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ABSTRACT 

The massive explosion in the field of data such as images, video, audio, and text 

has caused significant problems in data storage and retrieval. Companies and 

organizations spend a lot of money to store and manage data. Therefore, there is 

an urgent need for efficient technologies to deal with this massive amount of 

data. One of the essential techniques to eliminate redundant data is data 

deduplication and data reduction. The best technique used for this purpose is 

data deduplication. Data deduplication decreases bandwidth, hard disc drive 

utilization, and backup costs by removing redundant data. This paper focuses on 

studying the literature of several research papers related to data deduplication 

for various techniques that several researchers have proposed. It summarized 

multiple concepts and techniques related to deduplication and methods used to 

improve storage. The data deduplication processes were examined in detail, 

including data chunking, hashing, indexing, and writing. Also, this study 

discussed the most critical problems faced by the data deduplication algorithm. 

Keywords: Data Deduplication, Data Reduction, Redundant Data, Data Chunking, 

Hashing.   

 

I. INTRODUCTION 

The expansion of data that accompanied the 

information revolution is massive, and many 

organizations and people are already facing real 

problems in dealing with this vast volume of data and 

how to secure and store this data [1]. The International 

Data Corporation (IDC) defines global information as 

data produced, captured, or transcribed via globally 

distributed digital resources. Global data will expand 

from 33 zettabytes (ZB) in 2018 to about 175 zettabytes 

(ZB) by 2025, as shown by IDC forecasts [1]. Many 

large companies like Google, IBM, Microsoft, Intel, 

and Motorola found, through a study conducted on the 

existing global data, that almost three-quarters of the 

current digital data are duplicate data [2]. Therefore, 

there is an urgent need for organizations, IT companies, 

and industries to store a massive amount of their data 

securely and to be able to work on it and retrieve it 

quickly. Since this data is vast, one of the most 

challenging tasks in big data is the process of backup 

and maintenance, as these operations are costly and 

considered among the challenges in this field [3]. 

Therefore, there is a significant challenge in storing 

and managing such vast amounts of digital data [4]. As 

a result, the deduplication technique, which prevents 

storing duplicate data on hard disks, is among the most 

excellent solutions to these challenges [5]. Data 

deduplication technology has become the dominant 

http://www.ijsrset.com/
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technology that reduces the space required for backup 

data and primary file systems [6].    

The data deduplication system has four major stages: 

chunking, fingerprinting, indexing, and data writing. 

The early phase considered a bottleneck in removing 

redundant data is chunking, in which vast amounts of 

incoming data are divided into small parts or chunks 

[7]. Chunk-level deduplication may be accomplished 

in two ways: fixed-size chunking (FSC) and variable 

size chunking (VSC) [8]. In FSC, the entire file 

contents divide into chunks of equal size. The FSC has 

low efficiency of deduplication and suffers from the 

boundary shifting problem, whereas VSC eliminates 

the issue of boundary shifting and divides the file into 

chunks; it does not have to be of equal sizes. The VSC 

method requires more computation and time but 

provides a more significant percentage of 

deduplication [9]. Fingerprinting is the second stage of 

the data deduplication system; each chunk is allocated 

a unique value. Hash functions such as Secure Hashing 

Algorithm SHA-1 or Message-Digest Algorithm MD5 

are widely used in this stage of the data deduplication 

system, which generates a digest for each chunk called 

a fingerprint. The third stage is indexing when the 

previously stored fingerprint values are compared with 

the fingerprint values of the new chunks to obtain the 

duplicate chunks. Indexing relies on chunking 

fingerprints to find duplicate chunks that can be 

identified and then remove them. If indeed the 

fingerprints of the two chunks match, they are 

considered identical. Writing is the fourth stage of data 

deduplication, storing a unique copy of the data on the 

hard disk. The unique chunks that do not have 

identical fingerprints are considered non-duplicate 

and stored in a hash table [10].  

This paper examines different classifications to remove 

duplicate data, including granularity-based (file-level 

deduplication or chunk-level deduplication), time-

based (before or after data is stored on disk), and based 

storage location deduplication, side-based 

deduplication, and Implementation based duplicate 

data. It also provides a review of the development of 

data deduplication technology, the pros and cons of 

each algorithm, the technical methods used, and 

identifies the problems and challenges facing storage 

systems based on data deduplication technique. Several 

recent studies and survey contributions in the field of 

deduplication have provided new algorithms and 

methods for improving deduplication. In addition, 

some studies focus on a specific aspect of deduplication, 

such as chunking or indexing systems and cloud 

storage. 

The remaining sections of the survey were set up as 

follows. The key benefits and downsides of data 

deduplication are outlined in Section 2. Some of the 

recent studies that investigated various deduplication 

methods are included in Section 3. Section 4 goes into 

great depth about several deduplication methods. 

Section 5 goes into great detail on the primary steps in 

data deduplication. Finally, the summary of the survey 

is presented in Section 6. 

II. DEDUPLICATION  

The data deduplication technique is one of the most 

important techniques used to remove redundancy data 

[1]. This technique helps companies provision much 

money by reducing the cost of bandwidth and storage. 

It is helpful in cloud services because it reduces the 

need for additional storage devices [2]. Data 

deduplication is a technique to resolve storage 

problems. Four main steps are included in removing 

data duplication: data chunking, fingerprinting, 

indexing, and writing [3]. "Fig. 1" illustrates the 

general view of the four main stages of data 

deduplication There are various advantages of Data 

Deduplication, such as:   

1. Improved efficiency of the network. 

2. The space required for storage is Low.  

3. The cost of storage is reduced.  

4. Storage efficiency is increased. 

Reduced upload bandwidth [4]. On the other side, 

there are several disadvantages to the deduplication 

technique, which are listed as follows [5]:  
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1. The duplicate data removal method requires some 

additional resources 

2. Hash function inconsistencies can cause data to 

lose accuracy and consistency. 

3. Security and Privacy. 

4. Reducing data duplicates affect storage system 

availability. 

 

III. Related Work 

Table I shows several papers that dealt with 

deduplication in recent years and reviews the most 

critical techniques used and the results obtained. In  

addition, shows the data sets that each researcher 

relied on to obtain the results and the limitations of 

each paper. 

 

TABLE I. The list of techniques, datasets, achievements, and limitations of recently released publications on data 

deduplication. 

Paper Technique Used Dataset Achievement Limitation 

2021 [12] 

● Effective mathematical 

bounded linear hashing  

● The hierarchal 

fingerprint lookup 

strategy 

● Linux Kernel 

10.9 GB 

● SQLite 6.44 GB 

● Oracle RMAN 

Backup 18.7 GB 

● Decreases the hashing time  

● Reduces hash index table 

by 50%. 

● Minimize hash comparison 

time by up to 78%. 

● The size of a hash index 

table grows greatly  

● Using a fixed number of   

hashes (five hashes) 

2021 [13] 

● Matching based on 

forwarding/end feature 

vectors 

● Uses dynamic 

adjustment of mask bits 

● Glibc, GCC, and 

MySQL 56 GB 

● Redis 111GB 

● SYN 108GB 

● Achieve a 222.3% 

deduplication ratio 

compared to Rapid CDC. 

● Chunking speed was 11.4x 

faster than Rapid CDC. 

● Productivity is higher by 

111.4% than Rapid CDC  

● New fingerprints improve 

processing speed. 

● The deduplication ratio is 

slightly improved.  

 

2021 [14] 

● A collection of 

repeating patterns is 

utilized to detect 

breakpoints. 

● Three-level lightweight 

hash function.  

● (Linux 3.9, 

Linux 4.14.157, 

and Linux 

5.8.12) 2.32 GB 

● Faster than BSW by 15 

times 

● Ten times quicker than 

TTTD 

● Five times faster than MD5 

and SHA1 

●  It does not use a dynamic 

set of divisors. 

2020 [15] 

● Use of five main 

techniques 

● Quick-rolling hashing 

based on gears 

● Simplify and enhance 

the Gear's hashing rule 

● Skip sub-minimum cut-

off points 

● TAR 56 GB 

● LNX 178 GB 

● WEB 237 GB 

● VMA 138 GB 

● VMB 1.9 TB 

● RDB 1.1 TB  

● SYN 2.1 TB 

● Chunking speed is 3 to 12 

faster than CDC 

approaches. 

● Improve system throughput 

● The same redundant data 

removal rate as the CDC. 

Figure. 1. General view of data deduplication stages [6]. 
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IV. Types of Deduplication Technique 

There are different ways to remove duplicate data 

saved in the data store. However, most companies use 

deduplication approaches to solve and reduce the 

duplication problem [7]. "Fig. 2" shows the different 

approaches used to remove duplicate data [2]: 

• Based on Granularity  

• Based on Time deduplication. 

• Side-based deduplication.  

• Implementation-based deduplication. 

 

Paper Technique Used Dataset Achievement Limitation 

2020 [16] 

● Bytes Pair 

Frequency-based 

Chunking (BFBC) 

algorithm  

● The proposed 

triple hash 

function 

● Linux Kernel 

5.93 GB 

● SQLite 6.44 GB 

 

● DER is better than 

other CDC 

algorithms 

• Three times faster than 

TTTD. 

• Ten times faster than 

the BSW algorithm. 

• Hashing is 5 times 

faster than SHA1 and 

MD5 

 

● Efficiency is affected by content data 

set similarity. 

● Potential hashing collision increases 

with a large dataset. 

● Computational overhead increases 

when the size of the hash table 

increases. 

2018 [17] 

● New fingerprint 

function 

● A multi-level 

approach to 

hashing and 

matching 

● New indexing 

method for storing 

metadata. 

● Versions of 

Emacs and 

3DLDF (GNU 

580 MB, GNU 

1.27 GB) 

● Improves the TTTD 

algorithm. 

● Reduce system 

resource usage 

● Efficiency is affected by content data 

set similarity. 

● Potential hashing collision increases 

with a large dataset. 

2017 [18] 

● An asymmetric 

local range's 

maximum value 

● Bench: 108 GB 

● Open-source: 

169.5GB 

● VMDK: 1.9TB 

● 2.3X increase in 

throughput. 

●  Increases system 

speed by 50%. 

● Overcoming the 

problem of the 

boundaries-shifting  

● Deduplication strategies cannot be 

used directly on security systems. 

2016 [19] 

● Bucket-based and 

Map Reduce under 

HDFS 

● Fixed-size chunks 

● MD5 algorithm 

module to generate 

hash 

● MapReduce model 

is applied 

● Zip Code 

Tabulation 

Area (ZCTA) 

2.6 GB and 1.7 

GB 

● Distinctive buckets 

used for hash storage 

● Reduce hashing time 

and chunk lookup. 

● High deduplication 

ratio. 

● Significantly reduces 

data volume. 

● Uses fixed-size chunking to reduce 

duplicate data removal 

● Boundary problem 

● It uses md5 algorithm 
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A. Based on Granularity 

Depending on the first criterion, there are two 

classifications of deduplication, as follows [8]: 

1) File-level deduplication: When using file-level 

deduplication, the entire file is handled as a single 

chunk rather than divided into many chunks [9]. In 

this technique, one hash value is constructed for the 

whole file, and the hash value for the new file is 

compared to the hash values of the stored files to find 

and eliminate duplicate files [10]. This method is not 

concerned with the internal contents of the file. For 

example, when two files are saved with the same 

internal content but different names, they are 

considered separate files. This approach is quick, easy, 

and requires little processing power. Single-instance 

storage is another name for this approach [8]. "Fig. 3" 

shows the deduplication technique with file-level 

deduplication. 

 

Figure. 3. File-level deduplication[11]. 

2) Chunk-level deduplication: In this approach, 

the file is divided into several small blocks, and each is 

called a chunk. In data deduplication, the search for 

duplicate chunks is within the file, and each chunk's 

unique copy is stored. Files can be divided into two 

ways to de-duplicated chunks [23]. Files can be divided 

into chunks of fixed length, i.e., the chunks with the 

same size, or into chunks of variable length, i.e., 

chunks with variable size [25]. Data deduplication 

using chunks level is far more efficient than 

deduplication of file-level [26]. The Content-Defined 

Chunking CDC algorithm breaks the data stream into 

chunks of varying sizes based on the content of the 

data stream, and when the local content does not 

change, the chunk limits do not change [27]. 

 

a) Fixed‑Size Chunk De-duplication: The file is 

broken into fixed-size chunks, and identical chunks 

are identified using a standard hash algorithm [28]. The 

size of chunks can range from 8 to 64 KB [29]. The 

main drawback of this method is that any modification, 

even if minimal, in the chunk leads to rewriting the 

collection of other successive chunks on the drive. For 

example, if a single byte is entered at the beginning of 

this data stream, it causes all boundaries of the current 

chunk defined using FSC to be changed, resulting in 

less redundant selection and thus less deduplication. In 

other words, it suffers from what is called a boundary-

shifting problem. Nevertheless, this approach is 

prevalent with a meagre remove data redundancy ratio. 

Figure (4) shows the deduplication technique with 

Fixed‑size chunk deduplication. 

b) Variable‑size chunk deduplication: This 

partition type depends on the file's internal content for 

dividing the file into chunks [30]. The file is broken 

into chunks of varying sizes using a method known as 

Content-Defined Chunking CDC [23]. The boundaries 

defined in this algorithm are variable in size, which 

depends on multiple indicators that can change if the 

content of a file is changed or deleted [31]. The change 

in the size of the boundaries adopted by this algorithm 

makes it more resistant to deleting or entering new 

data [30]. However, this algorithm needs more system 

resources, such as the CPU, to perform a full file scan 

Figure. 2. Types of deduplication approaches 
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and determine the boundaries of each chunk [23].   

"Fig. 4" shows the deduplication technique with 

variable‑size chunk data deduplication. 

 

3) Granularity based Advantages and 

Disadvantages: Granularity classification categorizes 

redundant data according to its Granularity, which 

describes the influence of this on different storage 

techniques, the techniques employed in such systems, 

and the impact of those varied ways on deduplication 

efficiency, performance, and resource consumption. 

The main drawback of categorizing data by 

Granularity is that typical hash storage systems are 

limited in their ability to reduce data redundancy. 

B. Based on Time deduplication 

In this approach, there are two methods [23].   

1) Inline deduplication: Inline deduplication 

eliminates redundant data during or before it is written 

to the hard disk, reducing the storage space [23]. This 

method is flexible and powerful since it processes the 

data once [8]. Inline deduplication can be done on the 

client-side or when data is sent from the data 

source/client to the target/server [10]. However, the 

inline deduplication approach can only use a fixed-

length chunk because it checks the incoming raw 

chunks and does not know other chunks [17]. The 

main drawback of this technique is that network 

efficiency significantly impacts it. However, this 

method's required storage capacity is less while the 

computation time is high [32]. "Fig. 5" shows the 

deduplication technique with Inline Deduplication of 

Data. 

 
Figure. 5 Inline Deduplication of Data [24]. 

2) Post-process deduplication: Data is initially 

written to the storage device, and duplicate data is 

found and removed [23]. Both file and sub-file levels 

may benefit from post-process deduplication [17]. This 

technique's performance is superior to the inline 

approach [33] because it involves fewer calculations. 

The major drawback of this approach is that it requires 

an additional disk cache, which means that it is more 

expensive than the inline method [32]. "Fig. 6" shows 

the Post-process Deduplication of Data. 

 

 
Figure. 6. Post-process Deduplication of Data [24]. 

 

3) Time Classification Advantages and 

Disadvantages: In time classification, all deduplication 

systems depend on when the process occurs, if the 

process is during the storage process or after the storage 

process. Inline deduplication occurs during data flow, 

whereas post-process deduplication occurs after data 

has been written to disk. Inline deduplication has a 

slow storage performance, whereas post-process 

deduplication has a fast storage performance because 

the hash calculation is deferred. The storage 

requirement and network traffic are less in inline 

deduplication and more comparative in post-process 

deduplication. The storage throughput of inline 

deduplication is lower than that of post-process 

deduplication. Inline does not require temporary 

storage space, while post-process deduplication is 

required. 

Figure. 4. Variable‑size chunk deduplication[11] 
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C. Based on Side 

In this approach, there are two methods source / client 

deduplication and target deduplication as shown in 

"Fig. 8" [32]. 

1) Source / Client deduplication: This approach 

removes duplicate data at the source before sending it 

[33]. Removing the data takes place on the 

client/source side before transferring the data to the 

backup device [32]. One of the essential features of this 

type of data removal is that it does not require a high 

bandwidth compared to the Target deduplication. As a 

result, source/client deduplication has two main 

advantages: it uses less bandwidth to transmit data and 

stores unique data [32]. The problem with this method 

is that it de-duplicates data using the entire client's 

resources [24]. However, this method's disadvantage is 

that its overheads the client CPU up to 15% by 

performing the Deduplication processes. Besides, if 

large amounts of data need to be processed, then the 

processing time will be increased, leading to slowing 

down the servers on the source side [20]. "Fig. 7" (a) 

shows source/client data deduplication. 

 

Figure. 7.  (a) Source/client data deduplication and (b) 

target data deduplication [20]. 

 

2) Target deduplication: The duplication process 

occurs at the backup server-side, as all comparable data 

is completely transferred to the backup server [24]. 

Target data deduplication is fast and easy to perform 

the deduplication process on the server side because it 

contains all the data in its full replica [9]. However, this 

method has the disadvantage of requiring more 

bandwidth to transmit data due to the possibility of 

duplicate data [24]. Figure (8) (b) illustrates target data 

deduplication. 

3) Advantages and disadvantages of side 

classification: Source deduplication requires 

bandwidth less than target-based deduplication. The 

resources that are needed by source-based more than 

they need for target-based deduplication. The 

processing overhead at the client for source-based is 

more than target based. Therefore, the source-based 

approach is slower than target based. 

D. Based on Implementation 

In this approach, there are two methods in this 

principle [32]. 

1) Hash‑based deduplication: Hash-based 

deduplication is applied to find out if two documents 

or two chunks are the same [32]. In the beginning, the 

content of the data is hashed. Next, the created 

signatures of the chunks are compared to see if these 

two chunks are redundant or not [24]. If the generated 

signatures are the same, the two entities are discarded 

as being too similar. If not, it is saved on the hard drive. 

Finally, it can calculate the value of a data hash using 

any of the known hashing algorithms, including but 

not limited to MD5, SHA-1, SHA-256, and SHA-512 

[32]. 

2) Content or application‑aware deduplication: 

When using the content-aware deduplication method, 

data is treated as an object in the deduplication 

application [24]. The process of comparing is 

performed on the level of objects. After detecting 

identical parts, it saves only the bytes modified in the 

two parts [8]. It removes redundant data at the byte 
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level [24]. The content-aware technique looks for 

similar fragments or bytes, and only bytes that have 

changed or are unique are saved [32]. For example, if a 

backup stream is taking place on a file and it is known 

where the file boundaries are, knowing the boundaries 

can be helpful in data deduplication [34]. 

3) Advantages and disadvantages of 

implementation classification: This classification 

requires overcoming the shortcomings of previous 

classifications by implementing content-based 

deduplication or application-aware systems to examine 

and differentiate different systems based on efficiency 

and speed. Content-aware-based deduplication is 

faster than content-based deduplication because it 

only processes and compares data in the same type of 

objects and does not compare with all. In comparison, 

the latter is more efficient than the former. The 

comparison of different data deduplication techniques 

is shown in Table II. 

 

V. Deduplication Stages 

The main stages included in data deduplication can be 

summarized in four stages: data chunking, 

fingerprinting, indexing and writing. This research 

deals with these stages and the techniques used in each 

stage in detail [18]. 

 

Table II Various data deduplication techniques are compared and contrasted. 

 

 

A. Chunking Algorithms 

Dividing files or data streams into multiple chunks of 

fixed or variable length is known as data chunking [12]. 

A set of different chunking algorithms deals with the 

process of dividing files into chunks. These algorithms 

will be analysed and discussed in this section, and their 

most important advantages and disadvantages are 

present as follows: 

1) Rabin Fingerprint Algorithm: The Rabin 

fingerprint [35] based on the CDC algorithm was used 

to eliminate redundant data in deduplication systems 

and network traffic [36]. The Rabin method establishes 

minimum and maximum bounds on the size of the 

chunks to prevent the algorithm's output from being 

very short or highly lengthy. Tiny chunks contain 

more fingerprints, need more space to store and 

process, and are therefore not cost-effective, while too 

long chunks lead to a decrease in deduplication 

efficiency [37]. Rabin's algorithm [38] suffers from two 

main problems; the first is to calculate the fingerprints 

of all the pieces, which takes a long time [37], and the 

second is the significant variance in the size of the 

chunk, which reduces the efficiency of removing 

duplicate data. "Fig. 8" illustrates the general view of 

the Rabin fingerprint algorithm [19]. 

 
Figure. 8.  Operation of Rabin fingerprint algorithm [19]. 
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2) Two Divisors (TD) Algorithm: The TD [39] 

algorithm is based on using a secondary divisor to 

determine the breakpoints for dividing large chunks. It 

has a good chance of getting the duplicated chunks as 

it is used to overcome the boundary shift problem 

caused by the BFS algorithm [39]. The TD algorithm 

starts with checking the stream file, searching for the 

breakpoint, and creating a fingerprint for each chunk 

[34]. Then, it checks that the fingerprint of both 

divisors matches. It will be a breakpoint if the first 

divider finds a match in the fingerprint before the 

threshold value. If the first divisor fails to reach these 

breakpoints during a specific threshold value, the 

second divisor is used. It uses the secondary divider to 

try to find a breakpoint [39]. 

3) TTTD (Two Thresholds, Two Divisors) 

Algorithm: The TTTD algorithm  [39] consists of 

combining two algorithms, the TD algorithm and the 

SCM (Small Chunk Merge) algorithm  [40]. The TTTD 

algorithm improves the efficiency of the Rabin 

algorithm in removing duplicate data. The TTTD 

algorithm provided an additional backup divisor to 

reduce the difference in the chunk size, which has a 

high probability of finding the breakpoints[27]. The 

TTT algorithm uses four parameters in the process of 

discovering the breakpoints, which are: Tmin 

(Minimum Threshold), Tmax (Maximum Threshold), 

D (Primary Divisor), and D (Primary Divisor). The 

minimum and maximum threshold values should be 

set to control for variance in the chunk size so that the 

second divisor is half of the base divisor [40]. The 

TTTD algorithm has been improved [41]by adding a 

new switch condition to improve the time required for 

execution without affecting the deduplication ratio. If 

the breakpoint is not reached before 1600 bytes, the 

values of each major divisor D and second divisor D 

Dash have been reduced by half [42]. The TTTD 

algorithm improves  [43] processing time by about 6% 

and reduces chunk size by about 5%  [14]. 

4) MAXP: MAXP [39] is a CDC algorithm that 

solves the Rabin algorithm's chunk size variance 

problem by attempting to find local extreme values in 

a symmetric fixed-size window. MAXP is also 

recommended for eliminating network redundancy  

[34]. The MAXP shifts a fixed-size symmetric window 

over the byte stream on a byte-by-byte basis and 

checks whether the byte value in the center of the 

current window is the maximum value. The extreme 

points are used as a cut point to divide the input stream. 

The MAXP method  [44] uses the strategy of locating 

local extreme values by rechecking some of the 

previously compared bytes, which significantly 

reduces the chunking throughput [4]. 

5) Bimodal: The bimodal approach combines 

chunks of varied average sizes and is an improved 

version of the CDC algorithm[26]. The bimodal 

algorithm performs a specific split of the size of the 

expected chunk in a dynamic manner. It works to split 

the data stream into large chunks, and for non-

duplicated chunks, it divides them into smaller chunks. 

This algorithm is based on two methods to eliminate 

redundancy in large chunks [45]. The first method 

works by dividing the data stream into large chunks, 

and after identifying the areas of the new chunk's 

content, the data near the boundaries of the changing 

area chunks are divided into small chunks. The second 

method uses a flexible algorithm to combine the small 

chunks from the first method into a large one to solve 

the boundary shift problem [20]. 

6) MCDC (Multimodal Content Defined 

Chunking): The MCDC algorithm [46] is presented to 

maximize the efficiency of Bimodal Content-Defined 

Chunking. The MCDC finds the optimal size of chunks 

by changing the data size of chunks and the ability to 

compress data in these chunks. This algorithm works 

in two stages: First, the data is divided into fixed-size 

chunks, and then the Compression ratio (CR) is found 

separately for each chunk [42]. Dividing the data into 

fixed chunks led to the boundary shift problem. In the 

second stage, the MCDC algorithm has solved this 

problem by dividing the data stream into variable 

chunk sizes using Uni-modal chunking and calculating 

the compression ratio for each of them [42]. The 
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dividing using variable-size chunks and based on the 

comparison fingerprint technology reduced the 

number of chunks and lowered overall system cost 

while maintaining effective deduplication [45]. 

7) Leap-Based: Leap-based CDC algorithm [47] 

add a new control function to see if the window is 

qualified or not. It is used to improve the algorithms 

that use the CDC algorithm to remove duplicate data. 

This algorithm uses a pseudo-random method instead 

of the methods used in many CDC algorithms. "The 

Transformation derived from the locality-sensitive 

hashing and the theorem that the sum or the difference 

of normal distribution is still a normal distribution" 

[47]. The leap based has two parameters, M and Pw, 

and these parameters determine the performance and 

chunk size of the leap-based CDC, where M is the 

number of satisfactory windows and Pw is the window 

interpolation probability. The lead-based CDC 

algorithm uses two parameters to determine 

performance [45]. 

8) AE Algorithm: AE Asymmetric Extremum 

Algorithm [27] significantly improved the 

performance and efficiency of existing chunking 

algorithms. Instead of employing a fixed-size window 

like the MAXP Algorithm, AE solves the boundary 

shift issue using an asymmetric variable window[44]. 

It works to find the maximum local extreme value in 

the window, does not need backtracking, and needs 

only one comparison  [48]. Therefore, the AE  

algorithm is high-speed, and the variance in the chunk 

size is minimal compared to other chunking existing 

CDC  [44] algorithms. It does not impose any 

restrictions on the size of the chunk size [34]. "Fig. 9" 

illustrates the AE Asymmetric Extremum Algorithm 

[19].   

9) Rapid Asymmetric Maximum Algorithm 

(RAM): The RAM algorithm is a hash-free chunking 

approach based on AE that declares chunk cut-points 

using bytes values. It reads data as a byte stream 

without putting a window at the end of every chunk. 

Due to the usage of two windows, one fixed and the 

other variable, RAM employs the same algorithm as 

AE [19]. However, the RAM method places the fixed-

sized window at the start of the chunk, followed by the 

variable-sized window and the byte with the highest 

value [12]. The RAM algorithm takes less computation 

time because it searches for a byte greater or equal to 

the current maximum value. Unlike the AE algorithm, 

which searches for data equal to or less than a current 

value. Since there is a lower probability that a byte is 

higher than the current value, the RAM algorithm is 

less overhead than the AE algorithm  [49], so RAM's 

throughput is better than the algorithm AE [48]. "Fig. 

10" illustrates the general view of the Rapid 

Asymmetric Maximum Algorithm (RAM [19]. 

10) Minimal Incremental Interval (MII): The MII 

algorithm[48] was introduced based on incremental 

data synchronization. Since data is saved on the 

physical disk, the length of the chunk is considered one 

of the essential factors in the performance of earlier 

algorithms such as (AE and RAM). Because it is based 

on an incremental backup method, chunking is used to 

pick just the new data, which is not kept on the 

physical disk. The MII algorithm does not depend on 

chunk length because it is an incremental 

synchronization chunking algorithm that has the 

potential to manage byte shifting problems. MII 

Data Stream 

Variable Fixed 

Cut 

Point 

Figure. 9. Operation of Asymmetric Extremum 

Algorithm [19]. 

Data Stream 

Fixed Size Variable Size M=Maximum value 

Cut 

Point 

Figure. 10.  operation of Rapid Asymmetric Maximum 

Algorithm (RAM) [19] 
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compares the byte that was read recently to the byte 

already existing. The MII can provide better ways to 

solve the byte shift problem, but the efficiency of this 

algorithm, in general, is not good, and the performance 

was poor in the variation of the size of the chunk [48]. 

11) Parity Check of Interval (PCI): The PCI 

algorithm solves the MII algorithm problem. It 

circumvents the boundary shift problem and can locate 

precisely where the data changes in incremental 

synchronization. PCI algorithm reads files as a stream 

of data and consists of a window of length (w) where 

the window's header is set as the first bye of the file. 

This method reduces the bandwidth needed to send 

data across the network, but the speed of dividing data 

into chunks is lower than the AE and RAM methods 

[50]. 

12) Quick CDC: The (Rabin CDC) algorithm takes 

a long time, and the ratio of deduplication data is low 

because it depends on byte-by-byte computation. The 

Quick CDC method employs three techniques to 

increase cutting speed, deduplication rate, and CDC 

throughput  [12]. In the first technique, the Quick 

CDC algorithm can jump straight to their chunk 

boundaries in the case of duplicate chunks that appear 

several times. The second technique, for the unique 

chunk, the Quick CDC method overrides the 

minimum chunk length. Third, The Quick CDC 

distributes the chunk length into a small area since it 

can dynamically adjust the mask bits so that chunks are 

always more significant than the minimum chunk 

length. As a result, the Quick CDC algorithm improved 

the chunking speed, and the deduplication ratio was 

slightly improved [12]. Table III show the Advantage 

and Disadvantage of different Chunking Methods. 

B. Hashing and Fingerprint  

The data is broken up into blocks or chunks, and a 

unique hash value is created for each chunk. A 

sequence of hash values results from this [51]. The 

main task of the hash function is to create a unique 

fingerprint for each file or chunk, and this process aims 

to convert an extensive data set of variable length into 

a data set smaller in size and of fixed length [52]. The 

chunk between the beginning of the file and the 

breakpoint location, or between the old breakpoint 

and the new breakpoint position, is passed to the hash 

function (MD5, SHA-1) for hash value comparison 

when comparing chunks [34]. Multi-threading 

expedites the fingerprint process by using multi-core 

CPUs' capabilities [53]. 

1) The MD5 Hashing Algorithm: MD5 contains a 

series of numbers, and it was built based on the md4 

algorithm, which is faster than MD5. The MD5 is more 

secure than the MD4 algorithm. The main objective of 

the algorithm is to protect the data's integrity and 

identify any changes made to the data. The results for 

the MD5 algorithm are always of a fixed size with a 

hash value of 128 bytes [54]. It produces a string 

consisting of four 32-bit blocks each. The MD5 method, 

which includes four processing cycles, is applied to the 

messages to be encrypted. In a digital signature, 

encryption, data identification, and data protection 

applications, the MD5 algorithm is commonly 

employed  [11]. 

2) The SHA-1 Hashing Algorithm: The National 

Institute of Standards and Technology (NIST) 

developed the (SHA-1) algorithm as a security 

mechanism based on the results of the (SHA) algorithm. 

The MD4 method is the basis for the hash algorithm, 

SHA-1 [55]. The (SHA-1) algorithm always outputs 

160 bits, regardless of the size of the message. The 

algorithm (SHA-1) uses complex methods to transform 

data and logical functions  [56]. For processing units, 

this arithmetic process is decomposed into the 32-bit 

words of 512-bit size, with four loop operators and 20 

cycles for each circuit, for 80 cycles [11]. SHA-1 is 

more potent in encryption when compared to MD5, 

but it takes more time for data encryption. Algorithm 

(SHA-1) contains 80 iterations, while algorithm (MD5) 

contains 64 iterations, so it is slower than (MD5). One 

of the essential applications of the (SHA-1) and (MD5) 

algorithm is deduplication, where the chunk hash 

computation expresses the bottle in deduplication [11]. 
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3) The Mathematical Bounded Linear Hashing 

Algorithm:  The linear hash method comprises 

mathematical boundaries formed by multiplying 

distinct random values by a predefined quantity of 

non-repeatable zero bytes. It's enough to produce 

distinct unique signatures to identify the plaintext 

contents of the chunks by using different number 

sequences to obtain different short hash values. The 

hash functions of massive data are described by 

mathematical signatures, which have algebraic 

features and a low collision probability [6]. 

Furthermore, compared to typical security hash 

functions, the arithmetic operations utilized to 

produce hash code are fundamental, resulting in a 

relatively minimal processing cost. This approach's 

computational cost is minimal compared to classic 

hash algorithms like MD5 and SHA-1. A 16-bit 

mathematical function is used to produce each hash. 

Using several hash functions to represent the data 

content can help decrease collisions and enhance the 

lookup stage [32]. 

C. Indexing and Matching 

The hashing and indexing process consists of a 

temporary lookup table to store the name of the 

chunks and their hash values[20]. The new hash is 

compared to the previously stored hash values in 

indexing to identify duplicate data chunks. Two or 

more chunks are considered duplicates if their 

fingerprints match since the duplicates are removed, 

and only the unique chunks are stored [34]. Every 

Table III   Advantages and Disadvantages of The Chunking Methods 

Method Advantage Disadvantage 

Rabin Fingerprint 

Algorithm 

● Eliminate redundant data deduplication systems. 

● Reduce network traffic. 

●  The chunking output is low. It takes a long 

time. 

● Significant variance in variance size. 

● Data removal efficiency is low 

TD Two Divisors 

Algorithm 

● Reduces chunk size. 

● Good chance to find duplicated chunks. 

● Duplicate chunk. 

● Detection problem. 

TTTD 
Improves the efficiency of the deduplication 

ratio. 
The chunking output is low. 

MAXP 
● Computational overhead is generally reduced. 

● Reduces the contrast between chunks 
Throughput of chunking is low. 

Bimodal More duplicate data is eliminated. Suffers from shifting boundaries 

MCD Boundary shift with the best chunk size. Boundary shift problem. 

Leap-Based Improvement to deduplication performance. Additional overheads in the calculation. 

AE Asymmetric 

Extremum Algorithm 

● gains high performance. 

● Very fast. 

Smaller chunk variance. 

● Less resistance on byte shifting. 

It takes more time to process chunks.  

RAM Rapid 

Asymmetric 

Maximum Algorithm 

● Reduce computational expenses. 

● The productivity of chunking is high. 

● High chunking speed. 

The cost of chunking is low. 

Boundary shift problem. 

PCI Parity Check of 

Interval 
It has a greater ability to resist byte shifting. 

The variance in size was very poor. 

The algorithm's efficiency is insufficient. 

MII Minimal 

Incremental Interval 
Manage byte shifting problem. 

Adjusting the chunk size is difficult. 

The efficiency of the method is low. 

Quick CDC 
Enhance chunking speed and enhance the 

throughput of CDC. 
The deduplication ratio is slightly improved. 
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hash value at location (i) is compared with all hashes 

from location (i + 1) to the end of the sequence. A 

new reference is created when the hash values are 

equal. The sequence of hash values is extended by 

duplicate identification tags and backward 

references at the end of this stage [51]. In 

deduplication matching steps. If the hash values are 

the same, the procedure compares the two chunks 

byte by byte; if they are the same, the system 

removes the new chunk and adds a logical reference 

to the location of the old one. This operation takes 

much time and overhead the system [14]. One of the 

important challenges facing deduplication is the 

possibility of expanding the fingerprint indexing 

table. If the size of the fingerprint table is more than 

the whole amount of RAM, the hard disk index 

search becomes a bottleneck [57]. 

D. Writing on Disk 

Each unique chunk is added to the system and 

requires a corresponding (hash, location) entry to be 

inserted into the system's fingerprint index. Even for 

modest data sets, the fingerprint index size can 

exceed the system's RAM size. Let's consider a 

chunk store with 20TB of unique data: if the 

fingerprint index only stores each chunk's SHA-1 

hash (20B), an average chunk size of 4KB would 

result in a 100GB index! In general, caching is the 

technique we use to improve our performance 

whenever our data structures exceed the bounds of 

our memory [37]. The standard caching techniques 

rely on good locality to be effective (spatial and/or 

temporal locality) [58]. Unfortunately, seen that 

SHA-1 fingerprints are independently and 

uniformly distributed, and as a result, fingerprint 

index queries have no locality of reference. The 

fingerprint index performs poorly when normal 

caching methods are naively used, and each lookup 

still necessitates a costly disk search. The Data 

Domain deduplication solution addresses this issue, 

known as the disk index bottleneck problem [58]. 

VI. CONCLUSION 

Many companies and organizations use different 

techniques to remove redundant data to get rid of 

redundant data. In this study, many redundant data 

reduction approaches are discussed, like the many 

types of data deduplication techniques categorized 

according to granularity-based, time-based, side-

based deduplication, and Implementation has been 

studied and clarified. The most important 

characteristics related to these types are discussed. 

The challenges and solutions to issues related to data 

duplication are covered. In this survey, the most 

important advantages and disadvantages of using 

these types on a large scale are also reviewed and 

discussed. The research included an overview of the 

methods for splitting data into fixed and variable 

chunks and provided tips on maximizing the 

efficiency and productivity of data deduplication. 

Various hashing approaches have been examined, 

and their primary methodologies have been varied. 

The most important types of hashing methods 

studied are MD5, SHA-1, and mathematical model-

based hashing. The study also looked at the indexes 

used to find duplicate data chunks and save unique 

ones. In addition, comparisons were made between 

the different methods and algorithms according to 

the criteria of time, efficiency, and the percentage of 

de-duplicating data. 

ACKNOWLEDGMENT 

The authors would like to thank the Iraqi 

commission for computers and informatics\ 

Informatics Institute of Postgraduate Studies (www. 

iips.edu.iq) Baghdad-Iraq for its support in the 

present work. 

 



International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 4 

Hashem Bedr Jehlol et al  Int J Sci Res Sci Eng Technol, July-August-2022, 9 (4) : 174-190 

 

 

 

 
186 

 

REFERENCES 

 

[1]. G. Sujatha and J. R. Raj, “A Comprehensive Study 

of Different Types of Deduplication Technique 

in Various Dimensions,” A Compr. Study Differ. 

Types Deduplication Tech. Var. Dimens., vol. 13, 

no. 3, pp. 316–324, 2022. 

[2]. S. T. Ahmed and L. E. George, “Lightweight 

hash-based de-duplication system using the self 

detection of most repeated patterns as chunks 

divisors,” J. King Saud Univ. - Comput. Inf. Sci., 

2021, doi: 

https://doi.org/10.1016/j.jksuci.2021.04.005. 

[3]. H. Kambo and B. Sinha, “Secure data 

deduplication mechanism based on Rabin CDC 

and MD5 in cloud computing environment,” in 

2017 2nd IEEE International Conference on 

Recent Trends in Electronics, Information 

Communication Technology (RTEICT), May 

2017, pp. 400–404. doi: 

10.1109/RTEICT.2017.8256626. 

[4]. Y. Zhang et al., “A Fast Asymmetric Extremum 

Content Defined Chunking Algorithm for Data 

Deduplication in Backup Storage Systems,” IEEE 

Trans. Comput., vol. 66, no. 2, pp. 199–211, 2017, 

doi: 10.1109/TC.2016.2595565. 

[5]. Y. Cui, Z. Lai, X. Wang, and N. Dai, “QuickSync: 

Improving Synchronization Efficiency for 

Mobile Cloud Storage Services,” IEEE Trans. 

Mob. Comput., vol. 16, no. 12, pp. 3513–3526, 

2017, doi: 10.1109/TMC.2017.2693370. 

[6]. A. S. M. Saeed and L. E. George, “Data 

deduplication system based on content-defined 

chunking using bytes pair frequency 

occurrence,” Symmetry (Basel)., vol. 12, no. 11, 

pp. 1–21, 2020, doi: 10.3390/sym12111841. 

[7]. A. V. and K. S. Sankar, “Study of Chunking 

Algorithm in Data Deduplication,” Adv. Intell. 

Syst. Comput., vol. 398, pp. 319–329, 2016, doi: 

10.1007/978-81-322-2674-1. 

[8]. N. Sharma, A. V. Krishna Prasad, and V. 

Kakulapati, “Data deduplication techniques for 

big data storage systems,” Int. J. Innov. Technol. 

Explor. Eng., vol. 8, no. 10, pp. 1145–1150, 2019, 

doi: 10.35940/ijitee.J9129.0881019. 

[9]. M. K. Yoon, “A constant-time chunking 

algorithm for packet-level deduplication,” ICT 

Express, vol. 5, no. 2, pp. 131–135, 2019, doi: 

10.1016/j.icte.2018.05.005. 

[10]. S. M. A. Mohamed and Y. Wang, “A survey on 

novel classification of deduplication storage 

systems,” Distrib. Parallel Databases, vol. 39, no. 

1, pp. 201–230, 2021, doi: 10.1007/s10619-020-

07301-2. 

[11]. A. S. M. Saeed and L. E. George, “Fingerprint-

based data deduplication using a mathematical 

bounded linear hash function,” Symmetry 

(Basel)., vol. 13, no. 11, pp. 1–19, 2021, doi: 

10.3390/sym13111978. 

[12]. Z. Xu and W. Zhang, “QuickCDC: A Quick 

Content Defined Chunking Algorithm Based on 

Jumping and Dynamically Adjusting Mask Bits,” 

in 2021 IEEE Intl Conf on Parallel Distributed 

Processing with Applications, Big Data Cloud 

Computing, Sustainable Computing 

Communications, Social Computing Networking 

(ISPA/BDCloud/SocialCom/SustainCom), 2021, 

pp. 288–299. doi: 10.1109/ISPA-BDCloud-

SocialCom-SustainCom52081.2021.00049. 

[13]. W. Xia et al., “The design of fast content-defined 

chunking for data deduplication based storage 

systems,” IEEE Trans. Parallel Distrib. Syst., vol. 

31, no. 9, pp. 2017–2031, 2020, doi: 

10.1109/TPDS.2020.2984632. 

[14]. H. A. S. Jasim and A. A. Fahad, “New techniques 

to enhance data deduplication using content 

based-TTTD chunking algorithm,” Int. J. Adv. 

Comput. Sci. Appl., vol. 9, no. 5, pp. 116–121, 

2018, doi: 10.14569/IJACSA.2018.090515. 

[15]. N. Kumar, R. Rawat, and S. C. Jain, “Bucket based 

data deduplication technique for big data storage 

system,” in 2016 5th International Conference 



International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 4 

Hashem Bedr Jehlol et al  Int J Sci Res Sci Eng Technol, July-August-2022, 9 (4) : 174-190 

 

 

 

 
187 

on Reliability, Infocom Technologies and 

Optimization, ICRITO 2016: Trends and Future 

Directions, 2016, pp. 267–271. doi: 

10.1109/ICRITO.2016.7784963. 

[16]. K. Akhila, A. Ganesh, and C. Sunitha, “A Study 

on Deduplication Techniques over Encrypted 

Data,” Procedia Comput. Sci., vol. 87, pp. 38–43, 

2016, doi: 10.1016/j.procs.2016.05.123. 

[17]. A. Kaur and S. Sharma, “An Efficient Framework 

and Techniques of Data Deduplication in Cloud 

Computing,” Int. J. Comput. Sci. Technol., vol. 

8491, pp. 27–31, 2017. 

[18]. J. Malhotra and J. Bakal, “A survey and 

comparative study of data deduplication 

techniques,” in 2015 International Conference 

on Pervasive Computing: Advance 

Communication Technology and Application for 

Society, ICPC 2015, 2015, pp. 1–5. doi: 

10.1109/PERVASIVE.2015.7087116. 

[19]. D. Viji and D. S. Revathy, “Comparative Analysis 

for Content Defined Chunking Algorithms in 

Data Deduplication,” Webology, vol. 18, no. 

SpecialIssue2, pp. 255–268, 2021, doi: 

10.14704/WEB/V18SI02/WEB18070. 

[20]. H. A. Jasim and S. By, “An Improved Technique 

to Enhance De-Duplication using Content-Based 

TTT-D Chunking Algorithm A,” Univ. Baghdad 

- Coll. Sci. Comput. Sci. Dep., no. March, 2018. 

[21]. R. Vikraman and A. S, “A Study on Various Data 

De-duplication Systems,” Int. J. Comput. Appl., 

vol. 94, no. 4, pp. 35–40, 2014, doi: 

10.5120/16334-5616. 

[22]. R. Misal and B. Perumal, “Data deduplication for 

efficient cloud storage and retrieval,” Int. Arab J. 

Inf. Technol., vol. 16, no. 5, pp. 922–927, 2019. 

[23]. P. M. Kumar, G. Usha Devi, S. Basheer, and P. 

Parthasarathy, “A Comprehensive Study on Data 

Deduplication Techniques in Cloud Storage 

Systems,” Int. J. Grid Util. Comput., vol. 11, no. 

4, pp. 509–516, 2020, doi: 

10.1504/IJGUC.2020.108450. 

[24]. G. Sujatha and J. R. Raj, “A Comprehensive Study 

of Different Types of Deduplication Technique 

in Various Dimensions,” Int. J. Adv. Comput. Sci. 

Appl., vol. 13, no. 3, pp. 316–323, 2022, doi: 

10.14569/IJACSA.2022.0130339. 

[25]. L. Conde-Canencia and B. Hamoum, 

“Deduplication algorithms and models for 

efficient data storage,” Proc. - 24th Int. Conf. 

Circuits, Syst. Commun. Comput. CSCC 2020, 

pp. 23–28, 2020, doi: 

10.1109/CSCC49995.2020.00013. 

[26]. A. El-Shimi, R. Kalach, A. Kumar, A. Oltean, J. 

Li, and S. Sengupta, “Primary data deduplication 

- Large scale study and system design,” Proc. 

2012 USENIX Annu. Tech. Conf. USENIX ATC 

2012, pp. 285–296, 2019. 

[27]. Y. Zhang et al., “AE: An Asymmetric Extremum 

content defined chunking algorithm for fast and 

bandwidth-efficient data deduplication,” in 

Proceedings - IEEE INFOCOM, Apr. 2015, vol. 

26, pp. 1337–1345. doi: 

10.1109/INFOCOM.2015.7218510. 

[28]. A. Bhalerao, “A Survey : On Data Deduplication 

for Efficiently Utilizing Cloud Storage for Big 

Data Backups,” Int. Conf. Trends Electron. 

Informatics, no. August 2019, 2017, doi: 

10.1109/ICOEI.2017.8300844. 

[29]. D. Kim, S. Song, and B. Y. Choi, Data 

deduplication for data optimization for storage 

and network systems. 2016. doi: 10.1007/978-3-

319-42280-0. 

[30]. E. Manogar and S. Abirami, “A study on data 

deduplication techniques for optimized storage,” 

6th International Conference on Advanced 

Computing, ICoAC 2014. pp. 161–166, 2015. doi: 

10.1109/ICoAC.2014.7229702. 

[31]. K. Gnana Sambandam and E. Kamalanaban, 

“Proceedings of the International Conference on 

Soft Computing Systems,” Adv. Intell. Syst. 

Comput., vol. 398, pp. 319–329, 2016. 

[32]. S. M. A. Mohamed and Y. Wang, “A survey on 

novel classification of deduplication storage 



International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 4 

Hashem Bedr Jehlol et al  Int J Sci Res Sci Eng Technol, July-August-2022, 9 (4) : 174-190 

 

 

 

 
188 

systems,” Distrib. Parallel Databases, vol. 39, no. 

1, pp. 201–230, 2021. 

[33]. K. Vijayalakshmi and V. Jayalakshmi, “Analysis 

on data deduplication techniques of storage of 

big data in cloud,” Proceedings - 5th 

International Conference on Computing 

Methodologies and Communication, ICCMC 

2021. pp. 976–983, 2021. doi: 

10.1109/ICCMC51019.2021.9418445. 

[34]. A. Bhalerao and A. Pawar, “A survey: On data 

deduplication for efficiently utilizing cloud 

storage for big data backups,” Proc. - Int. Conf. 

Trends Electron. Informatics, ICEI 2017, vol. 

2018-Janua, no. May, pp. 933–938, 2018, doi: 

10.1109/ICOEI.2017.8300844. 

[35]. Rabin, “Fingerprinting by random 

polynomials.pdf.” 1981. 

[36]. A. Anand, C. Muthukrishnan, A. Akella, and R. 

Ramjee, “Redundancy in network traffic: 

Findings and implications,” 

SIGMETRICS/Performance’09 - Proc. 11th Int. 

Jt. Conf. Meas. Model. Comput. Syst., vol. 37, no. 

1, pp. 37–48, 2009, doi: 

10.1145/1555349.1555355. 

[37]. B. Zhu, K. Li, and H. Patterson, “Avoiding the 

disk bottleneck in the data domain deduplication 

file system,” FAST 2008 - 6th USENIX Conf. File 

Storage Technol., pp. 269–282, 2008. 

[38]. E. Kruus, C. Ungureanu, and C. Dubnicki, 

“Bimodal content defined chunking for backup 

streams,” Proc. FAST 2010 8th USENIX Conf. 

File Storage Technol., pp. 239–252, 2010. 

[39]. K. Eshghi and H. K. Tang, “A framework for 

analyzing and improving content-based 

chunking algorithms,” Hewlett-Packard Labs 

Tech. Rep. TR, 2005, [Online]. Available: 

http://shiftleft.com/mirrors/www.hpl.hp.com/te

chreports/2005/HPL200530R1.pdf%5Cnpapers3

://publication/uuid/053B1556-804C-4F39-

BD0B-2EBD9C047F30 

[40]. N. Kumar, S. Antwal, G. Samarthyam, and S. C. 

Jain, “Genetic optimized data deduplication for 

distributed big data storage systems,” in 2017 4th 

International Conference on Signal Processing, 

Computing and Control (ISPCC), 2017, pp. 7–15. 

doi: 10.1109/ISPCC.2017.8269581. 

[41]. T. S. Moh and B. C. Chang, “A running time 

improvement for the two thresholds two divisors 

algorithm,” Proc. Annu. Southeast Conf., 2010, 

doi: 10.1145/1900008.1900101. 

[42]. S. O. Majed and S. K. Thamer, “Cloud based 

industrial file handling and duplication removal 

using source based deduplication technique,” 

AIP Conf. Proc., vol. 2292, no. October, 2020, 

doi: 10.1063/5.0030989. 

[43]. D. Datta, S. Mishra, and S. S. Rajest, 

“Quantification of tolerance limits of 

engineering system using uncertainty modeling 

for sustainable energy,” Int. J. Intell. Networks, 

vol. 1, no. May, pp. 1–8, 2020, doi: 

10.1016/j.ijin.2020.05.006. 

[44]. A. Bhalerao and A. Pawar, “Two-threshold 

chunking (TTC): Efficient chunking algorithm 

for data deduplication for backup storage,” Int. J. 

Sci. Technol. Res., vol. 8, no. 9, pp. 754–757, 

2019. 

[45]. S. H. A. H. Algorithms, H. Abdulsalam, and A. A. 

Fahad, “Evaluation of Two Thresholds Two 

Divisor Chunking Algorithm Using Rabin Finger 

print, Adler, and SHA1 Hashing Algorithms,” 

Iraqi J. Sci., vol. 58, no. 4C, 2017, doi: 

10.24996/ijs.2017.58.4c.19. 

[46]. J. Wei, J. Zhu, and Y. Li, “Multimodal Content 

Defined Chunking for Data Deduplication,” 

Available: 

https://www.researchgate.net/publication/26128

6019, Research gate., 2014. 

[47]. C. Yu, C. Zhang, Y. Mao, and F. Li, “Leap-based 

Content Defined Chunking — Theory and 

Implementation,” in 2015 31st Symposium on 

Mass Storage Systems and Technologies (MSST), 

May 2015, pp. 1–12. doi: 

10.1109/MSST.2015.7208290. 



International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 4 

Hashem Bedr Jehlol et al  Int J Sci Res Sci Eng Technol, July-August-2022, 9 (4) : 174-190 

 

 

 

 
189 

[48]. C. Zhang et al., “MII: A novel content defined 

chunking algorithm for finding incremental data 

in data synchronization,” IEEE Access, vol. 7, pp. 

86932–86945, 2019, doi: 

10.1109/ACCESS.2019.2926195. 

[49]. P. K. Krishnaprasad and B. A. Narayamparambil, 

“A Proposal for Improving Data Deduplication 

with Dual Side Fixed Size Chunking Algorithm,” 

in 2013 Third International Conference on 

Advances in Computing and Communications, 

Aug. 2013, pp. 13–16. doi: 

10.1109/ICACC.2013.10. 

[50]. C. Zhang, D. Qi, W. Li, and J. Guo, “Function of 

Content Defined Chunking Algorithms in 

Incremental Synchronization,” IEEE Access, vol. 

8, pp. 5316–5330, 2020, doi: 

10.1109/ACCESS.2019.2963625. 

[51]. P. Sobe, D. Pazak, and M. Stiehr, “Parallel 

Processing for Data Deduplication,” PARS-

Mitteilungen, vol. 32, pp. 109–118, 1AD. 

[52]. L. E. G. 2 Ahmed Sardar M. Saeed, “symmetry 

Data Deduplication System Based on Frequency 

Occurrence,” Symmetry (Basel)., vol. 12, no. 11, 

p. 1841, 2020. 

[53]. Y. Zhang, Y. Wu, and G. Yang, “Droplet: A 

distributed solution of data deduplication,” Proc. 

- IEEE/ACM Int. Work. Grid Comput., pp. 114–

121, 2012, doi: 10.1109/Grid.2012.21. 

[54]. S. Kumar and E. P. Gupta, “A Comparative 

Analysis of SHA and MD5 Algorithm,” Int. J. 

Comput. Sci. Inf. Technol., vol. 5, no. June 2014, 

pp. 4492–4495, 2014. 

[55]. A. Kshemkalyani, “An Efficient Implementation 

of SHA-1 Hash Function,” IEEE Int. Conf. 

Electro-Information Technol., vol. 43, no. 1, pp. 

47–52, 2006. 

[56]. X. Chan and G. Liu, “Discussion of One 

Improved Hash Algorithm Based on MD5 and 

SHA1,” Lect. Notes Eng. Comput. Sci., vol. 2167, 

no. 1, pp. 270–273, 2007. 

[57]. W. Xia, D. Feng, H. Jiang, Y. Zhang, V. Chang, 

and X. Zou, “Accelerating content-defined-

chunking based data deduplication by exploiting 

parallelism,” Future Generation Computer 

Systems, vol. 98. pp. 406–418, 2019. doi: 

10.1016/j.future.2019.02.008. 

[58]. A. Venish and K. S. Sankar, “Survey Paper for 

Dedup,” Indian J. Sci. Technol., vol. 8, no. 

October, pp. 1–7, 2015, doi: 

10.17485/ijst/2015/v8i26/. 

 

 

Cite this article as : 

 

Hashem Bedr Jehlol, Loay E. George, "Big Data Backup 

Deduplication : A Survey", International Journal of 

Scientific Research in Science, Engineering and 

Technology (IJSRSET), Online ISSN : 2394-4099, Print 

ISSN : 2395-1990, Volume 9 Issue 4, pp. 174-191, July-

August 2022. Available at doi : 

https://doi.org/10.32628/IJSRSET229425           

Journal URL : https://ijsrset.com/IJSRSET229425 


