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ABSTRACT 

 

Coronavirus Disease 2019 (COVID-19) spread globally in early 2020, causing the world to face an exis- tential 

health crisis. Automated detection of lung infections from computed tomography (CT) images offers a great 

potential to augment the traditional healthcare strategy for tackling COVID-19. However, segmenting infected 

re- gions from CT slices faces several challenges, including high variation in infection characteristics, and low 

intensity contrast between infections and normal tissues. Further, collecting a large amount of data is 

impractical within a short time period, inhibiting the training of a deep model. To address these challenges, a 

novel COVID-19 Lung In- fection Segmentation Deep Network (Inf-Net ) is proposed to automatically identify 

infected regions from chest CT slices. In our Inf-Net, a parallel partial decoder is used to aggregate the high-

level features and generate a global map. Then, the implicit reverse attention and explicit edge- attention are 

utilized to model the boundaries and enhance the representations. Moreover, to alleviate the shortage of 

labeled data, we present a semi-supervised segmenta- tion framework based on a randomly selected propagation 

strategy, which only requires a few labeled images and leverages primarily unlabeled data. Our semi-supervised 

framework can improve the learning ability and achieve a higher performance. Extensive experiments on our 

COVID- SemiSeg and real CT volumes demonstrate that the pro- posed Inf-Net outperforms most cutting-edge 

segmenta- tion models and advances the state-of-the-art performance. 

Index Terms—COVID-19, CT image, infection segmenta- tion, semi-supervised learning 

 

I. INTRODUCTION 

 

Arduino SINCE December 2019, the world has been facing a global health crisis: the pandemic of a novel 

Coronavirus Disease (COVID-19) [1], [2]. According to the global case count from the Center for Systems 

Science and Engineering (CSSE) at Johns Hopkins University (JHU) [3] (updated 1 May, 2020), 
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(A) (B) 

Fig. 1. Example of COVID-19 infected regions (B) in CT axial slice (A), where the red and green masks denote 

the GGO and consolidation, respectively. The images are collected from [9]. 

 

3,257,660 identified cases of COVID-19 have been reported so far, including 233,416 deaths and impacting 

more than 187 countries/regions. For COVID-19 screening, the reverse- transcription polymerase chain 

reaction (RT-PCR) has been considered the gold standard. However, the shortage of equip- ment and strict 

requirements for testing environments limit the rapid and accurate screening of suspected subjects. Further, RT-

PCR testing is also reported to suffer from high false neg- ative rates [4]. As an important complement to RT-

PCR tests, the radiological imaging techniques, e.g., X-rays and computed tomography (CT), have also 

demonstrated effectiveness in both current diagnosis, including follow-up assessment and evaluation of disease 

evolution [5], [6]. Moreover, a clinical study with 1014 patients in Wuhan China, has shown that chest CT 

analysis can achieve 0.97 of sensitivity, 0.25 of specificity, and 0.68 of accuracy for the detection of COVID-19, 

with RT- PCR results for reference [4]. Similar observations were also reported in other studies [7], [8], 

suggesting that radiological imaging may be helpful in supporting early screening of COVID-19. 

Compared to X-rays, CT screening is widely preferred due to its merit and three-dimensional view of the 

lung. In recent studies [4], [10], the typical signs of infection could be observed from CT slices, e.g., ground-

glass opacity (GGO) in the early stage, and pulmonary consolidation in the late stage, as shown in Fig. 1. The 

qualitative evaluation of infection and longitudinal changes in CT slices could thus provide useful and 

important information in fighting against COVID-19. However, the manual delineation of lung infections is 

tedious and time-consuming work. In addition, infection annotation by radiologists is a highly subjective task, 

often influenced by individual bias and clinical experiences. 
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TABLE I A SUMMARY  OF  PUBLIC  COVID-19 IMAGING  DATASETS. #COV  AND #NON-COV 

DENOTE  THE  NUMBERS  OF  COVID-19 AND NON-COVID-19 CASES. † DENOTES THE NUMBER IS 

FROM [11]. 

Dataset Modality #Cov/#Non-COV Task 

COVID-19 X-ray Collection [11] X-rays 229† / 0 Diagnosis 

COVID-19 CT Collection [11] CT volume 20 / 0 Diagnosis 

COVID-CT-Dataset [12] CT image 288 / 1000 Diagnosis 

COVID-19 Patients Lungs [13] X-rays 70 / 28 Diagnosis 

COVID-19 Radiography [14] X-rays 219 / 2,686 Diagnosis 

COVID-19 CT Segmentation [9] CT image 110 / 0 Segmentation 

 

Recently, deep learning systems have been proposed to detect patients infected with COVID-19 via radiological 

imag- ing [6], [15]. For example, a COVID-Net was proposed to de- tect COVID-19 cases from chest 

radiography images [16]. An anomaly detection model was designed to assist radiologists in analyzing the vast 

amounts of chest X-ray images [17]. For CT imaging, a location-attention oriented model was employed in [18] 

to calculate the infection probability of COVID-19. A weakly-supervised deep learning-based software system 

was developed in [19] using 3D CT volumes to detect COVID- 

• A paper list for COVID19 imaging-based AI works could be found in [20]. Although plenty of AI systems 

have been proposed to provide assistance in diagnosing COVID-19 in clinical practice, there are only a few 

works related infection segmentation in CT slices [21], [22]. COVID-19 infection detection in CT slices is 

still a challenging task, for several issues: 1) The high variation in texture, size and position of infections 

in CT slices is challenging for detection. For example, consolidations are tiny/small, which easily results in 

the false-negative detection from a whole CT slices. 2) The inter-class variance is small. For example, GGO 

boundaries often have low contrast and blurred appearances, making them difficult to identify. 3) Due to 

the emergency of COVID- 19, it is difficult to collect sufficient labeled data within a short time for 

training deep model. Further, acquiring high- quality pixel-level annotation of lung infections in CT slices 

is expensive and time-consuming. Table I reports a list of the public COVID-19 imaging datasets, most of 

which focus on diagnosis, with only one dataset providing segmentation labels. 

To address above issues, we propose a novel COVID-19 Lung Infection Segmentation Deep Network (Inf-Net) 

for CT slices. Our motivation stems from the fact that, during lung infection detection, clinicians first roughly 

locate an infected region and then accurately extract its contour according to the local appearances. We 

therefore argue that the area and bound- ary are two key characteristics that distinguish normal tissues and 

infection. Thus, our Inf-Net first predicts the coarse areas and then implicitly models the boundaries by means 

of reverse attention and edge constraint guidance to explicitly enhance the boundary identification. Moreover, to 

alleviate the shortage of labeled data, we also provide a semi-supervised segmentation system, which only 

requires a few labeled COVID-19 infection images and then enables the model to leverage unlabeled data. 

Specifically, our semi-supervised system utilizes a randomly selected propagation of unlabeled data to improve 

the learning capability and obtain a higher performance than some cutting edge models. In a nutshell, our 

contributions in this paper are threefold: 
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• We present a novel COVID-19 Lung Infection Segmenta- tion Deep Network (Inf-Net) for CT slices. By 

aggregat- ing features from high-level layers using a parallel partial decoder (PPD), the combined feature 

takes contextual information and generates a global map as the initial guidance areas for the subsequent 

steps. To further mine the boundary cues, we leverage a set of implicitly recur- rent reverse attention (RA) 

modules and explicit edge- attention guidance to establish the relationship between areas and boundary 

cues. 

• A semi-supervised segmentation system for COVID-19 infection segmentation is introduced to alleviate 

the short- age of labeled data. Based on a randomly selected prop- agation, our semi-supervised system has 

better learning ability (see § IV). 

• We also build a semi-supervised COVID-19 infection segmentation (COVID-SemiSeg) dataset, with 100 

la- beled CT slices from the COVID-19 CT Segmenta- tion dataset [9] and 1600 unlabeled images from 

the COVID-19 CT Collection dataset [11]. Extensive ex- periments on this dataset demonstrate that the 

proposed Inf-Net and Semi-Inf-Net outperform most cutting-edge segmentation models and advances the 

state-of-the-art performance. Our code and dataset have been released at: 

https://github.com/DengPingFan/Inf-Net 

 

II. RELATED WORKS 

In this section, we discuss three types of works that are most related to our work, including: segmentation in 

chest CT, semi- supervised learning, and artificial intelligence for COVID-19. 

 

• Segmentation in Chest CT 

CT imaging is a popular technique for the diagnosis of lung diseases [23], [24]. In practice, segmenting different 

organs and lesions from chest CT slices can provide crucial information for doctors to diagnose and quantify 

lung diseases [25]. Recently, many works have been provided and obtained promising performances. These 

algorithms often employ a classifier with extracted features for nodule segmentation in chest CT. For example, 

Keshani et al. [26] utilized the support vector machine (SVM) classifier to detect the lung nodule from CT slices. 

Shen et al. [27] presented an automated lung segmentation system based on bidirectional chain code to 

improve the performance. However, the similar visual appearances of nodules and background makes it 

difficult for extracting the nodule regions. To overcome this issue, several deep learning algorithms have been 

proposed to learn a powerful visual representations [28]–[30]. For instance, Wang et al. [28] developed a central 

focused convolutional neural network to segment lung nodules from heterogeneous CT slices. Jin et al. [29] 

utilized GAN-synthesized data to improve the training of a discriminative model for pathological lung 

segmentation. Jiang et al. [30] designed two deep networks to segment lung tumors from CT slices by adding 

multiple residual streams of varying resolutions. Wu et al. [31] built an explainable COVID-19 diagnosis system 

by joint classification and segmentation. 

 

• Annotation-Efficient Deep Learning 

In our work, we aim to segment the COVID-19 infection regions for quantifying and evaluating the disease 

progression. The (unsupervised) anomaly detection/segmentation could de- tect the anomaly region [32]–[34], 

https://github.com/DengPingFan/Inf-Net
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however, it can not identify whether the anomaly region is related to COVID-19. By contrast, based on the few 

labeled data, the semi-supervised model could identify the target region from other anomaly region, which is 

better suit for assessment of COVID-19. Moreover, the transfer learning technique is another good choice for 

dealing with limited data [35], [36]. But currently, the major issue for segmentation of COVID-19 infection is 

that there are already some public datasets (see [20]), but, being short of high quality pixel-level annotations. 

This problem will become more pronounced, even collecting large scale COVID- 19 dataset, where the 

annotations are still expensive to acquire. Thus, our target is to utilize the limited annotation efficiently and 

leverage unlabeled data. Semi-supervised learning pro- vides a more suitable solution to address this issue. 

The main goal of semi-supervised learning (SSL) is to improve model performance using a limited number of 

labeled data and a large amount of unlabeled data [37]. Currently, there is increasing focus on training deep 

neural network using the SSL strategy [38]. These methods often optimize a supervised loss on labeled data 

along with an unsuper- vised loss imposed on either unlabeled data [39] or both the labeled and unlabeled 

data [40], [41]. Lee et al. [39] provided to utilize a cross-entropy loss by computing on the pseudo labels of 

unlabeled data, which is considered as an additional supervision loss. In summary, existing deep SSL algorithms 

regularize the network by enforcing smooth and consistent classification boundaries, which are robust to a 

random perturbation [41], and other approaches enrich the supervision signals by exploring the knowledge 

learned, e.g., based on the temporally ensembled prediction [40] and pseudo label [39]. In addition, semi-

supervised learning has been widely applied in medical segmentation task, where a frequent issue is the lack of 

pixel-level labeled data, even when large scale set of unlabeled image could be available [36], [42]. For example, 

Nie et al. [43] proposed an attention-based semi- supervised deep network for pelvic organ segmentation, in 

which a semi-supervised region-attention loss is developed to address the insufficient data issue for training 

deep learning models. Cui et al. [44] modified a mean teacher framework for the task of stroke lesion 

segmentation in MR images. Zhao et al. [45] proposed a semi-supervised segmentation method based on a self-

ensemble architecture and a random patch- size training strategy. Different from these works, our semi- 

supervised framework is based on a random sampling strategy for progressively enlarging the training set with 

unlabeled data. 

 

• Artificial Intelligence for COVID-19 

Artificial intelligence technologies have been employed in a large number of applications against COVID-19 

[6], [46]– [48]. Joseph et al. [15] categorized these applications into three scales, including patient scale (e.g., 

medical imaging for diagnosis [49], [50]), molecular scale (e.g., protein structure prediction [51]), and societal 

scale (e.g., epidemiology [52]). In this work, we focus on patient scale applications [18], [22], [49], [50], [53]–

[55], especially those based on CT slices. For instance, Wang et al. [49] proposed a modified inception neural 

network [56] for classifying COVID-19 patients and normal controls. Instead of directly training on complete 

CT images, they trained the network on the regions of interest, which are identified by two radiologists 

based on the fea- tures of pneumonia. Chen et al. [50] collected 46,096 CT image slices from COVID-19 

patients and control patients of other disease. The CT images collected were utilized to train a U-Net++ [57] 

for identifying COVID-19 patients. Their experimental results suggest that the trained model performs 

comparably with expert radiologists in terms of COVID-19 diagnosis. In addition, other network 
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architectures have also been considered in developing AI-assisted COVID-19 diagnosis systems. Typical 

examples include ResNet, used in [18], and U-Net [58], used in [53]. Finally, deep learning has been employed 

to segment the infection regions in lung CT slices so that the resulting quantitative features can be utilized for 

severity assessment [54], large-scale screening [55], and lung infection quantification [15], [21], [22] of 

COVID-19. 

 

III. PROPOSED METHOD 

 

In this section, we first provide details of our Inf-Net in terms of network architecture, core network 

components, and loss function. We then present the semi-supervised version of Inf-Net and clarify how to 

use a semi-supervised learning framework to enlarge the limited number of training samples for improving the 

segmentation accuracy. We also show an extension of our framework for the multi-class labeling of different 

types of lung infections. Finally, we provide the implementation details. 

 

• Lung Infection Segmentation Network (Inf-Net) 

Overview of Network: The architecture of our Inf-Net is shown in Fig. 2. As can be observed, CT images are 

first fed to two convolutional layers to extract high-resolution, semantically weak (i.e., low-level) features. 

Herein, we add an edge attention module to explicitly improve the representation of objective region boundaries. 

Then, the low-level features f2 obtained are fed to three convolutional layers for extracting the high-level 

features, which are used for two purposes. First, we utilize a parallel partial decoder (PPD) to aggregate these 

features and generate a global map Sg for the coarse local- ization of lung infections. Second, these features 

combined with f2 are fed to multiple reverse attention (RA) modules under the guidance of the Sg. It is worth 

noting that the RA modules are organized in a cascaded fashion. For instance, as shown in Fig. 2, R4 relies on 

the output of another RA R5. Finally, the output of the last RA, i.e., S3, is fed to a Sigmoid Low-level 
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where (x, y) are the coordinates of each pixel in the pre- dicted edge map Se   and edge ground-truth map 

Ge. The Ge is calculated using the gradient of the ground-truth map Gs. Additionally, w and h denote the 

width and height of corresponding map, respectively. 

Parallel Partial Decoder: Several existing medical image segmentation networks segment interested 

organs/lesions using all high- and low-level features in the encoder branch [57], [58], [62]–[65]. However, Wu et 

al. [66] pointed out that, compared with high-level features, low-level features demand more computational 

resources due to larger spatial resolutions, but contribute less to the performance. Inspired by this obser- vation, 

we propose to only aggregate high-level features with a parallel partial decoder component, illustrated in 

Fig. 3. 

 

Σ Σ 

w h Specifically, for an input CT image I, we first extract two 

 

Ledge = − [Gelog(Se) + (1 − Ge)log(1 − Se)],   (1) 

x=1 y=1 

sets of low-level features {fi, i = 1, 2} and three sets of high- level features {fi, i = 3, 4, 5} using the first five 

convolutional blocks of Res2Net [67]. We then utilize the partial decoder pd( ) [66], a novel decoder component, 

to aggregate the high- level features with a paralleled connection. The partial decoder yields a coarse global map 

Sg = pd(f3, f4, f5), which then serves as global guidance in our RA modules. 

Reverse Attention Module: In clinical practice, clinicians usually segment lung infection regions via a two-step 

pro- cedure, by roughly localizing the infection regions and then accurately labeling these regions by 

inspecting the local tissue structures. Inspired by this procedure, we design Inf-Net using two different network 

components that act as a rough locator and a fine labeler, respectively. First, the PPD acts as the rough locator 

and yields a global map Sg, which provides the rough location of lung infection regions, without structural 

details (see Fig. 2). Second, we propose a progressive framework, acting as the fine labeler, to mine 

discriminative infection regions in an erasing manner [68], [69]. Specifically, instead of simply aggregating 

features from all levels [69], we propose to adaptively learn the reverse attention in three parallel high-level 

features. Our architecture can sequentially exploit complementary regions and details by erasing the estimated 

infection regions from high-level side-output features, where the existing estimation is up-sampled from the 

deeper layer. 

We obtain  the  output  RA  features  Ri by  multiplying 

{ } 

Ⓢ 

(element-wise   ) the fusion of high-level side-output features fi, i = 3, 4, 5  and  edge  attention  features  eatt  =  

f2  with RA weights Ai, i.e., 

· C · 

Ri = C(fi,  Dow(eatt)) Ⓢ Ai, (2) where Dow( ) denotes the down-sampling operation, ( ) 

denotes the concatenation operation follow by two 2-D con- volutional layers with 64 filters. 
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The RA weight Ai is de-facto for salient object detection in the computer vision community [69], and it is 

defined as: 

 

Algorithm 1 Semi-Supervised Inf-Net  

D 

D 

Input: Labeled training data Labeled and unlabeled training data Unlabeled 

M 

Output: Trained Inf-Net 

D 

D 

1: Construct a training dataset Training using all the labeled CT images from Labeled 

M D 

2: Train our model using Training 

3: repeat 

D 

D 

M 

4: Perform testing using the trained model and K CT images randomly selected from Unlabeled, which yields 

network-labeled data Net-labeled, consisting of K CT images with pseudo labels 

5: Enlarge the   training   dataset   using   DNet-labeled,   i.e., 

DTraining = DTraining ∪ DNet-labeled 

6: Remove the K testing CT images from DUnlabeled 

7: Fine-tune M using DTraining 

8: until DUnlabeled is empty 

   9: return  Trained model M  

 

BCE 

L 

weights of hard pixels to highlight their importance. In addi- tion, compared with the standard BCE loss, w puts 

more emphasis on hard pixels rather than assigning all pixels equal weights. The definitions of these losses are 

the same as in [70], 

[71] and their effectiveness has been validated in the field of salient object detection. Note that the Correntropy-

induced loss functions [72], [73] can be employed here for improving the robustness. 

3 

Finally, we adopt deep supervision for the three side-outputs (i.e., S3, S4, and S5) and the global map Sg. Each map 

is up-sampled (e.g., Sup) to the same size as the object-level segmentation ground-truth map Gs. Thus, the total 

loss in Eq. (4) is extended to 

Σ 
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i=5 

Ltotal  = Lseg (Gs, Sup) + Ledge  + Lseg (Gs, S
up).  (5) 

 

Ai = E(Ⓢ(σ(P(Si+1)))), (3) 

where  P(·)  denotes  an  up-sampling  operation,  σ(·)  is  a 

Sigmoid activation function, and Ⓢ(·) is a reverse operation 

  

g 

 

• Semi-Supervised Inf-Net 

  

i 

i=3 

 

E 

subtracting the input from matrix E, in which all the elements are 1. Symbol   denotes expanding a single 

channel feature to 64 repeated tensors, which involves reversing each channel of the candidate tensor in Eq. 

(2). Details of this procedure are shown in Fig. 4. It is worth noting that the erasing strategy driven by RA can 

eventually refine the imprecise and coarse estimation into an accurate and complete prediction map. 

IoU 

Loss Function: As mentioned above in Eq. (1), we propose the loss function Ledge for edge supervision. Here, we 

define our loss function Lseg as a combination of a weighted IoU loss Lw and a weighted binary cross entropy 

(BCE) loss 

Currently, there is very limited number of CT images with segmentation annotations, since manually 

segmenting lung infection regions are difficult and time-consuming, and the disease is at an early stage of 

outbreak. To resolve this issue, we improve Inf-Net using a semi-supervised learning strategy, which leverages a 

large number of unlabeled CT images to effectively augment the training dataset. An overview of our semi-

supervised learning framework is shown in Fig. 5. Our framework is mainly inspired by the work in [74], 

which is based on a random sampling strategy for progressively enlarging the training dataset with unlabeled 

data. Specifically, 

L 

w 

BCE 

 for each segmentation supervision, i.e., 

 we generate the pseudo labels for unlabeled CT images using 

w 

Lseg = LIoUw+ λLBCE                       (4) 

 the procedure described in Algorithm 1. The resulting CT images with pseudo labels are then utilized to train 

our model 
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+ λL 

L 

where λ is the weight, and set to 1 in our experiment. The two parts of   seg provide effective global 

(image-level) and local (pixel-level) supervision for accurate segmentation. Unlike the standard IoU loss, which 

has been widely adopted in segmentation tasks, the weighted IoU loss increases the using a two-step 

strategy detailed in Section III-D. 

The advantages of our framework, called Semi-Inf-Net, lie in two aspects. First, the training and selection 

strategy is simple and easy to implement. It does not require measures to assess the predicted label, and it is 

also threshold-free. Second, this 

 
Fig. 5. Overview of the proposed Semi-supervised Inf-Net framework. Please refer to § III-B for more 

details 

 
we utilize the infection segmentation results provided by Semi- Inf-Net to guide the multi-class labeling of 

different types of lung infections. For this purpose, we feed both the infection segmentation results and the 

corresponding CT images to a multi-class segmentation network, e.g., FCN8s [75], or U- Net [58]. This 

framework can take full advantage of the infection segmentation results provided by Semi-Inf-Net and 

effectively improve the performance of multi-class infection labeling. 
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Fig. 6. Illustration of infection region guided multi-class segmentation for multi-class labeling task. We feed 

both the infection segmentation results provided by Inf-Net and the CT images into FCN8s (or Multi- class U-

Net) for improving the accuracy of multi-class infection labeling. strategy can provide more robust performance 

than other semi- supervised learning methods and prevent over-fitting. This conclusion is confirmed by 

recently released studies [74]. 

 

• Extension to Multi-Class Infection Labeling 

Our Semi-Inf-Net is a powerful tool that can provide crucial information for evaluating overall lung infections. 

However, we are aware that, in a clinical setting, in addition to the overall evaluation, clinicians might 

also be interested in the quantitative evaluation of different kinds of lung infections, e.g., GGO and 

consolidation. Therefore, we extend Semi- Inf-Net to a multi-class lung infection labeling framework so that 

it can provide richer information for the further diagnosis and treatment of COVID-19. The extension of Semi- 

Inf-Net is based on an infection region guided multi-class labeling framework, which is illustrated in Fig. 6. 

Specifically, 

  

• Implementation Details 

Our model is implemented in PyTorch, and is accelerated by an NVIDIA TITAN RTX GPU. We describe the 

implemen- tation details as follows. 

Pseudo label generation: We generate pseudo labels for unlabeled CT images using the protocol described in 

Algo- rithm 1. The number of randomly selected CT images is set to 5, i.e., K = 5. For 1600 unlabeled images, 

we need to perform 320 iterations with a batch size of 16. The entire procedure takes about 50 hours to 

complete. 

× 

− 

∼ 

{ } 

Semi-supervised Inf-Net: Before training, we uniformly re- size all the inputs to 352 352. We train Inf-Net using 

a multi- scale strategy [60]. Specifically, we first re-sample the training images using different scaling ratios, i.e., 

0.75, 1, 1.25 , and then train Inf-Net using the re-sampled images, which im- proves the generalization of 

our model. The Adam optimizer is employed for training and the learning rate is set to 1e 4. Our training phase 

consists of two steps: (i) Pre-training on 1600 CT images with pseudo labels, which takes 180 minutes to 

converge over 100 epochs with a batch size of 24. (ii) Fine- tuning on 50 CT images with the ground-truth 

labels, which takes ∼15 minutes to converge over 100 epochs with a batch size of 16. For a fair comparison, 

the training procedure of Inf-Net follows the same setting described in the second step. Semi-Inf-Net+Multi-

class segmentation: For Multi-class segmentation network, we are not constrained to specific choice of the 

segmentation network, and herein FCN8s [75] and U-Net [58] are used as two backbones. We resize all the 

inputs to 512 512 before training. The network is initialized by a uniform Xavier, and trained using an 

SGD optimizer with a learning rate of 1e 10, weight decay of 5e 4, and momentum of 0.99. The entire 

training procedure takes about 45 minutes to complete. 
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IV. EXPERIMENTS 

 

• COVID-19 Segmentation Dataset 

Σ Σ 

As shown in Table I, there is only one segmentation dataset for CT data, i.e., the COVID-19 CT Segmentation 

dataset [9]1, which consists of 100 axial CT images from different COVID- 19 patients. All the CT images were 

collected by the Italian Society of Medical and Interventional Radiology, and are We also introduce three 

golden metrics from the object de- tection field, i.e., Structure Measure [80], Enhance-alignment Measure [81], 

and Mean Absolute Error. In our evaluation, we choose S3 with Sigmoid function as the final prediction Sp. Thus, 

we measure the similarity/dissimilarity between final the prediction map and object-level segmentation ground-

truth G, which can be formulated as follows: 

• Structure Measure (Sα): This was proposed to measure the structural similarity between a prediction 

map and ground- truth mask, which is more consistent with the human visual system: 

Sα = (1 − α) ∗ So(Sp, G) + α ∗ Sr(Sp, G), (6) 

where α is a balance factor between object-aware similarity So and region-aware similarity Sr. We report Sα 

using the default setting (α = 0.5) suggested in the original paper [80]. 

• φ 

• Enhanced-alignment Measure (Emean): This is a recently proposed metric for evaluating both local 

and global similarity between two binary maps. The formulation is as follows: 

w h 

available at here2. A radiologist segmented the CT images using different labels for identifying lung 

infections. Although this is the first open-access COVID-19 dataset for lung infec- tion segmentation, it suffers 

from a small sample size, i.e., only 100 labeled images are available. 

In this work, we collected a semi-supervised COVID-19 infection segmentation dataset (COVID-SemiSeg), to 

leverage large-scale unlabeled CT images for augmenting the training dataset. We employ COVID-19 CT 

Segmentation [9] as the la- beled data Labeled, which consists of 45 CT images randomly selected as training 

samples, 5 CT images for validation, and 

  

E   = 
   1  φ(S  (x, y), G(x, y)), (7) 

φ 

p 

w × h   x y 

where w and h are the width and height of ground-truth G, and (x, y) denotes the coordinate of each pixel in 

G. Symbol φ is the enhanced alignment matrix. We obtain a set of Eφ by converting the prediction Sp into a 

binary mask with a threshold from 0 to 255. In our experiments, we report the mean of Eξ computed from all 

the thresholds. 

• Mean Absolute Error (MAE): This measures the pixel- wise error between Sp and G, which is defined 

as: 
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Σ Σ | − | 

the remaining 50 images for testing. The unlabeled CT images w h 

are extracted from the COVID-19 CT Collection [11] dataset, which consists of 20 CT volumes from different 

COVID-19 patients. We extracted 1,600 2D CT axial slices from the 3D volumes, removed non-lung regions, 

and constructed an unlabeled training dataset Unlabeled for effective semi- supervised segmentation. 

 

• Experimental Settings 

Baselines. For the infection region experiments, we com- pare the proposed Inf-Net and Semi-Inf-Net with five 

classical segmentation models in the medical domain, i.e., U-Net3 [58], U-Net++3 [57], Attention-UNet4 [76], 

Gated-UNet4 [77], and Dense-UNet5 [78]. For the multi-class labeling experiments, we compare our model with 

two cutting-edge models from the computer vision community: DeepLabV3+ [79], FCN8s [75] and multi-class 

U-Net [58]. 

Evaluation Metrics. Following [22], [55], we use three widely adopted metrics, i.e., the Dice similarity 

coefficient, Sensitivity (Sen.), Specificity (Spec.), and Precision (Prec.). 

1http://medicalsegmentation.com/covid19/ 

2https://www.sirm.org/category/senza-categoria/ 
covid-19 

3https://github.com/MrGiovanni/UNetPlusPlus 4https://github.com/ozan-oktay/ 

Attention-Gated-Networks 

5https://github.com/xmengli999/H-DenseUNet 

  

MAE = 
    1  S  (x, y) G(x, y) . (8) 

p 

w × h   x y 

 

V. SEGMENTATION RESULTS 

 

• Quantitative Results: To compare the infection segmenta- tion performance, we consider the two state-of-

the-art models U-Net and U-Net++. Quantitative results are shown in Table II. As can be seen, the proposed 

Inf-Net outperforms U-Net and U-Net++ in terms of Dice, Sα, Emean, and MAE by a large margin. We attribute 

this improvement to our implicit reverse attention and explicit edge-attention modeling, which provide 

robust feature representations. In addition, by introducing the semi-supervised learning strategy into our 

framework, we can further boost the performance with a 5.7% improvement in terms of Dice. 

As an assistant diagnostic tool, the model is expected to provide more detailed information regarding the 

infected areas. Therefore, we extent to our model to the multi-class (i.e., GGO and consolidation segmentation) 

labeling. Table III shows the quantitative evaluation on our COVID-SemiSeg dataset, where “Semi-Inf-Net & 

FCN8s” and “Semi-Inf-Net & MC” denote the combinations of our Semi-Inf-Netwith FCN8s [75] and multi-

class U-Net [58], respectively. Our “Semi-Inf-Net & MC” pipeline achieves the competitive performance on 

http://www.sirm.org/category/senza-categoria/
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GGO segmentation in most evaluation metrics. For more challeng- ing consolidation segmentation, the 

proposed pipeline also 

      

      

      

      

      

CT Image U-Net (MICCAI’15) [58] U-Net++ (TMI’19) [57] Inf-Net 

(Ours) Semi-Inf-Net (Ours) Ground Truth 

Fig. 7. Visual comparison of lung infection segmentation results. 

 

TABLE II QUANTITATIVE RESULTS OF INFECTION REGIONS ON OUR COVID-SemiSeg DATASET. 

Methods Backbone Param. FLOPs Dice Sen. Spec. Sα Emean 

φ 

MAE 

U-Net [58] VGG16 7.853 M 38.116 G 0.439 0.534 0.858 0.622 0.625 0.186 

Attention-UNet 

[76] 

VGG16 8.727 M 31.730 G 0.583 0.637 0.921 0.744 0.739 0.112 

Gated-UNet [77] VGG16 175.093 K 714.419 M 0.623 0.658 0.926 0.725 0.814 0.102 

Dense-UNet [78] DenseNet161 45.082 M 43.785 G 0.515 0.594 0.840 0.655 0.662 0.184 

U-Net++ [57] VGG16 9.163 M 65.938 G 0.581 0.672 0.902 0.722 0.720 0.120 

Inf-Net (Ours) Res2Net [67] 33.122 M 13.922 G 0.682 0.692 0.943 0.781 0.838 0.082 
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Semi-Inf-Net 

(Ours) 

Res2Net [67] 33.122 M 13.922 G 0.739 0.725 0.960 0.800 0.894 0.064 

achieves best results. For instance, in terms of Dice, our method outperforms the cutting-edge model, Multi-

class U- Net [58], by 12% on average segmentation result. Overall, the proposed pipeline performs better than 

existing state-of-the-art models on multi-class labeling on consolidation segmentation and average 

segmentation result in terms of Dice and Sα. 

• Qualitative Results: The lung infection segmentation re- sults, shown in Fig. 7, indicate that our Semi-

Inf-Net and Inf- Net outperform the baseline methods remarkably. Specifically, they yield segmentation 

results that are close to the ground truth with much less mis-segmented tissue. In contrast, U- Net gives 

unsatisfactory results, where a large number of mis-segmented tissues exist. U-Net++ improves the results, 

but the performance is still not promising. The success of Inf-Net is owed to our coarse-to-fine segmentation 

strategy, where a parallel partial decoder first roughly locates lung infection regions and then multiple edge 

attention modules are employed for fine segmentation. This strategy mimics how 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

      
 

 
     

 

 

 

 

 

 

 

 

 

 

 

 

CT Image DeepLabV3+ (stride = 8)    DeepLabV3+ (stride = 16) FCN8s Semi-Inf-Net 

& MC Ground Truth 
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Fig. 8. Visual comparison of multi-class lung infection segmentation results, where the red and green labels 

indicate the GGO and consolidation, respectively. 

TABLE III QUANTITATIVE RESULTS OF GROUND-GLASS OPACITIES AND CONSOLIDATION ON 

OUR COVID-SemiSeg DATASET. THE BEST TWO RESULTS ARE SHOWN IN RED AND BLUE FONTS. 

PLEASE REFER TO OUR MANUSCRIPT FOR THE COMPLETE EVALUATIONS. 

 

Methods 

Ground-Glass Opacity Consolidation Average 

Dice Sen.  Spec.  

Sα 

Emean 

φ 

MAE Dice Sen.  Spec.  

Sα 

Emean 

φ 

MAE Dice Sen.  Spec.  

Sα 

Emean 

φ 

MAE 

DeepLabV3+ 

(stride=8) [79] 

0.375 0.478 

0.863 0.544 

0.675 0.123 0.148 0.152 

0.738 0.500 

0.523 0.064 0.262 0.315 

0.801 0.522 

0.599 0.094 

DeepLabV3+ 

(stride=16) [79] 

0.443 0.713 

0.823 0.548 

0.655 0.156 0.238 0.310 

0.708 0.517 

0.606 0.077 0.341 0.512 

0.766 0.533 

0.631 0.117 

FCN8s [75] 0.471 0.537 

0.905 0.582 

0.774 0.101 0.279 0.268 

0.716 0.560 

0.560 0.050 0.375 0.403 

0.811 0.571 

0.667 0.076 

Multi-class U-Net 0.441 0.343 

0.984 0.588 

0.714 0.082 0.403 0.414 

0.967 0.577 

0.767 0.055 0.422 0.379 

0.976 0.583 

0.741 0.066 

Semi-Inf-Net & 

FCN8s 

0.646 0.720 

0.941 0.711 

0.882 0.071 0.301 0.235 

0.808 0.571 

0.571 0.045 0.474 0.478 

0.875 0.641 

0.723 0.058 

Semi-Inf-Net & MC 0.624 0.618 

0.966 0.706 

0.889 0.067 0.458 0.509 

0.967 0.603 

0.767 0.047 0.541 0.564 

0.967 0.655 

0.828 0.057 

 

real clinicians segment lung infection regions from CT slices, and therefore achieves promising performance. 

In addition, the advantage of our semi-supervised learning strategy is also confirmed by Fig. 7. As can be 

observed, compared with Inf-Net, Semi-Inf-Net yields segmentation results with more accurate boundaries. In 

contrast, Inf-Net gives relatively fuzzy boundaries, especially in the subtle infection regions. 

We also show the multi-class infection labeling results in Fig. 8. As can be observed, our model, Semi-Inf-

Net & MC, consistently performs the best among all methods. It is worth noting that both GGO and 

consolidation infections are accurately segmented by Semi-Inf-Net & MC, which further demonstrates the 

advantage of our model. In contrast, the baseline methods, DeepLabV3+ with different strides and 

TABLE IV ABLATION STUDIES OF OUR Semi-Inf-Net. THE BEST TWO RESULTS ARE SHOWN IN RED 

AND BLUE FONTS. 

Methods Dice Sen.  Spec.  Sα Emean φ MAE 

(No.1) Backbone 0.442 0.570 0.825 0.651 0.569 0.207 

(No.2) Backbone+EA 0.541 0.665 0.807 0.673 0.659 0.205 

(No.3) Backbone+PPD 0.669 0.744 0.880 0.720 0.810 0.125 

(No.4) Backbone+RA 0.625 0.826 0.809 0.668 0.736 0.177 

(No.5) Backbone+RA+EA 0.672 0.754 0.882 0.738 0.804 0.122 



International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com  

Volume 9, Issue 12  - Published : June 20, 2022 Page No : 568-590 
 

 

 

 
584 

(No.6) Backbone+PPD+RA 0.655 0.690 0.927 0.761 0.812 0.098 

(No.7) Backbone+PPD+RA+EA 0.739 0.725 0.960 0.800 0.894 0.064 

FCNs, all obtain unsatisfactory results, where neither GGO and consolidation infections can be accurately 

segmented. 

 

• Ablation Study 

In this subsection, we conduct several experiments to vali- date the performance of each key component of our 

Semi-Inf- Net, including the PPD, RA, and EA modules. 

• Effectiveness of PPD: To explore the contribution of the parallel partial decoder, we derive two 

baselines: No.1 (back- bone only) & No.3 (backbone+PPD) in Table IV. The results clearly show that PPD is 

necessary for boosting performance. 

• Effectiveness of RA: We investigate the importance of the RA module. From Table IV, we observe that 

No.4 (backbone+ RA) increases the backbone performance (No.1) in terms of major metrics, e.g., Dice, 

Sensitivity, MAE, etc. This suggests that introducing the RA component can enable our model to accurately 

distinguish true infected areas. 

• ∼ 

• Effectiveness of PPD & RA: We also investigate the importance of the combination of the PPD and RA 

components (No.6). As shown in Table IV, No.4 performs better than other settings (i.e., No.1 No.4) in most 

metrics. These improve- ments demonstrate that the reverse attention together with the parallel partial 

decoder are the two central components responsible for the good performance of Inf-Net. 

• Effectiveness of EA: Finally, we investigate the impor- tance of the EA module. From these results in 

Table IV (No.2 vs. No.1, No.5 vs. No.4, No.7 vs. No.6), it can be clearly observed that EA module effectively 

improves the segmentation performance in our Inf-Net. 

 

• Evaluation on Real CT Volumes 

In the real application, each CT volume has multiple slices, where most slices could have no infections. To 

further validate the effectiveness of the proposed method on real CT volume, we utilized the recently released 

COVID-19 infection seg- mentation dataset [9], which consists of 638 slices (285 non- infected slices and 353 

infected slices) extracting from 9 CT volumes of real COVID-19 patients as test set for evaluating our model 

performance. The results are shown in Tables V. Despite containing non-infected slices, our method still obtains 

the best performance. Because we employed two datasets for semi-supervised learning, i.e., labeled data with 

100 infected slices (50 training, 50 testing), and unlabeled data with 1600 CT slices from real volumes. The 

unlabeled data contains a lot of non-infected slices to guarantee our model could 

 

TABLE V PERFORMANCES ON NINE real CT volumes WITH 638 SLICES (285 NON-INFECTED AND 353 

INFECTED SLICES). THE BEST TWO RESULTS ARE SHOWN IN RED AND BLUE FONTS. 

 

Model Dice Sen. Spec. Prec. MAE 

U-Net [58] 0.308 0.678 0.836 0.265 0.214 
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Attention-UNet [76] 0.466 0.723 0.930 0.390 0.095 

Gated-UNet [77] 0.447 0.674 0.956 0.375 0.066 

Dense-UNet [78] 0.410 0.607 0.977 0.415 0.167 

U-Net++ [57] 0.444 0.877 0.929 0.369 0.106 

Inf-Net (Ours) 0.579 0.870 0.974 0.500 0.047 

Semi-Inf-Net (Ours) 0.597 0.865 0.977 0.515 0.033 

 

deal with non-infected slices well. Moreover, our Inf-Net is a general infection segmentation framework, 

which could be easily implemented for other type of infection. 

 

VI. LIMITATIONS AND FUTURE WORK 

 

Although the our Inf-Net achieved promising results in segmenting infected regions, there are some limitations 

in the current model. First, the Inf-Net focuses on lung infection segmentation for COVID-19 patients. 

However, in clinical practice, it often requires to classify COVID-19 patients and then segment the infection 

regions for further treatment. Thus, we will study an AI automatic diagnosis system, which integrates COVID-

19 detection, lung infection segmentation, and infection regions quantification into a unified framework. 

Second, for our multi-class infection labeling framework, we first apply the Inf-Net to obtain the infection 

regions, which can be used to guide the multi-class labeling of different types of lung infections. It can be seen 

that we conduct a two-step strategy to achieve multi-class infection labeling, which could lead to sub-optimal 

learning performance. In future work, we will study to construct an end-to-end framework to achieve this task. 

Besides, due to the limited size of dataset, we will use the Generative Adversarial Network (GAN) [82] or 

Conditional Variational Autoencoders (CVAE) [83] to synthesize more samples, which can be regarded as a 

form of data augmenta- tion to enhance the segmentation performance. Moreover, our method may have a bit 

drop in accuracy when considering non-infected slices. Running a additional slice-wise classifier (e.g., infected 

vs non-infected) for selecting the infected slice is an effective solution for avoiding the performance drop on 

non-infected slices. 

 

VII. CONCLUSION 

 

In this paper, we have proposed a novel COVID-19 lung CT infection segmentation network, named Inf-Net, 

which utilizes an implicit reverse attention and explicit edge-attention to improve the identification of infected 

regions. Moreover, we have also provided a semi-supervised solution, Semi-Inf- Net, to alleviate the shortage of 

high quality labeled data. Extensive experiments on our COVID-SemiSeg dataset and real CT volumes have 

demonstrated that the proposed Inf-Net and Semi-Inf-Net outperform the cutting-edge segmentation mod- els 

and advance the state-of-the-art performances. Our system has great potential to be applied in assessing the 

diagnosis of COVID-19, e.g., quantifying the infected regions, moni- toring the longitudinal disease changes, 

and mass screening processing. Note that the proposed model is able to detect the objects with low intensity 

contrast between infections and normal tissues. This phenomenon is often occurs in nature camouflage objects. 
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In the future, we plan to apply our Inf- Net to other related tasks, such as polyp segmentation [84], 

camouflaged animal detection [85]. Our code and dataset have been released at: 

https://github.com/DengPingFan/Inf-Net 
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