is onto 

 (𝑥𝑦 + 𝑦𝑥)𝑢 = 0      ∀ 𝑥, 𝑦, 𝑢  ∈ 𝑅 

(ie)      (𝑥𝑦 + 𝑦𝑥)𝑢(𝑥𝑦 + 𝑦𝑥) = 0    ∀ 𝑥, 𝑦, 𝑢 ∈ 𝑅 

Since R is semi-prime,   𝑥𝑦 + 𝑦𝑥 = 0    ∀  𝑥, 𝑦 ∈ 𝑅 

(ie)   R is a anti-commutative. 

Remark 3.6 

Taking f=F, we get Theorem 3.3[8] 

Theorem 3.7 

Let R be a semi-prime ring. If R admits a non-zero strong generalized derivation associated with a non-zero 

additive map 𝑓: 𝑅 → 𝑅 and a non-zero derivation d of R such that  

𝐹(𝑥 ∘ 𝑦) = 𝑓(𝑥 ∘ 𝑦) = −(𝑥 ∘ 𝑦)      ∀  𝑥, 𝑦 ∈ 𝑅, then R is anti-commutative provided d is an onto map. 

Proof: 

 By the hypothesis 

 𝐹(𝑥 ∘ 𝑦) = 𝑓(𝑥 ∘ 𝑦) = −(𝑥 ∘ 𝑦)      ∀  𝑥, 𝑦 ∈ 𝑅 

𝐹(𝑥𝑦) + 𝐹(𝑦𝑥) = 𝑓(𝑥𝑦) + 𝑓(𝑦𝑥) = −(𝑥𝑦 + 𝑦𝑥)        ∀  𝑥, 𝑦 ∈ 𝑅                 …………….(1) 

Replace 𝑥 𝑏𝑦 𝑥𝑦 𝑤𝑒 𝑔𝑒𝑡 

𝐹(𝑥𝑦2) + 𝐹(𝑦𝑥𝑦) = 𝑓(𝑥𝑦2) + 𝑓(𝑦𝑥𝑦) = −(𝑥𝑦2 + 𝑦𝑥𝑦)      ∀ 𝑥, 𝑦 ∈ 𝑅 

𝑓(𝑥𝑦)𝑦 + 𝑥𝑦𝑑(𝑦) + 𝑓(𝑦𝑥)𝑦 + 𝑦𝑥𝑑(𝑦) = −(𝑥𝑦2 + 𝑦𝑥𝑦)     ∀  𝑥, 𝑦  ∈ 𝑅 

𝑓(𝑥𝑦)𝑦 + 𝑥𝑦 𝑑(𝑦) + 𝑓(𝑦𝑥)𝑦 + 𝑦𝑥𝑑(𝑦) = −(𝑥𝑦 + 𝑦𝑥)𝑦 

(ie) (𝑓(𝑥𝑦) + 𝑓(𝑦𝑥))𝑦 + (𝑥𝑦 + 𝑦𝑥)𝑑(𝑦) = −(𝑥𝑦 + 𝑦𝑥)𝑦 

using (1) we get 

(𝑥𝑦 + 𝑦𝑥)𝑑(𝑦) = 0     ∀ 𝑥, 𝑦 ∈ 𝑅 

Since d is onto 

(𝑥𝑦 + 𝑦𝑥)𝑢 = 0     ∀ 𝑥, 𝑦, 𝑢 ∈ 𝑅 

(ie)  (𝑥𝑦 + 𝑦𝑥)𝑢(𝑥𝑦 + 𝑦𝑥) = 0    ∀   𝑥, 𝑦, 𝑢 ∈ 𝑅 

Since R is semi-prime, 𝑥𝑦 + 𝑦𝑥 = 0,    ∀  𝑥, 𝑦 ∈ 𝑅 

(ie) R is anti-commutative. 

Remark 3.8 

Taking f=F, we get Theorem 3.4[8] 
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Theorem 3.9 

Let R be a semi-prime ring. If R admits a non-zero strong generalized derivation F associated with a non-zero 

additive map 𝑓: 𝑅 → 𝑅 and a non-zero derivation d of R such that  

𝐹([𝑥, 𝑦]) = 𝑓([𝑥, 𝑦]) = 𝑥𝑦 + 𝑦𝑥    ∀ 𝑥, 𝑦 ∈ 𝑅, then R is commutative provided d is an onto map. 

 

 

Proof: 

 By the hypothesis 

 𝐹([𝑥, 𝑦]) = 𝑓([𝑥, 𝑦]) = 𝑥𝑦 + 𝑦𝑥     ∀ 𝑥, 𝑦 ∈ 𝑅 

(ie)     𝐹(𝑥𝑦) − 𝐹(𝑦𝑥) = 𝑓(𝑥𝑦) − 𝑓(𝑦𝑥) = 𝑥𝑦 + 𝑦𝑥    ∀ 𝑥, 𝑦 ∈ 𝑅             …………….(1) 

Replacing 𝑥 𝑏𝑦 𝑥𝑦 𝑤𝑒 𝑔𝑒𝑡 

𝐹(𝑥𝑦2) − 𝐹(𝑦𝑥𝑦) = 𝑥𝑦2 + 𝑦𝑥𝑦 

(ie) 𝑓(𝑥𝑦)𝑦 + 𝑥𝑦𝑑(𝑦) − 𝑓(𝑦𝑥)𝑦 − 𝑦𝑥𝑑(𝑦) = (𝑥𝑦 + 𝑦𝑥)𝑦 

(ie) (𝑓(𝑥𝑦) − 𝑓(𝑦𝑥))𝑦 + (𝑥𝑦 − 𝑦𝑥)𝑑(𝑦) = (𝑥𝑦 + 𝑦𝑥)𝑦 

using (1) we get 

(𝑥𝑦 − 𝑦𝑥)𝑑(𝑦) = 0     ∀  𝑥, 𝑦 ∈ 𝑅 

Since d is onto, (𝑥𝑦 − 𝑦𝑥)𝑢 = 0     ∀  𝑥, 𝑦, 𝑢 ∈ 𝑅 

(ie)  (𝑥𝑦 − 𝑦𝑥)𝑢(𝑥𝑦 − 𝑦𝑥) = 0    ∀ 𝑥, 𝑦, 𝑢 ∈ 𝑅 

Since R is semi-prime, 𝑥𝑦 − 𝑦𝑥 = 0     ∀ 𝑥, 𝑦 ∈ 𝑅 

Remark 3.10 

Taking f=F, we get Theorem 3.5[8] 

Theorem 3.11 

Let R be a semi-prime ring. If R admits a non-zero strong generalized derivation F associated with a non-zero 

additive map 𝑓: 𝑅 → 𝑅 and a non-zero derivation d of R such that 𝐹(𝑥𝑦 + 𝑦𝑥) = 𝑓(𝑥𝑦 + 𝑦𝑥) = 𝑥𝑦 − 𝑦𝑥 for all 

𝑥, 𝑦 ∈ 𝑅, then R is anti-commutative provided d is an onto map. 

Proof: 

 By the hypothsis 

 𝐹(𝑥𝑦 + 𝑦𝑥) = 𝑓(𝑥𝑦 + 𝑦𝑥 = 𝑥𝑦 − 𝑦𝑥     ∀ 𝑥, 𝑦 ∈ 𝑅 

(ie)      𝐹(𝑥𝑦) + 𝐹(𝑦𝑥) = 𝑓(𝑥𝑦) + 𝑓(𝑦𝑥) = 𝑥𝑦 − 𝑦𝑥    ∀ 𝑥, 𝑦 ∈ 𝑅 

Replace 𝑥 𝑏𝑦 𝑥𝑦 𝑤𝑒 𝑔𝑒𝑡 

𝐹(𝑥𝑦2) + 𝐹(𝑦𝑥𝑦) = 𝑥𝑦2 − 𝑦𝑥𝑦 

𝑓(𝑥𝑦)𝑦 + 𝑥𝑦𝑑(𝑦) + 𝑓(𝑦𝑥)𝑦 + 𝑦𝑥𝑑(𝑦) = (𝑥𝑦 − 𝑦𝑥)𝑦 

(𝑓(𝑥𝑦) + 𝑓(𝑦𝑥))𝑦 + (𝑥𝑦 + 𝑦𝑥)𝑑(𝑦) = (𝑥𝑦 − 𝑦𝑥)𝑦 

using (1) we get 

(𝑥𝑦 + 𝑦𝑥)𝑑(𝑦) = 0    ∀ 𝑥, 𝑦 ∈ 𝑅 

Since d is onto, we have 
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(𝑥𝑦 + 𝑦𝑥)𝑢 = 0      ∀  𝑥, 𝑦, 𝑢 ∈ 𝑅 

(ie)   (𝑥𝑦 + 𝑦𝑥)𝑢(𝑥𝑦 + 𝑦𝑥) = 0     ∀  𝑥, 𝑦, 𝑢 ∈ 𝑅 

Since R is semi-prime, 𝑥𝑦 + 𝑦𝑥 = 0    ∀ 𝑥, 𝑦 ∈ 𝑅 

(ie)   R is anti-commutative. 

Remark 3.12 

Taking f=F we get Theorem 3.6[8] 

Theorem 3.13 

Let R be a semi-prime ring admitting a non-zero strong generalized derivation F associated with a non-zero 

additive map 𝑓: 𝑅 → 𝑅 and a non-zero derivation d of R such that [𝑑(𝑥), 𝐹(𝑦)] = [𝑑(𝑥), 𝑓(𝑦)] = 0   ∀ 𝑥, 𝑦 ∈ 𝑅. 

Then R is commutative. 

Proof: 

 By the hypothesis [𝑑(𝑥), 𝐹(𝑦)] = [𝑑(𝑥), 𝑓(𝑦)] = 0    ∀  𝑥, 𝑦 ∈ 𝑅        ……………(1) 

Replacing y by 𝑦𝑑(𝑥)𝑤𝑒 𝑔𝑒𝑡 

[𝑑(𝑥), 𝐹(𝑦𝑑(𝑥))] = 0     ∀ 𝑥, 𝑦 ∈ 𝑅 

[𝑑(𝑥), 𝑓(𝑦)𝑑(𝑥) + 𝑦𝑑2(𝑥)] = 0     ∀  𝑥, 𝑦 ∈ 𝑅 

(ie)  [𝑑(𝑥), 𝑓(𝑦)𝑑(𝑥)] + [𝑑(𝑥), 𝑦𝑑2(𝑥)] = 0      ∀ 𝑥, 𝑦 ∈ 𝑅 

𝑓(𝑦)[𝑑(𝑥), 𝑑(𝑥)] + [𝑑(𝑥), 𝑓(𝑦)]𝑑(𝑥) + 𝑦[𝑑(𝑥), 𝑑2(𝑥)] + [𝑑(𝑥), 𝑦]𝑑2(𝑥) = 0    ∀ 𝑥, 𝑦 ∈ 𝑅 

using (1) we get 

𝑦[𝑑(𝑥), 𝑑2(𝑥)] + [𝑑(𝑥), 𝑦]𝑑2(𝑥) = 0     ∀ 𝑥, 𝑦 ∈ 𝑅 

Replacing y by  𝑥𝑦  𝑤𝑒 𝑔𝑒𝑡 

𝑥𝑦[𝑑(𝑥), 𝑑2(𝑥)] + [𝑑(𝑥), 𝑥𝑦]𝑑2(𝑥) = 0 

𝑥𝑦[𝑑(𝑥), 𝑑2(𝑥) + 𝑥[𝑑(𝑥), 𝑦]𝑑2(𝑥) + [𝑑(𝑥), 𝑥]𝑦 𝑑2(𝑥) = 0 

using (2) we get 

[𝑑(𝑥), 𝑥]𝑦𝑑2(𝑥) = 0       ∀ 𝑥, 𝑦 ∈ 𝑅 

[𝑑(𝑥), 𝑥]𝑅𝑑2(𝑥) = 0       ∀ 𝑥 ∈ 𝑅                                              ……………………..(3) 

Since R is semi-prime, it must contain a family 𝑝 = {𝑝∝/∝ ∈ ∧} of non-zero prime ideals 

With ∧ 𝑝∝ = {0} Then (3) shows that for each ∝ ∈ ∧  either  

𝑑2(𝑥)  ∈ 𝑝∝ (𝑜𝑟)[𝑑(𝑥), 𝑥] ∈  𝑝∝    ∀  𝑥 ∈ 𝑅                             ………………………(4) 

Suppose that 𝑑2(𝑥)   ∈  𝑝∝     

Now 𝑑[𝑑(𝑥), 𝑥] = 𝑑(𝑑(𝑥)𝑥 − 𝑑(𝑥𝑑(𝑥)) 

                = 𝑑2(𝑥)𝑥 + 𝑑(𝑥)𝑑(𝑥) − 𝑑(𝑥)𝑑(𝑥) − 𝑥𝑑2(𝑥) 

𝑑([𝑑(𝑥), 𝑥])       =   𝑑2(𝑥)𝑥 − 𝑥 𝑑2(𝑥)     ∈  𝑝∝    ∀ ∝ 

⇒ 𝑑([𝑑(𝑥), 𝑥])  ∈ ∧ 𝑝∝ = {0} 

(ie)  𝑑([𝑑(𝑥), 𝑥]) = 0 
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Since 𝑑 ≠ 0, [𝑑(𝑥), 𝑥] = 0     ∀  𝑥 ∈ 𝑅 

If [𝑑(𝑥), 𝑥] ∈ 𝑝∝, 𝑡ℎ𝑒𝑛 [𝑑(𝑥), 𝑥]  ∈ ∧  𝑝∝ = {0} 

and so [𝑑(𝑥), 𝑥] = 0    ∀ 𝑥 ∈ 𝑅                                                ……………………(5) 

Either of there conditions implies [𝑑(𝑥), 𝑥] = 0    ∀ 𝑥 ∈ 𝑅 

[𝑑(𝑥 + 𝑦), 𝑥 + 𝑦] = 0     ∀ 𝑥, 𝑦 ∈ 𝑅 

(ie)   [𝑑(𝑥), 𝑥] + [𝑑(𝑥), 𝑦] + [𝑑(𝑥), 𝑥] + [𝑑(𝑥), 𝑦] = 0 

using (5) we get 

[𝑑(𝑥(𝑥), 𝑦] + [𝑑(𝑦), 𝑥] = 0     ∀ 𝑥, 𝑦 ∈ 𝑅  

(ie)   [𝑑(𝑥), 𝑦] = −[𝑑(𝑦), 𝑥] = [𝑥, 𝑑(𝑦)]    ∀ 𝑥, 𝑦 ∈ 𝑅               ……………….(6) 

Replacing 𝑦 𝑏𝑦 𝑥𝑦 𝑤𝑒 𝑔𝑒𝑡 

[𝑑(𝑥), 𝑥𝑦] = [𝑥, 𝑑(𝑥𝑦)] 

[𝑑(𝑥), 𝑥𝑦] = [𝑥, 𝑑(𝑥)𝑦 + 𝑥𝑑(𝑦)] 

𝑥[𝑑(𝑥), 𝑦] + [𝑑(𝑥), 𝑥]𝑦 = 𝑑(𝑥)[𝑥, 𝑦] + [𝑥, 𝑑(𝑥)]𝑦 + 𝑥[𝑥, 𝑑(𝑦)] + [𝑥, 𝑥]𝑑(𝑦) 

using (5) we get 

𝑥[𝑑(𝑥), 𝑦] = 𝑑(𝑥)[𝑥, 𝑦] + 𝑥[𝑥, 𝑑(𝑦) 

using (6) we get 

𝑥[𝑑(𝑥), 𝑦] = 𝑑(𝑥)[𝑥, 𝑦] + 𝑥[𝑑(𝑥), 𝑦] 

(ie)  𝑑(𝑥)[𝑥, 𝑦] = 0      ∀ 𝑥, 𝑦 ∈ 𝑅                                               ………………..(7) 

Replacing 𝑦 𝑏𝑦 𝑦𝑧 𝑤𝑒 𝑔𝑒𝑡 

𝑑(𝑥)[𝑥  𝑦𝑧] = 0      ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑅 

𝑑(𝑥)𝑦[𝑥, 𝑧] + 𝑑(𝑥) [𝑥, 𝑦]𝑧 = 0 

using (7) we get 

𝑑(𝑥)𝑦[𝑥, 𝑧] = 0    ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑅 

𝑑(𝑥)𝑅[𝑥, 𝑧] = 0    ∀ 𝑥, 𝑧 ∈ 𝑅                                                        …………………(8) 

Since R is semi-prime, it must contain a family 𝑝 = {𝑝∝/∝ ∈ ∧} of non-zero prime ideals such that ∧ 𝑝∝ = {0}  

Then (8) shows that either 𝑑(𝑥) ∈  𝑝∝ (𝑜𝑟)[𝑥, 𝑧]  ∈  𝑝∝ 

If 𝑑(𝑥) ∈  𝑝∝   ∀ ∝ ∈ ∧, then 𝑑(𝑥) ∈ ∩  𝑝∝ = {0} 

Since 𝑑 ≠ 0, 𝑤𝑒 𝑔𝑒𝑡 [𝑥, 𝑦] = 0 

If [𝑥, 𝑧]  ∈  𝑝∝   ∀  ∝, 𝑤𝑒 𝑔𝑒𝑡 

[𝑥, 𝑧] ∈ ∩ 𝑝∝ = {0}     ∀ 𝑥, 𝑧 ∈ 𝑅 

(ie)   [𝑥, 𝑧] = {0}     ∀ 𝑧 ∈ 𝑅 

Either of the conditions shows that  

[𝑥, 𝑧] = 0   ∀ 𝑥, 𝑧 ∈ 𝑅 

(ie)   R is commutative. 
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Remark 3.14 

Taking f=F, we get Theorem 3.7[8]. 
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