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ABSTRACT 

 

The early diagnosis of respiratory disorders relies heavily on the detection of distinct lung sounds recorded 

using electronic stethoscopes. Machine learning techniques have been heavily used in the last 30 years to 

improve the accuracy of specialist evaluations. In this paper, a new pre-trained Convolutional Neural Network 

(CNN) model for deep feature extraction is proposed. An average-pooling layer and a max-pooling layer are 

connected in parallel in the CNN architecture to improve classification performance.. Using the Random 

Subspace Ensembles (RSE) approach, the deep features are used as input to the Linear Discriminant Analysis 

(LDA) classifier. The proposed technique was tested using the ICBHI 2017 dataset, which is a difficult dataset. 

When compared to other existing approaches utilizing the same dataset, deep features and the LDA with the 

RSE method delivered the best accuracy score, improving classification accuracy by 5.75 percent. 

INDEX TERMS: Lung sound, CNN model, parallel pooling, deep features, RSE method. 

 

I. INTRODUCTION 

 

Lung disease ranks third among fatality causes worldwide. According to the World Health Organization 

(WHO), more than 3 million people die each year due to respiratory diseases [1]. Lung sound attributes and 

their diagnosis play a significant role in pulmonary pathology. 

Lung sounds can generally be grouped as “normal lung sounds” or “abnormal lung sounds.” Normal lung sounds 

are when no pulmonary disease exists, whilst abnormal lung sounds are heard when a pulmonary disease is 

present [2], [3]. An abnormal lung sound is a supplementary respiratory sound that is heard in addition to the 

normal lung sound. Abnormal lung sounds are known as continuous if they contain wheezes, and 

discontinuous if they contain crackles. The presence of such sounds mostly indicates the presence of lung 

disease [4]. 

Auscultation is a method by which doctors evaluate and diagnose lung diseases using a stethoscope. It is known 

as a low-cost, easy-to-apply, and reliable test that requires minimal diagnosis duration [5]. The test is able to 

provide considerable information about lung diseases and their symptoms [6]; however, the classical 
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auscultation process using a stethoscope is not infallible as it depends on the skill of the physician and their 

hearing sensitivity. 

Because of the inclusion of non-stationary signals, lung sounds can be difficult to analyze and separate using 

conventional auscultation techniques. Hence, the use of an electronic stethoscope combined with an artificial 

intelligence system can be used as a means to overcoming the limitations of conventional auscultaton, and 

thereby providing a more reliable and efficient method through automated diagnosis [7]. 

From the outset of machine learning and pattern recognition, numerous studies have put forwards proposed 

methods for the automatic classification of lung sounds. In the literature, conventional methods have generally 

been used, consisting of classifiers and hand-crafted features for the categorization of lung sounds. In [6], 

features are extracted with the frequency ratio of Power Spectral Density (PSD) values and the Hilbert-Huang 

Transform (HHT) method, and then evaluated using Support Vector Machine (SVM) algorithm. In [8], the 

features extracted from time- frequency and time-scale analysis methods are utilized for the detection of 

normal lung sounds and crackles, with k- Nearest Neighbors (k-NN), Multilayer Perceptron (MLP) and SVM 

used for the classification stage. The best accuracy was achieved with the SVM. In [9], the feature set is 

constituted by instantaneous kurtosis, discriminating function, and entropy in order to classify normal lung 

sounds and abnormal lung sounds, which consist of wheezes, stridor, and rhonchi. The best classification 

accuracy was achieved with the SVM classifier. In [10], the Mel-Frequency Cepstral Coefficients (MFCCs) was 

used in order to extract features from respiratory signals, and the proposed approach was evaluated using the 

Gaussian Mixture Model (GMM). In [7], Higher Order Statistics (HOS) were used for feature extraction, with 

genetic algorithms and Fisher’s discriminant ratio applied to the feature set for the purposes of feature 

reduction. For classifying lung sounds, which include normal, coarse crackle, fine crackle, as well as 

monophonic and polyphonic wheezes, k-NN and Naive Bayes classifiers were employed. In [11], the feature set 

was constituted of autoregressive model coefficients, wavelet coefficients and some parameters of crackles, with 

k-NN and Artificial Neural Network (ANN) employed in the classification stage. Recently, deep learning-based 

models have been used for sound classification, since these models mostly provide a better level of performance 

over conventional methods [12]. In [13], CNNs were proposed for environmental sound classification using 

spectrogram images conveyed as input to the CNN. In [14], a CNN model was employed for the classification of 

lung sounds, with the CNN shown to perform superior to MFCC features in the SVM. In [15], three methods 

were proposed for the categorization of respiratory sounds. First, MFCC features were used in the GMM, SVM, 

and k-NN classifiers. In the second method, Local Binary Pattern (LBP) features were used in the GMM, SVM, 

and k-NN classifiers, whilst for the third method, the CNN model was used in both the training and testing 

stages. 

Overall, the best classification accuracy was achieved using the CNN model of the third method. 

In the method proposed in the current study, a hybrid approach was applied in order to increase the 

classification performance in the identification of lung sounds. Lung sound classes consist of normal, wheezes, 

crackles, and crackles plus wheezes. A pretrained CNN model, which utilizes spectrogram images as input, was 

used for deep-feature extraction. In the classification stage, Linear Discriminant Analysis (LDA) classifier was 

employed together with the Random Subspace Ensembles (RSE) method. 
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The remaining sections of this paper are organized as follows: with Methodology in Section 2, Experimental 

Works in Section 3, and Conclusions in Section 4. The Methodology section provides information about both 

the framework of the proposed method and the spectrogram image, CNNs, LDA, and RSE methods. In the 

Experimental Works section, the proposed method is evaluated using a robust dataset, with experimental 

results shown in tabular format. In the Conclusions section, the experimental results are interpreted according 

to performance criteria and other methods that have used the same dataset. 

 

II. THE METHODOLOGY 

 

The framework of the proposed method is illustrated in Fig. 1. In the preprocessing stage, spectrogram images 

are constituted using the lung sounds. Because of the varying frequencies of the sample lung sounds, the 

window size and overlap of the spectrograms is selected according to sampling frequency values. The 

spectrogram data is then transformed to image format using Viridis Color Map. In this way, spectrogram images 

are created and saved in the folders. The pretrained CNN model, which is illustrated in Fig. 2, is constituted by 

training with a particular part of the spectrogram images. The deep features are extracted from the fully-

connected layer of the pre-trained CNN model. To increase classification performance, while doing the down-

sampling process by the pooling layers, it is planned that the average pooling process of the characteristic 

information, which is eliminated by the max-pooling process, would be captured. As a reason, the pooling 

structure used in the pre-trained CNN model is parallel-connected the max-pooling layer to the average pooling 

layer. In order to test the classification performance of the proposed method, the deep features are conveyed to 

the LDA classifier. To further increase the classification performance, the RSE method is applied to the LDA 

classifier. 

 

A. SPECTROGRAM IMAGES 

A spectrogram is a visual process that illustrates the power, or loudness, of a signal over time at different 

frequencies within a certain waveform. The spectrogram also shows how energy levels vary over time. The 

Short-Time Fourier Transform (STFT) formulation is as shown in Equation 1: 

𝐹(𝑛, 𝜔) = ∑∞ 𝑥(𝑖)𝜔(𝑛 − 𝑖)𝑒−𝑗𝑤𝑛 (1) 

where x(i) is input, and ω(i) is a window function (e.g., hamming window and rectangular window) that is 

generally centered at time n. A spectrogram can be expressed as the squared magnitude of the STFT. The 

spectrogram images are constituted with Viridis Color Map, which is a homogeneous mapping that utilizes 

colors changing from blue to green to yellow [16], [17]. 

 

B. CNNs 

The main CNN processes consists of the forward- propagation and back-propagation. The learning parameters 

of the forward-propagation are optimized by way of the back-propagation techniques [18]. The forward-

propagation consists of numerous convolutional layers, plus one or more fully-connected layers. The aim of the 

convolutional layers is to extract apparent attributes from the input signal as it is conveyed through the layers. 
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In general, the low-level features are extracted by the first convolutional layer, whilst the more complicated 

features are extracted by the subsequent convolutional layers. The training process of the CNNs is as follows. 

The convolutional, batch normalization, activation, pooling and softmax layers form the forward-propagation 

stage. 

The basic aim in the convolution stage is to assign local connections of features from the prior layers and map 

their data to the feature maps. The convolution operation of the 2D data is shown in Equation 2: 

 

𝑦𝑛 = ∑𝑖 𝑦𝑛−1 ∗ 𝜔𝑛 + 𝑏𝑛 (2) 

𝑖 𝑖 𝑖𝑗 𝑖 

 

where 𝑦𝑛−1 is the input data or the previous convolutional output, 𝜔𝑛 is n-th weight matrix, and 𝑏𝑛 is n-th 

bias vector. 

 

Before conveying the data in the convolutional layer to a nonlinear function, the data is prepared not to show 

an abnormal distribution with Batch Normalization (BN) layer, which prevents gradient vanishing during the 

training stage. 

Thus, the learning parameters are optimized in order to speed up convergence by protecting a state of greater 

gradient at all times. Besides, the BN layer is employed to decrease the level of noise [19]. The operation of the 

BN layer is expressed as shown in Equations 3-6: 

 
where 𝒙𝒊is the input, 𝒎𝒃 is the mini-batch mean, 𝑣𝑏 is the mini-batch variance, k is the input size, and ϵ is the 

small constant. Scale and shift factors are represented as c and d, respectively. These factors are learnable 

parameters adjusted to the most convenient values during the training process. The value 𝒚𝒏 is the i-th output 

of n-th BN layer. 

The Rectified Linear Unit (ReLU), which is the most used activation in the CNNs, prevents gradient explosion 

and gradient disappearance problems within the sigmoid activation function. The ReLU activation function is 

as shown in Equation 7: 

𝒓𝒏 = 𝐦𝐚𝐱(𝟎, 𝒚𝒏) (7) 

𝒊 𝒊 
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where 𝒓𝒏 is the i-th output of n-th ReLU layer. The down-sampling operation, which decreases the matrix size, 

is applied by the pooling layer, which in turn reduces the computation cost and prevents over-fitting [20]. The 

most common pooling layers are maximum and average pooling layers. The calculation of the pooling operation 

is expressed as shown in Equation 8: 

𝒑𝒏 = 𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒐𝒓 𝒎𝒂𝒙𝑖𝑚𝑢𝑚 𝒐𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏{𝒓𝒏} (8)  

In the first fully-connected layer, the matrices conveyed scores. The softmax is the only operation that 

transforms the output of the neural network via probability distribution, giving the possibility of different 

classes. The softmax operation is as shown in Equation 9: 

 
where 𝑓𝒊 is the i-th output of the previous fully-connected layer, 𝒚𝒏symbolizes the i-th predicted score of the 

CNNs, and K is the number of predicted scores of the CNNs. 

In the back-propagation stage, the cross-entropy function is used for the CNNs. This provides information 

about the distance between the predicted values dispersion and the ground truth dispersion. Calculation of the 

cross-entropy function can be expressed as Equation 10: 

 
where 𝒚𝒕 symbolizes the ground truth values, and 𝒚𝒏 𝒊 𝒊 symbolizes the predicted values. With the L2 

regularization factor, the cross entropy is rearranged as in Equation 11: 

𝑳(𝑚, 𝒃) = 𝑯(𝒚𝒕, 𝒚𝒏) + 𝑎 ∑𝑚 𝑚𝟐 (11) 

𝒊 𝒊 

where α is the L2 regularization coefficient, 𝑏 is the bias values and 𝐿(𝜔, 𝑏) is the loss function. All learning 

parameters of the CNNs are updated through the optimizationmethods, such as the Stochastic Gradient Descent 

Momentum(SGDM) and the Adam. Optimization of the learning parameters can be expressed as shown in 

Equation 12: 

 
where 𝑚𝒏 is the updated learning parameter, 𝑚𝒏−𝟏 is the 𝒊𝒋 𝒊𝒋 from the previous layers are flattened and 

connected to other fully-connected layers. The CNNs structure from the fully- connected layer to the 

classification layer is the same as for multilayer perceptron (MLP). 

The values from the previous fully-connected layer are used as the input to the softmax layer. The softmax 

operation can be defined as a learning method used to adjust classification previous learning parameter, and δ is 

the learning rate. 
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C. LINEAR DISCRİMİNANT ANALYSİS 

Given an X matrix (s×t), which is processed as c column vectors x1, x2,…, xs (x ϵ ℜt ), each column represents a 

data point and each row represents a certain feature [21]. With the linear transformation matrix B ϵ ℜs×u, the 

feature set (y ϵ ℜl) can be calculated as shown in Equation 13: 

𝑩: 𝒙 ∈ 𝕽𝒔 → 𝒚 = 𝑩𝑻𝒙 ∈ 𝕽𝒖 (13) 

The outcome matrix (Y ϵ ℜu×n) includes u rows which leads to the u-dimensional decreased space, and each 

data point consist of u features. 

 
M Random Subspaces LDA Learners 

FIGURE 1. Framework of the proposed method. 

 
FIGURE 2. Illustration of the proposed CNN using parallel pooling structure 

 

Given the within-classes scatter matrix Sm, the between- classes scatter matrix Sn, and the scatter matrices S, 

𝑺𝑳 and 𝑳 correspond to the between-classes scatter matrix and within-classes scatter matrix in the lower-

dimensional space. 
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𝑺𝑳 ,  𝑺𝑳 and the scattering matrix criterion (𝑱(𝑩)) is 

𝒎 𝒏 

calculated by the linear transformation B using Equations 14-16: 

 
For each Gaussian class using the same covariance matrix, the LDA is similar to the Bayesian classifier, with 

only a variation in its threshold value. 

 

D. RANDOM SUBSPACE ENSEMBLES 

The RSE is a method used to boost the performance of classifiers. The method is grounded on a stochastic 

operation that randomly chooses a number of components of the learning model in creating each classifier [22]. 

In the RSE method, the training data is split into random subspaces. The most convenient subspace class 

membership is assigned by the learner algorithm of the classifiers. Then, class memberships conveyed from 

each subspace learner is assembled in a class vector. The predicted scores are stated by the highest average score 

of the class vector. For the LDA classifier, the RSE method is applied as follows: 

• Item 1: Choose without changing random data of the K-size from training data (K < N). 

• Item 2: Train an LDA learner using only the predictors. 

• Item 3: Apply Item 1 and Item 2 until there are M LDA learners. 

• Item 4: Assemble prediction values of the LDAlearners. 

• Item 5: Classify the test dataset with the highest average value. 

  

𝑺𝑳 𝑩𝑻𝑺 𝑩 

To optimize B in the scattering matrix criterion, 𝑺𝑳 should be maximized while 𝑺𝑳 should be minimized. The 

optimal B in the LDA classifier is computed as shown in Equation 17: 

The representation of the RSE, which employs the LDA classifier, is shown in Fig. 3, where K is the dimension 

of subspaces, d is the training samples selected as random, and M is the number of LDA learners. 

 
FIGURE 3. Representation of random space ensemble with LDA. 
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III. EXPERIMENTAL WORKS 

 

A. DATASETS 

The proposed method was evaluated against the ICBHI 2017 Challenge dataset, which consists of 920 lung 

sounds. The lung sounds were recorded using three different digital stethoscopes, with sampling frequencies of 

4 KHz, 10 KHz, and 44.1 KHz, respectively. The classes of the ICBHI 2017 Challenge dataset consist of crackles, 

wheezes, normal, and wheezes plus crackles. A 20-second sound file may include one or more class tag since 

the sound files are separated into cycles. The cycle breakdown for a sound file is presented in Table 1, with 

columns shown as cycle index, start time, end time, and values for both crackles and wheezes. The wheeze and 

crackle values for crackles, wheezes, normal, and wheezes plus crackles tags are 1-0, 0-1, 0-0, and 1-1, 

respectively. According to the class tags, the total number of the cycles is given in Table 2. 

 

TABLE I CYCLE INFO FOR A SOUND FILE 

Cycle Start time End time Crackle value Wheeze value I 

1 0.804 3.256 0 
                                     e 0 pr 

2 3.256 5.566 0 0 of 

3 5.566 7.851 0 1 c 
e 

4 7.851 10.054 0 1 c 

5 10.054 12.066 1 0 pr 

6 12.066 14.47 1 0 c 

7 14.47 16.696 1 1 

8 16.696 18.887 1 1 

9 18.887 19.792 1 1 

 

TABLE II CYCLE BREAKDOWN OF ICBHI 2017 CHALLENGE DATASET 
 

Number of cycles Total 

With crackles 1,864 

With wheezes 886 

With crackles + wheezes 506 

Normal cycles 3,642 

Total number of cycles 6,898 

 

B. EVALUATION METHOD AND CRITERIA 

In the ICBHI 2017 Challenge dataset, 90% of the data were parated for the purposes of training and validating 

the oposed CNN. The remaining 10% of the dataset was used r the LDA classifier combined with the RSE 

method in the lassification stage. Classification performance was valuated with 10-fold cross-validation. The 

performance riteria were selected as accuracy, specificity, sensitivity, ecision, and F-score. Each of these criteria, 

along with the onfusion matrix, are shown in Equations 18-22: 
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C. EXPERİMENTAL SETUP AND RESULTS 

The experimental works were applied using MATLAB (R2019a) software installed on a computer with an 

Intel(R) Core(TM) i7-5500 CPU @2.4 GHz with 4 core, NVİDİA GeForce 840M GPU, and 8 GB RAM. 

In the proposed method, the spectrogram operation was applied to the lung sound data. Window size and 

overlap, which are spectrogram parameters, were adjusted to the sampling frequencies. According to the 4 KHz, 

10KHz, and 44.1 KHz sample frequencies, window size and overlap were selected as 64-8, 128-16, and 524-64, 

respectively. In these selections, the resolution of the spectrogram images is the most significant factor, as the 

spectrogram images are used for the input for training the proposed CNN. The layer parameters of the proposed 

CNN shown in Fig. 2 are presented in Table 3. 

 

TABLE III LAYER PARAMETERS OF PROPOSED CNN 

Layers Filter numbers Filter size Stride 

conv1 64 5×5 1 

conv2_1 32 3×3 1 

conv2_2 32 3×3 1 

conv3_1 32 3×3 1 

conv3_2 32 3×3 1 

conv4 32 3×3 1 

all pooling layer - 2×2 2 

 

The initial learning rate, max-epochs and validation frequency, which are the training option parameters, were 

selected as 0.005, 12, and 30, respectively. The Adam optimizer is employed for the training process. According 

to the iterations, the training and validation accuracy and the loss deviation of the proposed CNN is illustrated 

in Fig. 3. At the end of 519 iterations, while the training accuracy was around 60%, the validation accuracy was 

found to be 49.78%. 

The first fully-connected layer (fc1) of the proposed CNN was used to extract 350 deep features, which were 

then evaluated using the LDA classifier and the RSE method with the subspace dimension adjusted to 64. 
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The classification results with 10-fold cross-validation are presented in the confusion matrix shown as Fig. 5. 

The best accuracy score achieved was 83.2% with the normal class, whilst the worst accuracy score achieved 

was 40.4% with the wheezes class. The average accuracy score was 71.15%. 

The results of the other performance criteria, specificity, sensitivity, precision, and F-score, are presented in 

Table 4, with the best score for each class shown as bold typeface. 

 
FIGURE 4. Training, validation and loss deviation against iterations. 

 

 
FIGURE 5. Confusion matrix for the proposed method. 
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The best specificity and precision values were achieved with the wheezes class, and the best sensitivity and F-

score values were achieved with the normal class. For the proposed method, the classifier was selected by using 

the classification accuracy criterion. In Table 5, the classification results are shown for different classifiers, with 

the best classification accuracy achieved with the LDA classifier using the RSE method. In Table 6, the 

classification performance of the proposed CNN is compared with the other popular pretrained CNN models, 

and the CNN structures obtained when there is only one parallel connection branch, as shown in Fig. 2. 

For deep features extracted from CNN models, classifiers that give the best performance are used, and among 

the popular pretrained CNN models, the VGG16 model yields the best level of accuracy at 65.4%. While the 

proposed CNN model only has max-pooling and average-pooling branches, the accuracy results of the proposed 

method were shown to be 67.2% and 68.6%, respectively. With the parallel-pooling structure in the proposed 

CNN, the best accuracy level achieved was 71.15%. 

In Table 7, the proposed method is compared with other methods using the same dataset based on their 

accuracy s 

TABLE IV RESULTS OF OTHER PERFORMANCE CRITERIA 
Performance Criteria 

Class     

 Specificity Sensitivity Precision F-score 

Crackles 0.89 0.67 0.74 0.70 

Wheezes 
 

0.99 
0.40 

 

0.86 
0.55 

Crackles+Wheezes 0.94 0.53 0.47 0.50 

Normal 0.62 
 

0.83 
0.72 

 

0.77 

Average Score 0.86 0.61 0.69 0.65 

 

TABLE V ACCURACY SCORES FOR OTHER CLASSIFIERS 

Classifiers (Acc%) 

LDA 57.0 

Decision Tree 65.4 

SVM 68.8 

KNN 68.0 

KNN-RSE 66.5 

LDA-RSE 71.15 

 

TABLE VI ACCURACY RESULTS FOR CNN MODELS 

CNN model Classifier % Acc 

GoogleNet SVM 52.3 
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Squeezenet KNN 55.8 

Inceptionresnetv2 KNN-RSE 57.6 

ResNet101 LDA-RSE 58.4 

ResNet-50 SVM 59.1 

AlexNet SVM 60.7 

VGG19 SVM 62.3 

VGG16 SVM 65.4 

Only average-pooling LDA-RSE 67.2 

Only max-pooling LDA-RSE 68.6 

Proposed CNN (parallel-pooling) LDA-RSE 71.15 

 

In [23], features were extracted using MFCC, and evaluated with the Hidden Markov Model classifier, and 

achieved a best accuracy level of 39.56%. In [24], low-level features were used for the feature extraction, and 

the features then conveyed to the Decision Tree classifier, and lung sounds were classified to an accuracy of 

49.62%. In [25], the wavelet decomposition and STFT were combined as a feature set, producing a best accuracy 

level of 57.88% using the SVM classifier. In [26], two methods were proposed for lung sound classification. First, 

lung sounds were classified with the transfer learning technique, trained by applying fine-tuning to the 

pretrained VGG16 model, and achieved a best accuracy level of 63.09%. In the second method, deep features 

were extracted from the fully-connected layers of the pretrained VGG16 model, realizing a best accuracy level 

of 65.50% with the SVM classifier. 

 

IV. CONCLUSION 

 

In this paper, lung sounds are used to classify pulmonary disorders. In the literature, traditional machine 

learning techniques are generally used for lung sound classification, although more recently, techniques based 

on deep learning have started to be used for classification performance. Popular pretrained CNN models such as 

VGG16 and AlexNet, have mostly given good results for image recognition and also for some sound 

classification applications; however, sound characteristics are not fully represented since these CNN models 

have not been trained on sound datasets. Hence, the proposed CNN model was trained with spectrogram 

images based on lung sounds. In addition, the parallel-pooling structure was employed in order to boost 

classification performance in the proposed CNN architecture. Then, deep features were extracted from the first 

fully-connected layer of the proposed CNN. The deep features are employed by using different classification 

algorithms, with the best obtained result being 71.15% with the LDA-RSE classifier. Performance of the 

proposed CNN model was compared with the other popular pretrained CNN models, and the best classification 

accuracy was achieved by using the proposed CNN model. In addition, the accuracy score of the proposed 

method resulted in an improvement increase of 5.75%, when compared to the other best result methods using 

the same dataset. 
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TABLE VII ACCURACY RESULTS FOR OTHER METHODS USING SAME DATASET 

Authors Methodology % Acc 

Jakovljević et al. [23] MFCC, Hidden Markov Model 39.56 

Chambres et al. [24] Low Level Feature, Decision Tree 49.62 

Serbes et al. [25] STFT+Wavelet, SVM classifier 57.88 

Demir et al. [26] Transfer learning with CNN Model and softmax classifier 63.09 

Demir et al. [26] Deep Feature with VGG-16 CNN model and SVM 

classifier 

65.50 

Proposed method Deep feature with CNN & LDA classifier with RSE 

method 
71.15 
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