
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Science, Engineering and Technology

Print ISSN: 2395-1990 | Online ISSN : 2394-4099 (www.ijsrset.com)

doi : https://doi.org/10.32628/IJSRSET229425

174

Big Data Backup Deduplication: A Survey
Hashem Bedr Jehlol*1, Loay E. George2

* 1Iraqi Commission for Computers and Informatics, Informatics Institute of Postgraduate Studies, Baghdad-Iraq
2University of Information Technology and Communication (UoITC), Baghdad-Iraq

Article Info

Volume 9, Issue 4

Page Number : 174-190

Publication Issue :

July-August-2022

Article History

Accepted : 05 July 2022

Published: 22 July 2022

ABSTRACT

The massive explosion in the field of data such as images, video, audio, and text

has caused significant problems in data storage and retrieval. Companies and

organizations spend a lot of money to store and manage data. Therefore, there is

an urgent need for efficient technologies to deal with this massive amount of

data. One of the essential techniques to eliminate redundant data is data

deduplication and data reduction. The best technique used for this purpose is

data deduplication. Data deduplication decreases bandwidth, hard disc drive

utilization, and backup costs by removing redundant data. This paper focuses on

studying the literature of several research papers related to data deduplication

for various techniques that several researchers have proposed. It summarized

multiple concepts and techniques related to deduplication and methods used to

improve storage. The data deduplication processes were examined in detail,

including data chunking, hashing, indexing, and writing. Also, this study

discussed the most critical problems faced by the data deduplication algorithm.

Keywords: Data Deduplication, Data Reduction, Redundant Data, Data Chunking,

Hashing.

I. INTRODUCTION

The expansion of data that accompanied the

information revolution is massive, and many

organizations and people are already facing real

problems in dealing with this vast volume of data and

how to secure and store this data [1]. The International

Data Corporation (IDC) defines global information as

data produced, captured, or transcribed via globally

distributed digital resources. Global data will expand

from 33 zettabytes (ZB) in 2018 to about 175 zettabytes

(ZB) by 2025, as shown by IDC forecasts [1]. Many

large companies like Google, IBM, Microsoft, Intel,

and Motorola found, through a study conducted on the

existing global data, that almost three-quarters of the

current digital data are duplicate data [2]. Therefore,

there is an urgent need for organizations, IT companies,

and industries to store a massive amount of their data

securely and to be able to work on it and retrieve it

quickly. Since this data is vast, one of the most

challenging tasks in big data is the process of backup

and maintenance, as these operations are costly and

considered among the challenges in this field [3].

Therefore, there is a significant challenge in storing

and managing such vast amounts of digital data [4]. As

a result, the deduplication technique, which prevents

storing duplicate data on hard disks, is among the most

excellent solutions to these challenges [5]. Data

deduplication technology has become the dominant

http://www.ijsrset.com/

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 4

Hashem Bedr Jehlol et al Int J Sci Res Sci Eng Technol, July-August-2022, 9 (4) : 174-190

175

technology that reduces the space required for backup

data and primary file systems [6].

The data deduplication system has four major stages:

chunking, fingerprinting, indexing, and data writing.

The early phase considered a bottleneck in removing

redundant data is chunking, in which vast amounts of

incoming data are divided into small parts or chunks

[7]. Chunk-level deduplication may be accomplished

in two ways: fixed-size chunking (FSC) and variable

size chunking (VSC) [8]. In FSC, the entire file

contents divide into chunks of equal size. The FSC has

low efficiency of deduplication and suffers from the

boundary shifting problem, whereas VSC eliminates

the issue of boundary shifting and divides the file into

chunks; it does not have to be of equal sizes. The VSC

method requires more computation and time but

provides a more significant percentage of

deduplication [9]. Fingerprinting is the second stage of

the data deduplication system; each chunk is allocated

a unique value. Hash functions such as Secure Hashing

Algorithm SHA-1 or Message-Digest Algorithm MD5

are widely used in this stage of the data deduplication

system, which generates a digest for each chunk called

a fingerprint. The third stage is indexing when the

previously stored fingerprint values are compared with

the fingerprint values of the new chunks to obtain the

duplicate chunks. Indexing relies on chunking

fingerprints to find duplicate chunks that can be

identified and then remove them. If indeed the

fingerprints of the two chunks match, they are

considered identical. Writing is the fourth stage of data

deduplication, storing a unique copy of the data on the

hard disk. The unique chunks that do not have

identical fingerprints are considered non-duplicate

and stored in a hash table [10].

This paper examines different classifications to remove

duplicate data, including granularity-based (file-level

deduplication or chunk-level deduplication), time-

based (before or after data is stored on disk), and based

storage location deduplication, side-based

deduplication, and Implementation based duplicate

data. It also provides a review of the development of

data deduplication technology, the pros and cons of

each algorithm, the technical methods used, and

identifies the problems and challenges facing storage

systems based on data deduplication technique. Several

recent studies and survey contributions in the field of

deduplication have provided new algorithms and

methods for improving deduplication. In addition,

some studies focus on a specific aspect of deduplication,

such as chunking or indexing systems and cloud

storage.

The remaining sections of the survey were set up as

follows. The key benefits and downsides of data

deduplication are outlined in Section 2. Some of the

recent studies that investigated various deduplication

methods are included in Section 3. Section 4 goes into

great depth about several deduplication methods.

Section 5 goes into great detail on the primary steps in

data deduplication. Finally, the summary of the survey

is presented in Section 6.

II. DEDUPLICATION

The data deduplication technique is one of the most

important techniques used to remove redundancy data

[1]. This technique helps companies provision much

money by reducing the cost of bandwidth and storage.

It is helpful in cloud services because it reduces the

need for additional storage devices [2]. Data

deduplication is a technique to resolve storage

problems. Four main steps are included in removing

data duplication: data chunking, fingerprinting,

indexing, and writing [3]. "Fig. 1" illustrates the

general view of the four main stages of data

deduplication There are various advantages of Data

Deduplication, such as:

1. Improved efficiency of the network.

2. The space required for storage is Low.

3. The cost of storage is reduced.

4. Storage efficiency is increased.

Reduced upload bandwidth [4]. On the other side,

there are several disadvantages to the deduplication

technique, which are listed as follows [5]:

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 4

Hashem Bedr Jehlol et al Int J Sci Res Sci Eng Technol, July-August-2022, 9 (4) : 174-190

176

1. The duplicate data removal method requires some

additional resources

2. Hash function inconsistencies can cause data to

lose accuracy and consistency.

3. Security and Privacy.

4. Reducing data duplicates affect storage system

availability.

III. Related Work

Table I shows several papers that dealt with

deduplication in recent years and reviews the most

critical techniques used and the results obtained. In

addition, shows the data sets that each researcher

relied on to obtain the results and the limitations of

each paper.

TABLE I. The list of techniques, datasets, achievements, and limitations of recently released publications on data

deduplication.

Paper Technique Used Dataset Achievement Limitation

2021 [12]

● Effective mathematical

bounded linear hashing

● The hierarchal

fingerprint lookup

strategy

● Linux Kernel

10.9 GB

● SQLite 6.44 GB

● Oracle RMAN

Backup 18.7 GB

● Decreases the hashing time

● Reduces hash index table

by 50%.

● Minimize hash comparison

time by up to 78%.

● The size of a hash index

table grows greatly

● Using a fixed number of

hashes (five hashes)

2021 [13]

● Matching based on

forwarding/end feature

vectors

● Uses dynamic

adjustment of mask bits

● Glibc, GCC, and

MySQL 56 GB

● Redis 111GB

● SYN 108GB

● Achieve a 222.3%

deduplication ratio

compared to Rapid CDC.

● Chunking speed was 11.4x

faster than Rapid CDC.

● Productivity is higher by

111.4% than Rapid CDC

● New fingerprints improve

processing speed.

● The deduplication ratio is

slightly improved.

2021 [14]

● A collection of

repeating patterns is

utilized to detect

breakpoints.

● Three-level lightweight

hash function.

● (Linux 3.9,

Linux 4.14.157,

and Linux

5.8.12) 2.32 GB

● Faster than BSW by 15

times

● Ten times quicker than

TTTD

● Five times faster than MD5

and SHA1

● It does not use a dynamic

set of divisors.

2020 [15]

● Use of five main

techniques

● Quick-rolling hashing

based on gears

● Simplify and enhance

the Gear's hashing rule

● Skip sub-minimum cut-

off points

● TAR 56 GB

● LNX 178 GB

● WEB 237 GB

● VMA 138 GB

● VMB 1.9 TB

● RDB 1.1 TB

● SYN 2.1 TB

● Chunking speed is 3 to 12

faster than CDC

approaches.

● Improve system throughput

● The same redundant data

removal rate as the CDC.

Figure. 1. General view of data deduplication stages [6].

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 4

Hashem Bedr Jehlol et al Int J Sci Res Sci Eng Technol, July-August-2022, 9 (4) : 174-190

177

IV. Types of Deduplication Technique

There are different ways to remove duplicate data

saved in the data store. However, most companies use

deduplication approaches to solve and reduce the

duplication problem [7]. "Fig. 2" shows the different

approaches used to remove duplicate data [2]:

• Based on Granularity

• Based on Time deduplication.

• Side-based deduplication.

• Implementation-based deduplication.

Paper Technique Used Dataset Achievement Limitation

2020 [16]

● Bytes Pair

Frequency-based

Chunking (BFBC)

algorithm

● The proposed

triple hash

function

● Linux Kernel

5.93 GB

● SQLite 6.44 GB

● DER is better than

other CDC

algorithms

• Three times faster than

TTTD.

• Ten times faster than

the BSW algorithm.

• Hashing is 5 times

faster than SHA1 and

MD5

● Efficiency is affected by content data

set similarity.

● Potential hashing collision increases

with a large dataset.

● Computational overhead increases

when the size of the hash table

increases.

2018 [17]

● New fingerprint

function

● A multi-level

approach to

hashing and

matching

● New indexing

method for storing

metadata.

● Versions of

Emacs and

3DLDF (GNU

580 MB, GNU

1.27 GB)

● Improves the TTTD

algorithm.

● Reduce system

resource usage

● Efficiency is affected by content data

set similarity.

● Potential hashing collision increases

with a large dataset.

2017 [18]

● An asymmetric

local range's

maximum value

● Bench: 108 GB

● Open-source:

169.5GB

● VMDK: 1.9TB

● 2.3X increase in

throughput.

● Increases system

speed by 50%.

● Overcoming the

problem of the

boundaries-shifting

● Deduplication strategies cannot be

used directly on security systems.

2016 [19]

● Bucket-based and

Map Reduce under

HDFS

● Fixed-size chunks

● MD5 algorithm

module to generate

hash

● MapReduce model

is applied

● Zip Code

Tabulation

Area (ZCTA)

2.6 GB and 1.7

GB

● Distinctive buckets

used for hash storage

● Reduce hashing time

and chunk lookup.

● High deduplication

ratio.

● Significantly reduces

data volume.

● Uses fixed-size chunking to reduce

duplicate data removal

● Boundary problem

● It uses md5 algorithm

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 4

Hashem Bedr Jehlol et al Int J Sci Res Sci Eng Technol, July-August-2022, 9 (4) : 174-190

178

A. Based on Granularity

Depending on the first criterion, there are two

classifications of deduplication, as follows [8]:

1) File-level deduplication: When using file-level

deduplication, the entire file is handled as a single

chunk rather than divided into many chunks [9]. In

this technique, one hash value is constructed for the

whole file, and the hash value for the new file is

compared to the hash values of the stored files to find

and eliminate duplicate files [10]. This method is not

concerned with the internal contents of the file. For

example, when two files are saved with the same

internal content but different names, they are

considered separate files. This approach is quick, easy,

and requires little processing power. Single-instance

storage is another name for this approach [8]. "Fig. 3"

shows the deduplication technique with file-level

deduplication.

Figure. 3. File-level deduplication[11].

2) Chunk-level deduplication: In this approach,

the file is divided into several small blocks, and each is

called a chunk. In data deduplication, the search for

duplicate chunks is within the file, and each chunk's

unique copy is stored. Files can be divided into two

ways to de-duplicated chunks [23]. Files can be divided

into chunks of fixed length, i.e., the chunks with the

same size, or into chunks of variable length, i.e.,

chunks with variable size [25]. Data deduplication

using chunks level is far more efficient than

deduplication of file-level [26]. The Content-Defined

Chunking CDC algorithm breaks the data stream into

chunks of varying sizes based on the content of the

data stream, and when the local content does not

change, the chunk limits do not change [27].

a) Fixed‑Size Chunk De-duplication: The file is

broken into fixed-size chunks, and identical chunks

are identified using a standard hash algorithm [28]. The

size of chunks can range from 8 to 64 KB [29]. The

main drawback of this method is that any modification,

even if minimal, in the chunk leads to rewriting the

collection of other successive chunks on the drive. For

example, if a single byte is entered at the beginning of

this data stream, it causes all boundaries of the current

chunk defined using FSC to be changed, resulting in

less redundant selection and thus less deduplication. In

other words, it suffers from what is called a boundary-

shifting problem. Nevertheless, this approach is

prevalent with a meagre remove data redundancy ratio.

Figure (4) shows the deduplication technique with

Fixed‑size chunk deduplication.

b) Variable‑size chunk deduplication: This

partition type depends on the file's internal content for

dividing the file into chunks [30]. The file is broken

into chunks of varying sizes using a method known as

Content-Defined Chunking CDC [23]. The boundaries

defined in this algorithm are variable in size, which

depends on multiple indicators that can change if the

content of a file is changed or deleted [31]. The change

in the size of the boundaries adopted by this algorithm

makes it more resistant to deleting or entering new

data [30]. However, this algorithm needs more system

resources, such as the CPU, to perform a full file scan

Figure. 2. Types of deduplication approaches

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 4

Hashem Bedr Jehlol et al Int J Sci Res Sci Eng Technol, July-August-2022, 9 (4) : 174-190

179

and determine the boundaries of each chunk [23].

"Fig. 4" shows the deduplication technique with

variable‑size chunk data deduplication.

3) Granularity based Advantages and

Disadvantages: Granularity classification categorizes

redundant data according to its Granularity, which

describes the influence of this on different storage

techniques, the techniques employed in such systems,

and the impact of those varied ways on deduplication

efficiency, performance, and resource consumption.

The main drawback of categorizing data by

Granularity is that typical hash storage systems are

limited in their ability to reduce data redundancy.

B. Based on Time deduplication

In this approach, there are two methods [23].

1) Inline deduplication: Inline deduplication

eliminates redundant data during or before it is written

to the hard disk, reducing the storage space [23]. This

method is flexible and powerful since it processes the

data once [8]. Inline deduplication can be done on the

client-side or when data is sent from the data

source/client to the target/server [10]. However, the

inline deduplication approach can only use a fixed-

length chunk because it checks the incoming raw

chunks and does not know other chunks [17]. The

main drawback of this technique is that network

efficiency significantly impacts it. However, this

method's required storage capacity is less while the

computation time is high [32]. "Fig. 5" shows the

deduplication technique with Inline Deduplication of

Data.

Figure. 5 Inline Deduplication of Data [24].

2) Post-process deduplication: Data is initially

written to the storage device, and duplicate data is

found and removed [23]. Both file and sub-file levels

may benefit from post-process deduplication [17]. This

technique's performance is superior to the inline

approach [33] because it involves fewer calculations.

The major drawback of this approach is that it requires

an additional disk cache, which means that it is more

expensive than the inline method [32]. "Fig. 6" shows

the Post-process Deduplication of Data.

Figure. 6. Post-process Deduplication of Data [24].

3) Time Classification Advantages and

Disadvantages: In time classification, all deduplication

systems depend on when the process occurs, if the

process is during the storage process or after the storage

process. Inline deduplication occurs during data flow,

whereas post-process deduplication occurs after data

has been written to disk. Inline deduplication has a

slow storage performance, whereas post-process

deduplication has a fast storage performance because

the hash calculation is deferred. The storage

requirement and network traffic are less in inline

deduplication and more comparative in post-process

deduplication. The storage throughput of inline

deduplication is lower than that of post-process

deduplication. Inline does not require temporary

storage space, while post-process deduplication is

required.

Figure. 4. Variable‑size chunk deduplication[11]

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 4

Hashem Bedr Jehlol et al Int J Sci Res Sci Eng Technol, July-August-2022, 9 (4) : 174-190

180

C. Based on Side

In this approach, there are two methods source / client

deduplication and target deduplication as shown in

"Fig. 8" [32].

1) Source / Client deduplication: This approach

removes duplicate data at the source before sending it

[33]. Removing the data takes place on the

client/source side before transferring the data to the

backup device [32]. One of the essential features of this

type of data removal is that it does not require a high

bandwidth compared to the Target deduplication. As a

result, source/client deduplication has two main

advantages: it uses less bandwidth to transmit data and

stores unique data [32]. The problem with this method

is that it de-duplicates data using the entire client's

resources [24]. However, this method's disadvantage is

that its overheads the client CPU up to 15% by

performing the Deduplication processes. Besides, if

large amounts of data need to be processed, then the

processing time will be increased, leading to slowing

down the servers on the source side [20]. "Fig. 7" (a)

shows source/client data deduplication.

Figure. 7. (a) Source/client data deduplication and (b)

target data deduplication [20].

2) Target deduplication: The duplication process

occurs at the backup server-side, as all comparable data

is completely transferred to the backup server [24].

Target data deduplication is fast and easy to perform

the deduplication process on the server side because it

contains all the data in its full replica [9]. However, this

method has the disadvantage of requiring more

bandwidth to transmit data due to the possibility of

duplicate data [24]. Figure (8) (b) illustrates target data

deduplication.

3) Advantages and disadvantages of side

classification: Source deduplication requires

bandwidth less than target-based deduplication. The

resources that are needed by source-based more than

they need for target-based deduplication. The

processing overhead at the client for source-based is

more than target based. Therefore, the source-based

approach is slower than target based.

D. Based on Implementation

In this approach, there are two methods in this

principle [32].

1) Hash‑based deduplication: Hash-based

deduplication is applied to find out if two documents

or two chunks are the same [32]. In the beginning, the

content of the data is hashed. Next, the created

signatures of the chunks are compared to see if these

two chunks are redundant or not [24]. If the generated

signatures are the same, the two entities are discarded

as being too similar. If not, it is saved on the hard drive.

Finally, it can calculate the value of a data hash using

any of the known hashing algorithms, including but

not limited to MD5, SHA-1, SHA-256, and SHA-512

[32].

2) Content or application‑aware deduplication:

When using the content-aware deduplication method,

data is treated as an object in the deduplication

application [24]. The process of comparing is

performed on the level of objects. After detecting

identical parts, it saves only the bytes modified in the

two parts [8]. It removes redundant data at the byte

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 4

Hashem Bedr Jehlol et al Int J Sci Res Sci Eng Technol, July-August-2022, 9 (4) : 174-190

181

level [24]. The content-aware technique looks for

similar fragments or bytes, and only bytes that have

changed or are unique are saved [32]. For example, if a

backup stream is taking place on a file and it is known

where the file boundaries are, knowing the boundaries

can be helpful in data deduplication [34].

3) Advantages and disadvantages of

implementation classification: This classification

requires overcoming the shortcomings of previous

classifications by implementing content-based

deduplication or application-aware systems to examine

and differentiate different systems based on efficiency

and speed. Content-aware-based deduplication is

faster than content-based deduplication because it

only processes and compares data in the same type of

objects and does not compare with all. In comparison,

the latter is more efficient than the former. The

comparison of different data deduplication techniques

is shown in Table II.

V. Deduplication Stages

The main stages included in data deduplication can be

summarized in four stages: data chunking,

fingerprinting, indexing and writing. This research

deals with these stages and the techniques used in each

stage in detail [18].

Table II Various data deduplication techniques are compared and contrasted.

A. Chunking Algorithms

Dividing files or data streams into multiple chunks of

fixed or variable length is known as data chunking [12].

A set of different chunking algorithms deals with the

process of dividing files into chunks. These algorithms

will be analysed and discussed in this section, and their

most important advantages and disadvantages are

present as follows:

1) Rabin Fingerprint Algorithm: The Rabin

fingerprint [35] based on the CDC algorithm was used

to eliminate redundant data in deduplication systems

and network traffic [36]. The Rabin method establishes

minimum and maximum bounds on the size of the

chunks to prevent the algorithm's output from being

very short or highly lengthy. Tiny chunks contain

more fingerprints, need more space to store and

process, and are therefore not cost-effective, while too

long chunks lead to a decrease in deduplication

efficiency [37]. Rabin's algorithm [38] suffers from two

main problems; the first is to calculate the fingerprints

of all the pieces, which takes a long time [37], and the

second is the significant variance in the size of the

chunk, which reduces the efficiency of removing

duplicate data. "Fig. 8" illustrates the general view of

the Rabin fingerprint algorithm [19].

Figure. 8. Operation of Rabin fingerprint algorithm [19].

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 4

Hashem Bedr Jehlol et al Int J Sci Res Sci Eng Technol, July-August-2022, 9 (4) : 174-190

182

2) Two Divisors (TD) Algorithm: The TD [39]

algorithm is based on using a secondary divisor to

determine the breakpoints for dividing large chunks. It

has a good chance of getting the duplicated chunks as

it is used to overcome the boundary shift problem

caused by the BFS algorithm [39]. The TD algorithm

starts with checking the stream file, searching for the

breakpoint, and creating a fingerprint for each chunk

[34]. Then, it checks that the fingerprint of both

divisors matches. It will be a breakpoint if the first

divider finds a match in the fingerprint before the

threshold value. If the first divisor fails to reach these

breakpoints during a specific threshold value, the

second divisor is used. It uses the secondary divider to

try to find a breakpoint [39].

3) TTTD (Two Thresholds, Two Divisors)

Algorithm: The TTTD algorithm [39] consists of

combining two algorithms, the TD algorithm and the

SCM (Small Chunk Merge) algorithm [40]. The TTTD

algorithm improves the efficiency of the Rabin

algorithm in removing duplicate data. The TTTD

algorithm provided an additional backup divisor to

reduce the difference in the chunk size, which has a

high probability of finding the breakpoints[27]. The

TTT algorithm uses four parameters in the process of

discovering the breakpoints, which are: Tmin

(Minimum Threshold), Tmax (Maximum Threshold),

D (Primary Divisor), and D (Primary Divisor). The

minimum and maximum threshold values should be

set to control for variance in the chunk size so that the

second divisor is half of the base divisor [40]. The

TTTD algorithm has been improved [41]by adding a

new switch condition to improve the time required for

execution without affecting the deduplication ratio. If

the breakpoint is not reached before 1600 bytes, the

values of each major divisor D and second divisor D

Dash have been reduced by half [42]. The TTTD

algorithm improves [43] processing time by about 6%

and reduces chunk size by about 5% [14].

4) MAXP: MAXP [39] is a CDC algorithm that

solves the Rabin algorithm's chunk size variance

problem by attempting to find local extreme values in

a symmetric fixed-size window. MAXP is also

recommended for eliminating network redundancy

[34]. The MAXP shifts a fixed-size symmetric window

over the byte stream on a byte-by-byte basis and

checks whether the byte value in the center of the

current window is the maximum value. The extreme

points are used as a cut point to divide the input stream.

The MAXP method [44] uses the strategy of locating

local extreme values by rechecking some of the

previously compared bytes, which significantly

reduces the chunking throughput [4].

5) Bimodal: The bimodal approach combines

chunks of varied average sizes and is an improved

version of the CDC algorithm[26]. The bimodal

algorithm performs a specific split of the size of the

expected chunk in a dynamic manner. It works to split

the data stream into large chunks, and for non-

duplicated chunks, it divides them into smaller chunks.

This algorithm is based on two methods to eliminate

redundancy in large chunks [45]. The first method

works by dividing the data stream into large chunks,

and after identifying the areas of the new chunk's

content, the data near the boundaries of the changing

area chunks are divided into small chunks. The second

method uses a flexible algorithm to combine the small

chunks from the first method into a large one to solve

the boundary shift problem [20].

6) MCDC (Multimodal Content Defined

Chunking): The MCDC algorithm [46] is presented to

maximize the efficiency of Bimodal Content-Defined

Chunking. The MCDC finds the optimal size of chunks

by changing the data size of chunks and the ability to

compress data in these chunks. This algorithm works

in two stages: First, the data is divided into fixed-size

chunks, and then the Compression ratio (CR) is found

separately for each chunk [42]. Dividing the data into

fixed chunks led to the boundary shift problem. In the

second stage, the MCDC algorithm has solved this

problem by dividing the data stream into variable

chunk sizes using Uni-modal chunking and calculating

the compression ratio for each of them [42]. The

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 4

Hashem Bedr Jehlol et al Int J Sci Res Sci Eng Technol, July-August-2022, 9 (4) : 174-190

183

dividing using variable-size chunks and based on the

comparison fingerprint technology reduced the

number of chunks and lowered overall system cost

while maintaining effective deduplication [45].

7) Leap-Based: Leap-based CDC algorithm [47]

add a new control function to see if the window is

qualified or not. It is used to improve the algorithms

that use the CDC algorithm to remove duplicate data.

This algorithm uses a pseudo-random method instead

of the methods used in many CDC algorithms. "The

Transformation derived from the locality-sensitive

hashing and the theorem that the sum or the difference

of normal distribution is still a normal distribution"

[47]. The leap based has two parameters, M and Pw,

and these parameters determine the performance and

chunk size of the leap-based CDC, where M is the

number of satisfactory windows and Pw is the window

interpolation probability. The lead-based CDC

algorithm uses two parameters to determine

performance [45].

8) AE Algorithm: AE Asymmetric Extremum

Algorithm [27] significantly improved the

performance and efficiency of existing chunking

algorithms. Instead of employing a fixed-size window

like the MAXP Algorithm, AE solves the boundary

shift issue using an asymmetric variable window[44].

It works to find the maximum local extreme value in

the window, does not need backtracking, and needs

only one comparison [48]. Therefore, the AE

algorithm is high-speed, and the variance in the chunk

size is minimal compared to other chunking existing

CDC [44] algorithms. It does not impose any

restrictions on the size of the chunk size [34]. "Fig. 9"

illustrates the AE Asymmetric Extremum Algorithm

[19].

9) Rapid Asymmetric Maximum Algorithm

(RAM): The RAM algorithm is a hash-free chunking

approach based on AE that declares chunk cut-points

using bytes values. It reads data as a byte stream

without putting a window at the end of every chunk.

Due to the usage of two windows, one fixed and the

other variable, RAM employs the same algorithm as

AE [19]. However, the RAM method places the fixed-

sized window at the start of the chunk, followed by the

variable-sized window and the byte with the highest

value [12]. The RAM algorithm takes less computation

time because it searches for a byte greater or equal to

the current maximum value. Unlike the AE algorithm,

which searches for data equal to or less than a current

value. Since there is a lower probability that a byte is

higher than the current value, the RAM algorithm is

less overhead than the AE algorithm [49], so RAM's

throughput is better than the algorithm AE [48]. "Fig.

10" illustrates the general view of the Rapid

Asymmetric Maximum Algorithm (RAM [19].

10) Minimal Incremental Interval (MII): The MII

algorithm[48] was introduced based on incremental

data synchronization. Since data is saved on the

physical disk, the length of the chunk is considered one

of the essential factors in the performance of earlier

algorithms such as (AE and RAM). Because it is based

on an incremental backup method, chunking is used to

pick just the new data, which is not kept on the

physical disk. The MII algorithm does not depend on

chunk length because it is an incremental

synchronization chunking algorithm that has the

potential to manage byte shifting problems. MII

Data Stream

Variable Fixed

Cut

Point

Figure. 9. Operation of Asymmetric Extremum

Algorithm [19].

Data Stream

Fixed Size Variable Size M=Maximum value

Cut

Point

Figure. 10. operation of Rapid Asymmetric Maximum

Algorithm (RAM) [19]

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 4

Hashem Bedr Jehlol et al Int J Sci Res Sci Eng Technol, July-August-2022, 9 (4) : 174-190

184

compares the byte that was read recently to the byte

already existing. The MII can provide better ways to

solve the byte shift problem, but the efficiency of this

algorithm, in general, is not good, and the performance

was poor in the variation of the size of the chunk [48].

11) Parity Check of Interval (PCI): The PCI

algorithm solves the MII algorithm problem. It

circumvents the boundary shift problem and can locate

precisely where the data changes in incremental

synchronization. PCI algorithm reads files as a stream

of data and consists of a window of length (w) where

the window's header is set as the first bye of the file.

This method reduces the bandwidth needed to send

data across the network, but the speed of dividing data

into chunks is lower than the AE and RAM methods

[50].

12) Quick CDC: The (Rabin CDC) algorithm takes

a long time, and the ratio of deduplication data is low

because it depends on byte-by-byte computation. The

Quick CDC method employs three techniques to

increase cutting speed, deduplication rate, and CDC

throughput [12]. In the first technique, the Quick

CDC algorithm can jump straight to their chunk

boundaries in the case of duplicate chunks that appear

several times. The second technique, for the unique

chunk, the Quick CDC method overrides the

minimum chunk length. Third, The Quick CDC

distributes the chunk length into a small area since it

can dynamically adjust the mask bits so that chunks are

always more significant than the minimum chunk

length. As a result, the Quick CDC algorithm improved

the chunking speed, and the deduplication ratio was

slightly improved [12]. Table III show the Advantage

and Disadvantage of different Chunking Methods.

B. Hashing and Fingerprint

The data is broken up into blocks or chunks, and a

unique hash value is created for each chunk. A

sequence of hash values results from this [51]. The

main task of the hash function is to create a unique

fingerprint for each file or chunk, and this process aims

to convert an extensive data set of variable length into

a data set smaller in size and of fixed length [52]. The

chunk between the beginning of the file and the

breakpoint location, or between the old breakpoint

and the new breakpoint position, is passed to the hash

function (MD5, SHA-1) for hash value comparison

when comparing chunks [34]. Multi-threading

expedites the fingerprint process by using multi-core

CPUs' capabilities [53].

1) The MD5 Hashing Algorithm: MD5 contains a

series of numbers, and it was built based on the md4

algorithm, which is faster than MD5. The MD5 is more

secure than the MD4 algorithm. The main objective of

the algorithm is to protect the data's integrity and

identify any changes made to the data. The results for

the MD5 algorithm are always of a fixed size with a

hash value of 128 bytes [54]. It produces a string

consisting of four 32-bit blocks each. The MD5 method,

which includes four processing cycles, is applied to the

messages to be encrypted. In a digital signature,

encryption, data identification, and data protection

applications, the MD5 algorithm is commonly

employed [11].

2) The SHA-1 Hashing Algorithm: The National

Institute of Standards and Technology (NIST)

developed the (SHA-1) algorithm as a security

mechanism based on the results of the (SHA) algorithm.

The MD4 method is the basis for the hash algorithm,

SHA-1 [55]. The (SHA-1) algorithm always outputs

160 bits, regardless of the size of the message. The

algorithm (SHA-1) uses complex methods to transform

data and logical functions [56]. For processing units,

this arithmetic process is decomposed into the 32-bit

words of 512-bit size, with four loop operators and 20

cycles for each circuit, for 80 cycles [11]. SHA-1 is

more potent in encryption when compared to MD5,

but it takes more time for data encryption. Algorithm

(SHA-1) contains 80 iterations, while algorithm (MD5)

contains 64 iterations, so it is slower than (MD5). One

of the essential applications of the (SHA-1) and (MD5)

algorithm is deduplication, where the chunk hash

computation expresses the bottle in deduplication [11].

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 4

Hashem Bedr Jehlol et al Int J Sci Res Sci Eng Technol, July-August-2022, 9 (4) : 174-190

181

3) The Mathematical Bounded Linear Hashing

Algorithm: The linear hash method comprises

mathematical boundaries formed by multiplying

distinct random values by a predefined quantity of

non-repeatable zero bytes. It's enough to produce

distinct unique signatures to identify the plaintext

contents of the chunks by using different number

sequences to obtain different short hash values. The

hash functions of massive data are described by

mathematical signatures, which have algebraic

features and a low collision probability [6].

Furthermore, compared to typical security hash

functions, the arithmetic operations utilized to

produce hash code are fundamental, resulting in a

relatively minimal processing cost. This approach's

computational cost is minimal compared to classic

hash algorithms like MD5 and SHA-1. A 16-bit

mathematical function is used to produce each hash.

Using several hash functions to represent the data

content can help decrease collisions and enhance the

lookup stage [32].

C. Indexing and Matching

The hashing and indexing process consists of a

temporary lookup table to store the name of the

chunks and their hash values[20]. The new hash is

compared to the previously stored hash values in

indexing to identify duplicate data chunks. Two or

more chunks are considered duplicates if their

fingerprints match since the duplicates are removed,

and only the unique chunks are stored [34]. Every

Table III Advantages and Disadvantages of The Chunking Methods

Method Advantage Disadvantage

Rabin Fingerprint

Algorithm

● Eliminate redundant data deduplication systems.

● Reduce network traffic.

● The chunking output is low. It takes a long

time.

● Significant variance in variance size.

● Data removal efficiency is low

TD Two Divisors

Algorithm

● Reduces chunk size.

● Good chance to find duplicated chunks.

● Duplicate chunk.

● Detection problem.

TTTD
Improves the efficiency of the deduplication

ratio.
The chunking output is low.

MAXP
● Computational overhead is generally reduced.

● Reduces the contrast between chunks
Throughput of chunking is low.

Bimodal More duplicate data is eliminated. Suffers from shifting boundaries

MCD Boundary shift with the best chunk size. Boundary shift problem.

Leap-Based Improvement to deduplication performance. Additional overheads in the calculation.

AE Asymmetric

Extremum Algorithm

● gains high performance.

● Very fast.

Smaller chunk variance.

● Less resistance on byte shifting.

It takes more time to process chunks.

RAM Rapid

Asymmetric

Maximum Algorithm

● Reduce computational expenses.

● The productivity of chunking is high.

● High chunking speed.

The cost of chunking is low.

Boundary shift problem.

PCI Parity Check of

Interval
It has a greater ability to resist byte shifting.

The variance in size was very poor.

The algorithm's efficiency is insufficient.

MII Minimal

Incremental Interval
Manage byte shifting problem.

Adjusting the chunk size is difficult.

The efficiency of the method is low.

Quick CDC
Enhance chunking speed and enhance the

throughput of CDC.
The deduplication ratio is slightly improved.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 4

Hashem Bedr Jehlol et al Int J Sci Res Sci Eng Technol, July-August-2022, 9 (4) : 174-190

187

hash value at location (i) is compared with all hashes

from location (i + 1) to the end of the sequence. A

new reference is created when the hash values are

equal. The sequence of hash values is extended by

duplicate identification tags and backward

references at the end of this stage [51]. In

deduplication matching steps. If the hash values are

the same, the procedure compares the two chunks

byte by byte; if they are the same, the system

removes the new chunk and adds a logical reference

to the location of the old one. This operation takes

much time and overhead the system [14]. One of the

important challenges facing deduplication is the

possibility of expanding the fingerprint indexing

table. If the size of the fingerprint table is more than

the whole amount of RAM, the hard disk index

search becomes a bottleneck [57].

D. Writing on Disk

Each unique chunk is added to the system and

requires a corresponding (hash, location) entry to be

inserted into the system's fingerprint index. Even for

modest data sets, the fingerprint index size can

exceed the system's RAM size. Let's consider a

chunk store with 20TB of unique data: if the

fingerprint index only stores each chunk's SHA-1

hash (20B), an average chunk size of 4KB would

result in a 100GB index! In general, caching is the

technique we use to improve our performance

whenever our data structures exceed the bounds of

our memory [37]. The standard caching techniques

rely on good locality to be effective (spatial and/or

temporal locality) [58]. Unfortunately, seen that

SHA-1 fingerprints are independently and

uniformly distributed, and as a result, fingerprint

index queries have no locality of reference. The

fingerprint index performs poorly when normal

caching methods are naively used, and each lookup

still necessitates a costly disk search. The Data

Domain deduplication solution addresses this issue,

known as the disk index bottleneck problem [58].

VI. CONCLUSION

Many companies and organizations use different

techniques to remove redundant data to get rid of

redundant data. In this study, many redundant data

reduction approaches are discussed, like the many

types of data deduplication techniques categorized

according to granularity-based, time-based, side-

based deduplication, and Implementation has been

studied and clarified. The most important

characteristics related to these types are discussed.

The challenges and solutions to issues related to data

duplication are covered. In this survey, the most

important advantages and disadvantages of using

these types on a large scale are also reviewed and

discussed. The research included an overview of the

methods for splitting data into fixed and variable

chunks and provided tips on maximizing the

efficiency and productivity of data deduplication.

Various hashing approaches have been examined,

and their primary methodologies have been varied.

The most important types of hashing methods

studied are MD5, SHA-1, and mathematical model-

based hashing. The study also looked at the indexes

used to find duplicate data chunks and save unique

ones. In addition, comparisons were made between

the different methods and algorithms according to

the criteria of time, efficiency, and the percentage of

de-duplicating data.

ACKNOWLEDGMENT

The authors would like to thank the Iraqi

commission for computers and informatics\

Informatics Institute of Postgraduate Studies (www.

iips.edu.iq) Baghdad-Iraq for its support in the

present work.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 4

Hashem Bedr Jehlol et al Int J Sci Res Sci Eng Technol, July-August-2022, 9 (4) : 174-190

186

REFERENCES

[1]. G. Sujatha and J. R. Raj, “A Comprehensive Study

of Different Types of Deduplication Technique

in Various Dimensions,” A Compr. Study Differ.

Types Deduplication Tech. Var. Dimens., vol. 13,

no. 3, pp. 316–324, 2022.

[2]. S. T. Ahmed and L. E. George, “Lightweight

hash-based de-duplication system using the self

detection of most repeated patterns as chunks

divisors,” J. King Saud Univ. - Comput. Inf. Sci.,

2021, doi:

https://doi.org/10.1016/j.jksuci.2021.04.005.

[3]. H. Kambo and B. Sinha, “Secure data

deduplication mechanism based on Rabin CDC

and MD5 in cloud computing environment,” in

2017 2nd IEEE International Conference on

Recent Trends in Electronics, Information

Communication Technology (RTEICT), May

2017, pp. 400–404. doi:

10.1109/RTEICT.2017.8256626.

[4]. Y. Zhang et al., “A Fast Asymmetric Extremum

Content Defined Chunking Algorithm for Data

Deduplication in Backup Storage Systems,” IEEE

Trans. Comput., vol. 66, no. 2, pp. 199–211, 2017,

doi: 10.1109/TC.2016.2595565.

[5]. Y. Cui, Z. Lai, X. Wang, and N. Dai, “QuickSync:

Improving Synchronization Efficiency for

Mobile Cloud Storage Services,” IEEE Trans.

Mob. Comput., vol. 16, no. 12, pp. 3513–3526,

2017, doi: 10.1109/TMC.2017.2693370.

[6]. A. S. M. Saeed and L. E. George, “Data

deduplication system based on content-defined

chunking using bytes pair frequency

occurrence,” Symmetry (Basel)., vol. 12, no. 11,

pp. 1–21, 2020, doi: 10.3390/sym12111841.

[7]. A. V. and K. S. Sankar, “Study of Chunking

Algorithm in Data Deduplication,” Adv. Intell.

Syst. Comput., vol. 398, pp. 319–329, 2016, doi:

10.1007/978-81-322-2674-1.

[8]. N. Sharma, A. V. Krishna Prasad, and V.

Kakulapati, “Data deduplication techniques for

big data storage systems,” Int. J. Innov. Technol.

Explor. Eng., vol. 8, no. 10, pp. 1145–1150, 2019,

doi: 10.35940/ijitee.J9129.0881019.

[9]. M. K. Yoon, “A constant-time chunking

algorithm for packet-level deduplication,” ICT

Express, vol. 5, no. 2, pp. 131–135, 2019, doi:

10.1016/j.icte.2018.05.005.

[10]. S. M. A. Mohamed and Y. Wang, “A survey on

novel classification of deduplication storage

systems,” Distrib. Parallel Databases, vol. 39, no.

1, pp. 201–230, 2021, doi: 10.1007/s10619-020-

07301-2.

[11]. A. S. M. Saeed and L. E. George, “Fingerprint-

based data deduplication using a mathematical

bounded linear hash function,” Symmetry

(Basel)., vol. 13, no. 11, pp. 1–19, 2021, doi:

10.3390/sym13111978.

[12]. Z. Xu and W. Zhang, “QuickCDC: A Quick

Content Defined Chunking Algorithm Based on

Jumping and Dynamically Adjusting Mask Bits,”

in 2021 IEEE Intl Conf on Parallel Distributed

Processing with Applications, Big Data Cloud

Computing, Sustainable Computing

Communications, Social Computing Networking

(ISPA/BDCloud/SocialCom/SustainCom), 2021,

pp. 288–299. doi: 10.1109/ISPA-BDCloud-

SocialCom-SustainCom52081.2021.00049.

[13]. W. Xia et al., “The design of fast content-defined

chunking for data deduplication based storage

systems,” IEEE Trans. Parallel Distrib. Syst., vol.

31, no. 9, pp. 2017–2031, 2020, doi:

10.1109/TPDS.2020.2984632.

[14]. H. A. S. Jasim and A. A. Fahad, “New techniques

to enhance data deduplication using content

based-TTTD chunking algorithm,” Int. J. Adv.

Comput. Sci. Appl., vol. 9, no. 5, pp. 116–121,

2018, doi: 10.14569/IJACSA.2018.090515.

[15]. N. Kumar, R. Rawat, and S. C. Jain, “Bucket based

data deduplication technique for big data storage

system,” in 2016 5th International Conference

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 4

Hashem Bedr Jehlol et al Int J Sci Res Sci Eng Technol, July-August-2022, 9 (4) : 174-190

187

on Reliability, Infocom Technologies and

Optimization, ICRITO 2016: Trends and Future

Directions, 2016, pp. 267–271. doi:

10.1109/ICRITO.2016.7784963.

[16]. K. Akhila, A. Ganesh, and C. Sunitha, “A Study

on Deduplication Techniques over Encrypted

Data,” Procedia Comput. Sci., vol. 87, pp. 38–43,

2016, doi: 10.1016/j.procs.2016.05.123.

[17]. A. Kaur and S. Sharma, “An Efficient Framework

and Techniques of Data Deduplication in Cloud

Computing,” Int. J. Comput. Sci. Technol., vol.

8491, pp. 27–31, 2017.

[18]. J. Malhotra and J. Bakal, “A survey and

comparative study of data deduplication

techniques,” in 2015 International Conference

on Pervasive Computing: Advance

Communication Technology and Application for

Society, ICPC 2015, 2015, pp. 1–5. doi:

10.1109/PERVASIVE.2015.7087116.

[19]. D. Viji and D. S. Revathy, “Comparative Analysis

for Content Defined Chunking Algorithms in

Data Deduplication,” Webology, vol. 18, no.

SpecialIssue2, pp. 255–268, 2021, doi:

10.14704/WEB/V18SI02/WEB18070.

[20]. H. A. Jasim and S. By, “An Improved Technique

to Enhance De-Duplication using Content-Based

TTT-D Chunking Algorithm A,” Univ. Baghdad

- Coll. Sci. Comput. Sci. Dep., no. March, 2018.

[21]. R. Vikraman and A. S, “A Study on Various Data

De-duplication Systems,” Int. J. Comput. Appl.,

vol. 94, no. 4, pp. 35–40, 2014, doi:

10.5120/16334-5616.

[22]. R. Misal and B. Perumal, “Data deduplication for

efficient cloud storage and retrieval,” Int. Arab J.

Inf. Technol., vol. 16, no. 5, pp. 922–927, 2019.

[23]. P. M. Kumar, G. Usha Devi, S. Basheer, and P.

Parthasarathy, “A Comprehensive Study on Data

Deduplication Techniques in Cloud Storage

Systems,” Int. J. Grid Util. Comput., vol. 11, no.

4, pp. 509–516, 2020, doi:

10.1504/IJGUC.2020.108450.

[24]. G. Sujatha and J. R. Raj, “A Comprehensive Study

of Different Types of Deduplication Technique

in Various Dimensions,” Int. J. Adv. Comput. Sci.

Appl., vol. 13, no. 3, pp. 316–323, 2022, doi:

10.14569/IJACSA.2022.0130339.

[25]. L. Conde-Canencia and B. Hamoum,

“Deduplication algorithms and models for

efficient data storage,” Proc. - 24th Int. Conf.

Circuits, Syst. Commun. Comput. CSCC 2020,

pp. 23–28, 2020, doi:

10.1109/CSCC49995.2020.00013.

[26]. A. El-Shimi, R. Kalach, A. Kumar, A. Oltean, J.

Li, and S. Sengupta, “Primary data deduplication

- Large scale study and system design,” Proc.

2012 USENIX Annu. Tech. Conf. USENIX ATC

2012, pp. 285–296, 2019.

[27]. Y. Zhang et al., “AE: An Asymmetric Extremum

content defined chunking algorithm for fast and

bandwidth-efficient data deduplication,” in

Proceedings - IEEE INFOCOM, Apr. 2015, vol.

26, pp. 1337–1345. doi:

10.1109/INFOCOM.2015.7218510.

[28]. A. Bhalerao, “A Survey : On Data Deduplication

for Efficiently Utilizing Cloud Storage for Big

Data Backups,” Int. Conf. Trends Electron.

Informatics, no. August 2019, 2017, doi:

10.1109/ICOEI.2017.8300844.

[29]. D. Kim, S. Song, and B. Y. Choi, Data

deduplication for data optimization for storage

and network systems. 2016. doi: 10.1007/978-3-

319-42280-0.

[30]. E. Manogar and S. Abirami, “A study on data

deduplication techniques for optimized storage,”

6th International Conference on Advanced

Computing, ICoAC 2014. pp. 161–166, 2015. doi:

10.1109/ICoAC.2014.7229702.

[31]. K. Gnana Sambandam and E. Kamalanaban,

“Proceedings of the International Conference on

Soft Computing Systems,” Adv. Intell. Syst.

Comput., vol. 398, pp. 319–329, 2016.

[32]. S. M. A. Mohamed and Y. Wang, “A survey on

novel classification of deduplication storage

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 4

Hashem Bedr Jehlol et al Int J Sci Res Sci Eng Technol, July-August-2022, 9 (4) : 174-190

188

systems,” Distrib. Parallel Databases, vol. 39, no.

1, pp. 201–230, 2021.

[33]. K. Vijayalakshmi and V. Jayalakshmi, “Analysis

on data deduplication techniques of storage of

big data in cloud,” Proceedings - 5th

International Conference on Computing

Methodologies and Communication, ICCMC

2021. pp. 976–983, 2021. doi:

10.1109/ICCMC51019.2021.9418445.

[34]. A. Bhalerao and A. Pawar, “A survey: On data

deduplication for efficiently utilizing cloud

storage for big data backups,” Proc. - Int. Conf.

Trends Electron. Informatics, ICEI 2017, vol.

2018-Janua, no. May, pp. 933–938, 2018, doi:

10.1109/ICOEI.2017.8300844.

[35]. Rabin, “Fingerprinting by random

polynomials.pdf.” 1981.

[36]. A. Anand, C. Muthukrishnan, A. Akella, and R.

Ramjee, “Redundancy in network traffic:

Findings and implications,”

SIGMETRICS/Performance’09 - Proc. 11th Int.

Jt. Conf. Meas. Model. Comput. Syst., vol. 37, no.

1, pp. 37–48, 2009, doi:

10.1145/1555349.1555355.

[37]. B. Zhu, K. Li, and H. Patterson, “Avoiding the

disk bottleneck in the data domain deduplication

file system,” FAST 2008 - 6th USENIX Conf. File

Storage Technol., pp. 269–282, 2008.

[38]. E. Kruus, C. Ungureanu, and C. Dubnicki,

“Bimodal content defined chunking for backup

streams,” Proc. FAST 2010 8th USENIX Conf.

File Storage Technol., pp. 239–252, 2010.

[39]. K. Eshghi and H. K. Tang, “A framework for

analyzing and improving content-based

chunking algorithms,” Hewlett-Packard Labs

Tech. Rep. TR, 2005, [Online]. Available:

http://shiftleft.com/mirrors/www.hpl.hp.com/te

chreports/2005/HPL200530R1.pdf%5Cnpapers3

://publication/uuid/053B1556-804C-4F39-

BD0B-2EBD9C047F30

[40]. N. Kumar, S. Antwal, G. Samarthyam, and S. C.

Jain, “Genetic optimized data deduplication for

distributed big data storage systems,” in 2017 4th

International Conference on Signal Processing,

Computing and Control (ISPCC), 2017, pp. 7–15.

doi: 10.1109/ISPCC.2017.8269581.

[41]. T. S. Moh and B. C. Chang, “A running time

improvement for the two thresholds two divisors

algorithm,” Proc. Annu. Southeast Conf., 2010,

doi: 10.1145/1900008.1900101.

[42]. S. O. Majed and S. K. Thamer, “Cloud based

industrial file handling and duplication removal

using source based deduplication technique,”

AIP Conf. Proc., vol. 2292, no. October, 2020,

doi: 10.1063/5.0030989.

[43]. D. Datta, S. Mishra, and S. S. Rajest,

“Quantification of tolerance limits of

engineering system using uncertainty modeling

for sustainable energy,” Int. J. Intell. Networks,

vol. 1, no. May, pp. 1–8, 2020, doi:

10.1016/j.ijin.2020.05.006.

[44]. A. Bhalerao and A. Pawar, “Two-threshold

chunking (TTC): Efficient chunking algorithm

for data deduplication for backup storage,” Int. J.

Sci. Technol. Res., vol. 8, no. 9, pp. 754–757,

2019.

[45]. S. H. A. H. Algorithms, H. Abdulsalam, and A. A.

Fahad, “Evaluation of Two Thresholds Two

Divisor Chunking Algorithm Using Rabin Finger

print, Adler, and SHA1 Hashing Algorithms,”

Iraqi J. Sci., vol. 58, no. 4C, 2017, doi:

10.24996/ijs.2017.58.4c.19.

[46]. J. Wei, J. Zhu, and Y. Li, “Multimodal Content

Defined Chunking for Data Deduplication,”

Available:

https://www.researchgate.net/publication/26128

6019, Research gate., 2014.

[47]. C. Yu, C. Zhang, Y. Mao, and F. Li, “Leap-based

Content Defined Chunking — Theory and

Implementation,” in 2015 31st Symposium on

Mass Storage Systems and Technologies (MSST),

May 2015, pp. 1–12. doi:

10.1109/MSST.2015.7208290.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 4

Hashem Bedr Jehlol et al Int J Sci Res Sci Eng Technol, July-August-2022, 9 (4) : 174-190

189

[48]. C. Zhang et al., “MII: A novel content defined

chunking algorithm for finding incremental data

in data synchronization,” IEEE Access, vol. 7, pp.

86932–86945, 2019, doi:

10.1109/ACCESS.2019.2926195.

[49]. P. K. Krishnaprasad and B. A. Narayamparambil,

“A Proposal for Improving Data Deduplication

with Dual Side Fixed Size Chunking Algorithm,”

in 2013 Third International Conference on

Advances in Computing and Communications,

Aug. 2013, pp. 13–16. doi:

10.1109/ICACC.2013.10.

[50]. C. Zhang, D. Qi, W. Li, and J. Guo, “Function of

Content Defined Chunking Algorithms in

Incremental Synchronization,” IEEE Access, vol.

8, pp. 5316–5330, 2020, doi:

10.1109/ACCESS.2019.2963625.

[51]. P. Sobe, D. Pazak, and M. Stiehr, “Parallel

Processing for Data Deduplication,” PARS-

Mitteilungen, vol. 32, pp. 109–118, 1AD.

[52]. L. E. G. 2 Ahmed Sardar M. Saeed, “symmetry

Data Deduplication System Based on Frequency

Occurrence,” Symmetry (Basel)., vol. 12, no. 11,

p. 1841, 2020.

[53]. Y. Zhang, Y. Wu, and G. Yang, “Droplet: A

distributed solution of data deduplication,” Proc.

- IEEE/ACM Int. Work. Grid Comput., pp. 114–

121, 2012, doi: 10.1109/Grid.2012.21.

[54]. S. Kumar and E. P. Gupta, “A Comparative

Analysis of SHA and MD5 Algorithm,” Int. J.

Comput. Sci. Inf. Technol., vol. 5, no. June 2014,

pp. 4492–4495, 2014.

[55]. A. Kshemkalyani, “An Efficient Implementation

of SHA-1 Hash Function,” IEEE Int. Conf.

Electro-Information Technol., vol. 43, no. 1, pp.

47–52, 2006.

[56]. X. Chan and G. Liu, “Discussion of One

Improved Hash Algorithm Based on MD5 and

SHA1,” Lect. Notes Eng. Comput. Sci., vol. 2167,

no. 1, pp. 270–273, 2007.

[57]. W. Xia, D. Feng, H. Jiang, Y. Zhang, V. Chang,

and X. Zou, “Accelerating content-defined-

chunking based data deduplication by exploiting

parallelism,” Future Generation Computer

Systems, vol. 98. pp. 406–418, 2019. doi:

10.1016/j.future.2019.02.008.

[58]. A. Venish and K. S. Sankar, “Survey Paper for

Dedup,” Indian J. Sci. Technol., vol. 8, no.

October, pp. 1–7, 2015, doi:

10.17485/ijst/2015/v8i26/.

Cite this article as :

Hashem Bedr Jehlol, Loay E. George, "Big Data Backup

Deduplication : A Survey", International Journal of

Scientific Research in Science, Engineering and

Technology (IJSRSET), Online ISSN : 2394-4099, Print

ISSN : 2395-1990, Volume 9 Issue 4, pp. 174-191, July-

August 2022. Available at doi :

https://doi.org/10.32628/IJSRSET229425

Journal URL : https://ijsrset.com/IJSRSET229425

