The Rainbow-Vertex Connection Number [RVCN] of Subdivision of Certain Graphs

Dechamma K. K. ${ }^{1}$, Dr. Rajanna K. R. ${ }^{2}$
${ }^{*}$ Department of Mathematics, T. John Institute of Technology, Bengaluru, Karnataka, India
${ }^{2}$ Department of Mathematics, Acharya Institute of Technology, Bengaluru, Karnataka, India

Article Info

Volume 9, Issue 4
Page Number : 222-227
Publication Issue :
July-August-2022
Article History
Accepted : 05 July 2022
Published: 24 July 2022

Abstract

Rainbow-Vertex Connection Number [rven] is computed for some graphs by the researchers. Here we have considered the subdivision graphs of certain graph classes. The rainbow edge connection number of subdivision of Triangular snake graph was already found ${ }^{[1]}$. Using the definition of rainbow-vertex connection number ${ }^{[5]}$, which is the smallest positive integer k such that the graph is rainbowvertex connected, we find the rainbow vertex number of subdivision graph of Friendship graph $\operatorname{rvc}\left(S\left(F_{n}\right)\right)=n+2 \forall n \geq 2$, Triangular snake graph $v c\left(S\left(T_{n}\right)\right)=2 n-1 \forall n \geq 3$ and Comb graph $\operatorname{rvc}\left(S\left(P_{n} \odot K_{1}\right)\right)=3 n-1 \forall n \geq$ 2 . Keywords: Rainbow Vertex Connected Graph and Number, Friendship Graph, Triangular Graph, Comb Graph, Subdivision Graph.

I. INTRODUCTION

We consider simple, finite, connected, and undirected subdivision graphs. A graph is a set of vertices and edges $\left(v_{i}, e_{j}\right), v_{i}^{\prime} s$ are non-empty. Krivelevich and Yuster ${ }^{[5]}$ introduced the rainbow-vertex connection number, and Li and Shi investigated it. The lower bound was stated by Krivelevich and Yuster as $\operatorname{rvc}(G) \geq \operatorname{diam}(G)-1$.
Definition 1.1: Graph Colouring: Proper colouring is the process of colouring each vertex of a graph so that no two neighbouring vertices have the same colour. Definition 1.2: Rainbow colouring: A path in an edgecoloured graph is claimed to be rainbow coloured if no colour repeats thereon path.

Definition 1.3: Rainbow vertex connected graph: If all of a graph's internal vertices have unique colours, the graph is said to have a rainbow vertex path. If there is
a path connecting every pair of vertices in the network or graph, it is said to be rainbow vertex connected.
Definition 1.4: Friendship graph: It is a planar graph with $2 n+1$ vertices and $3 n$ edges. This graph is constructed by joining n-copies of the cycle graph C_{3} with a common vertex, which is called as universal vertex for the graph. It is also called as Dutch windmill

Definition 1.5: Triangular snake graph: This graph is obtained by starting with a path graph P_{n-1} and adding edges $(2 i-1,2 i+1)$) for $i=1,2,3, \ldots, n-1$. Definition 1.6: Comb graph: A path with n vertices is called path graph. Then, $P_{n} \odot K_{1}$ with $2 n$ vertices and $2 n-1$ edges is said to be a comb graph.
Definition 1.7: Subdivision graph: Subdivision graph is obtained by deleting an edge [u, v] from the graph G and addition of two edges $[\mathrm{u}, \mathrm{w}]$ and $[\mathrm{w}, \mathrm{v}]$ along with the new vertex $V \cup\{w\}$.

II. RESULTS AND DISCUSSION

Rainbow-vertex connection number [rven] of subdivision of friendship graph

Theorem 1

If F_{n} is the Friendship graph of order $2 n+1$ and $S\left(F_{n}\right)$ is the subdivision graph of F_{n}, then $\operatorname{rvcn}\left(S\left(F_{n}\right)\right)=n+2 \quad \forall n \geq 2$.
Proof: Let v_{1} be the universal vertex (common vertex) for the graph. Now join the n - copies of the cycle graph C_{3} to the universal vertex. Let $\left\{v_{1}, w_{1}, w_{1}^{\prime}, \ldots, w_{n}, w_{n}^{\prime}\right\}$ be the vertices of n cycles. Now insert new vertices $\left\{u_{1}, y_{1}, u_{1}^{\prime}, \ldots u_{n}^{\prime}\right\}$ to the n-cycles to form the subdivision graph of F_{n}. Vertex colouring algorithm:

1. The vertex v_{1} is assigned the colour $c_{i}, 1 \leq i \leq n$.
2. The vertices $\left\{w_{1}, w_{1}^{\prime}, \ldots, w_{n}^{1}\right\}$ is assigned the colour c_{i},

$$
2 \leq i \leq n
$$

3. The vertices $\left\{u_{1}, y_{1}, u_{1}^{\prime}\right\},\left\{u_{2}, y_{2}, u_{2}^{\prime}\right\}, \ldots$,
$\left\{u_{n}, y_{n}, u_{n}^{\prime}\right\}$
is assigned colour $c_{3}, c_{4}, \ldots, c_{n+2}$.
Now let us consider any path of $S\left(F_{n}\right)$
Case-i: For $\left(v_{1}, w_{t}\right)$, when $1 \leq t \leq n$ then the rainbow- vertex path is $v_{1} u_{t} w_{t}$.
Case-ii: For $\left(v_{1}, w_{t}^{\prime}\right)$ when $1 \leq t \leq n$ then the rainbow-vertex path is $v_{1} u_{t}^{\prime} w_{t}^{\prime}$.

Case-iii: If $\left(v_{1}, y_{t}\right)$, then the shortest path will be $v_{1} u_{t} w_{t} y_{t}$ which is a rainbow- vertex path for $1 \leq t \leq$ n.
Case-iv: If u_{s} and w_{t} are the end vertices of the path, then $u_{s} v_{1} u_{t} w_{t}$ will be the shortest path and is the rainbow-vertex path for $s \neq t, 1 \leq s, t \leq n$. Case-v: If u_{s} and w_{t}^{\prime} are the end vertices of the path, then $u_{s} v_{1} u_{t}^{\prime} w_{t}^{\prime}$ will be the shortest path and is the rainbow-vertex path for $1 \leq s, t \leq n$.
Case-vi: For $\left(u_{s}, y_{t}\right)$, when $1 \leq s, t \leq n$, the shortest path is $\left\{\begin{array}{c}u_{s} w_{s} y_{s}, \quad s=t \\ u_{s} v_{1} u_{t} w_{t} y_{t}, \quad s \neq t\end{array}\right.$. This is the rainbow-vertex path.
Case-vii: For the end vertices u_{s}, u_{t}, when $1 \leq s, t \leq$ n the shortest path is $u_{s} v_{1} u_{t}$, which will be a rainbow-vertex path.
Case-viii: For the end vertices u_{s}, u_{t}^{\prime}, when $1 \leq s, t \leq$ n, the rainbow-vertex path is $u_{s} v_{1} u_{t}^{\prime}$.
Case-ix: If the end vertices are $u_{s}^{\prime}, u_{t}^{\prime}$, when $s \neq t$ and $1 \leq s, t \leq n$ the rainbow-vertex path is $u_{s}^{\prime} v_{1} u_{t}^{\prime}$. Case-x: If u_{s}^{\prime} and w_{t} are the end vertices of a path then the rainbow-vertex path is given by $u_{s} v_{1} u_{t} w_{t}$ for $s \neq t, 1 \leq s, t \leq n$.
Case-xi: If u_{s}^{\prime} and w_{t}^{\prime} are the end vertices then the rainbow-vertex path is given by $u_{s}^{\prime} v_{1} u_{t}^{\prime} w_{t}^{\prime}, s \neq t, 1 \leq$ $s, t \leq n$.
Case-xii: The rainbow-vertex path for the end vertices $\left(u_{s}^{\prime}, y_{t}\right)$ will be $\left\{\begin{array}{ll}u_{s}^{\prime} w_{s}^{\prime} y_{s}, & s=t \\ u_{s}^{\prime} v_{1} u_{t} w_{t} y_{t}, & s \neq t\end{array}\right.$ for $1 \leq$ $s, t \leq n$.
Case-xiii: The rainbow-vertex path for the end vertices $\left(w_{s}, w_{t}\right)$ is $w_{s} u_{s} v_{1} u_{t} w_{t}$, for $1 \leq s, t \leq$ $n, s \neq t$.
Case-xiv: The shortest path between the vertices w_{s}
and w_{t}^{\prime} is $\left\{\begin{array}{ll}w_{s} y_{s} w_{s}^{\prime}, & s=t \\ w_{s} u_{s} v_{1} u_{t}^{\prime} w_{t}^{\prime}, & s \neq t\end{array}\right.$ for $1 \leq s, t \leq n$
which is a rainbow-vertex path.
Case-xv: The shortest path between the vertices w_{s} and y_{t} is $w_{s} u_{s} v_{1} u_{t} w_{t} y_{t}$,for $1 \leq s, t \leq n, s \neq t$ which is a rainbow-vertex path.
Case-xvi: For the end vertices $\left(w_{s}^{\prime}, y_{t}\right), 1 \leq s, t \leq$ $n, s \neq t$ the shortest path will be $w_{s}^{\prime} u_{s}^{\prime} v_{1} u_{t} w_{t} y_{t}$ which is a rainbow vertex path.

Between each and every vertex, there is a rainbowvertex path.
Therefore, $\operatorname{rvcn}\left(S\left(F_{n}\right)\right)=n+2, \quad \forall n \geq 2$.

Example 1.1

Figure 1: Rainbow -vertex colouring of subdivision graph of Friendship graph F_{4}

The rainbow-vertex connection number
$\operatorname{rvcn}\left(S\left(F_{4}\right)\right)=6$.

Rainbow-vertex connection number [rven] of subdivision of triangular snake graph ${ }^{[1]}$
 Theorem 2

If T_{n} is the triangular snake graph ${ }^{[6]}$ of order n and $S\left(T_{n}\right)$ is subdivision of the triangular snake graph, then $\operatorname{rvc}\left(S\left(T_{n}\right)=2 n-1, \forall n \geq 3\right.$.
Proof: Consider a Triangular snake graph T_{n} starting with the path graph $v_{1}-v_{n}$. Construct a triangular snake graph by adding new vertices $\left\{u_{1}, u_{2}, \ldots, u_{n-1}\right\}$. Now insert new vertices $\left\{w_{1}, w_{1}^{\prime}, y_{1}, \ldots, w_{n-1}^{\prime}\right\}$ and construct the subdivision graph of triangular snake graph $S\left(T_{n}\right)$.
Vertex colouring algorithm

1. Assign $c_{1}, c_{2}, \ldots, c_{2 n-1}$ colours to the path graph $v_{1}-v_{n}$.
2. Assign colour c_{1} to w_{i} and u_{i}, colour c_{2} to w_{i}^{\prime}, $1 \leq i \leq n-1$.

We now consider the any path of $S\left(T_{n}\right)$
Case-i: For the end vertices $\left(v_{s}, v_{t}\right)$, when $1 \leq$ $s, t \leq n, s \neq t$ the shortest path is $v_{s} y_{s} v_{s+1} \ldots y_{t-1} v_{t}$ which is a rainbow-vertex path.
Case-ii: For the end vertices v_{s} and y_{t}, when $1 \leq$
$s, t \leq n-1$ the rainbow-vertex path is
$v_{s} y_{s} v_{s+1} \ldots v_{t} y_{t}$

Case-iii: If v_{s} and w_{t} are the end vertices, $1 \leq s, t \leq$ $n-1$ and $s \neq t$ then the shortest path between them is $\left\{\begin{array}{c}v_{s} y_{s} v_{s+1} \ldots v_{t} w_{t}, s<t \\ v_{s} y_{s-1} v_{s-1} \ldots v_{t} w_{t}, \\ s>t\end{array}\right.$ which is the rainbow-vertex path.
Case-iv: If v_{s} and u_{t} are the end vertices with $1 \leq$ $s \leq n, 1 \leq t \leq n-1$, then the shortest path is $\left\{\begin{array}{c}v_{s} w_{s} u_{s}, \quad s=t \\ v_{s} y_{s} v_{s+1} \ldots w_{t} u_{t}, s<t \\ v_{s} y_{s-1} v_{s-1} \ldots w^{\prime}{ }_{t} u_{t}, s>t\end{array} \quad\right.$ is the rainbow-vertex path.
Case-v: For the end vertices $\left(v_{s}, w_{t}^{\prime}\right), 1 \leq s, t \leq$ $n-1$, the shortest path is
$\left\{\begin{array}{c}v_{s} y_{s} v_{s+1} \ldots v_{t+1} w^{\prime}{ }_{t}, s \leq t \\ v_{s} y_{s-1} v_{s-1} \ldots v_{t+1} w^{\prime} \\ t\end{array}, s>t\right.$. which is a rainbow-
vertex path between these vertices.
Case-vi: If u_{s} and w_{t} are the end vertices, $1 \leq s, t \leq$ $n-1$ and $\mathrm{s} \neq t$ then the rainbow-vertex path is
$\begin{cases}u_{s} w^{\prime}{ }_{s} v_{s+1} y_{s+1} \ldots v_{t} w_{t}, & s<t \\ u_{s} w_{s} v_{s} y_{s-1} \ldots v_{t} w_{t}, & s>t\end{cases}$
Case-vii: For the end vertices u_{s} and $u_{t}, 1 \leq s, t \leq$ $n-1$ and $\mathrm{s} \neq t$ the rainbow-vertex path is
$u_{s} w^{\prime}{ }_{s} v_{s+1} y_{s+1} \ldots v_{t} w_{t} u_{t}$.
Case-viii: For the end vertices u_{s} and $w_{t}^{\prime}, 1 \leq s, t \leq$ $n-1$ and $\mathrm{s} \neq t$, then the shortest path
is $\left\{\begin{array}{c}u_{s} w_{s}^{\prime} v_{s+1} y_{s+1} \ldots v_{t+1} w^{\prime}, s<t \\ u_{s} w_{s} v_{s} y_{s-1} \ldots v_{t+1} w_{t}^{\prime}, s>t\end{array}\right.$ and is the rainbow-vertex path.
Case-ix: If (u_{s}, y_{t}) are the end vertices, $1 \leq s, t \leq$ n,then the shortest path which is the rainbow-vertex
path is $\left\{\begin{array}{c}u_{s} w^{\prime}{ }_{s} v_{s+1} y_{s}, s=t \\ u_{s} w^{\prime}{ }_{s} v_{s+1} y_{s+1} \ldots v_{t} y_{t}, \mathrm{~s}<\mathrm{t} \text { Case-x: If } \\ u_{s} w_{s} v_{s} y_{s-1} \ldots v_{t+1} y_{t}, s>t\end{array}\right.$
$\left(w_{s}, w_{t}^{\prime}\right)$ are the end vertices of a path, $1 \leq s, t \leq$
$n-1$, then the rainbow -vertex path is
$\left\{\begin{array}{c}w_{s} u_{s} w_{s}^{\prime}, s=t \\ w_{s} v_{s} y_{s} v_{s+1} \ldots v_{t+1} w_{t}^{\prime}, s<t \\ w_{s} v_{s} y_{s-1} v_{s+1} \ldots v_{t+1} w_{t}^{\prime}, s>t\end{array}\right.$
Case-xi: For the end vertices w_{s} and $y_{t}, 1 \leq s, t \leq$ $n-1$, the rainbow-vertex path is
$\left\{\begin{array}{c}w_{s} v_{s} y_{s}, s=t \\ w_{s} v_{s} y_{s} v_{s+1} \ldots v_{t} y_{t}, s<t \\ w_{s} v_{s} y_{s-1} v_{s-1} \ldots v_{t+1} y_{t}, s>t\end{array}\right.$
Case-xii: For the end vertices w_{s} and $w_{t}, 1 \leq s, t \leq$ $n-1$ and $s \neq t$, then the rainbow- vertex path is $w_{s} v_{s} y_{s} v_{s+1} \ldots v_{t} w_{t}$.
Case-xiii: If the end vertices are w_{s}^{\prime} and w_{t}^{\prime}, for $1 \leq$ $s, t \leq n-1$ and $s \neq t$, the rainbow-vertex path is given by $w_{s}^{\prime} v_{s+1} y_{s+1} \ldots . v_{t+1} w_{t}^{\prime}$.
Case-xiv: The shortest path between the end points w_{s}^{\prime} and $y_{t}, 1 \leq s, t \leq n-1$, is
$\left\{\begin{array}{cc}w_{s}^{\prime} v_{s+1} y_{s}, & s=t \\ w_{s}^{\prime} v_{s+1} y_{s}, & s<t \\ w_{s}^{\prime} v_{s+1} y_{s} v_{s} y_{s-1} \ldots & v_{t+1} y_{t}, \\ s>t\end{array}\right.$ and is the rainbowvertex path.
Case-xv: The shortest path between the end points y_{s} and $y_{t}, 1 \leq s, t \leq n-1$ and $s \neq t$, is $y_{s} v_{s} y_{s+1} \ldots v_{t} y_{t}$ which is a rainbow-vertex path.
Between each and every vertex, there is a rainbow vertex path.
Therefore, $\operatorname{rvcn}\left(S\left(T_{n}\right)\right)=2 n-1, \forall n \geq 3$.

Example 2.1

The $\operatorname{rvcn}\left(S\left(T_{5}\right)\right)=9$.

Rainbow-vertex connection number [rven] of subdivision of comb graph ${ }^{[3]}$

Theorem 3

If $P_{n} \odot K_{1}$ is the comb graph of order $2 n$ and $S\left(P_{n} \odot K_{1}\right)$ is the subdivision graph of comb graph, then $\operatorname{rvcn}\left(S\left(P_{n} \odot K_{1}\right)\right)=3 n-1, \forall n \geq 2$.
Proof: Let us consider the comb graph $P_{n} \odot K_{1}$ with vertices $\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}\right\}$. Now insert the new vertices $\left\{w_{1}, w_{2}, \ldots, w_{n}, y_{1}, y_{2}, \ldots, y_{n-1}\right\}$ and construct the subdivision graph of $P_{n} \odot K_{1}$ i.e., $S\left(P_{n} \odot K_{1}\right)$.
Vertex colouring algorithm

1. Assign colour $c_{i}, 1 \leq i, j \leq n$ for the vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
2. Assign colour $c_{1}, c_{2}, c_{3}, \ldots, c_{3 n-1}$ for the remaining vertices.

We now consider any path of $S\left(P_{n} \odot K_{1}\right)$
Case-i: The shortest path between the vertices
$\left(v_{s}, v_{t}\right)$, for $1 \leq s, t \leq n$, and $s \neq t, s<t$
is $v_{s} w_{s} u_{s} y_{s} u_{s+1} \ldots u_{t} w_{t} v_{t}$ which is rainbowvertex path.
Case-ii: If v_{s} and w_{t} are the end vertices with $1 \leq$ $s, t \leq n$ and $s \neq t$, then the rainbow-
vertex path is $\begin{cases}v_{s} w_{s} u_{s} y_{s} u_{s+1} y_{s+1} \ldots u_{t} w_{t}, & s<t \\ v_{s} w_{s} u_{s} y_{s-1} u_{s-1} \ldots y_{t} u_{t} w_{t}, & s>t\end{cases}$
Case-iii: The shortest distance between the end points v_{s} and u_{t} for $1 \leq s, t \leq n$, is
$\left\{\begin{array}{c}v_{s} w_{s} u_{s}, s=t \\ v_{s} w_{s} u_{s} y_{s} u_{s+1} \ldots y_{t-1} u_{t}, s<t \text { which is a rainbow- } \\ v_{s} w_{s} u_{s} y_{s-1} u_{s-1} \ldots y_{t} u_{t}, s>t\end{array}\right.$ vertex path.
Case-iv: The shortest distance between the vertices v_{s} and y_{t} for $1 \leq s \leq n, 1 \leq t \leq n-1$ is
$\left\{\begin{array}{c}v_{s} w_{s} u_{s} y_{s}, s=t \\ v_{s} w_{s} u_{s} y_{s} u_{s+1} y_{s+1} \ldots u_{t} y_{t}, s<t \text { and is a rainbow- } \\ v_{s} w_{s} u_{s} y_{s-1} u_{s-1} \ldots u_{t+1} y_{t}, s>t\end{array}\right.$ vertex path.

Figure 2: Rainbow-vertex colouring of subdivision graph of triangular snake graph T_{5}

Case-v: For the end points u_{s} and $w_{t}, 1 \leq s, t \leq$ n and $s \neq t$, the rainbow-vertex path is
$\left\{\begin{array}{c}u_{s} y_{s} u_{s+1} y_{s+1} \ldots u_{t} w_{t}, s<t \\ u_{s} y_{s-1} u_{s-1} \ldots u_{t} w_{t}, s>t\end{array}\right.$
Case-vi: For the end points u_{s} and $u_{t}, 1 \leq s, t \leq$ $n, s \neq t$ and $s<t$, then the rainbow-vertex path is given by $u_{s} y_{s} u_{s+1} y_{s+1} \ldots y_{t-1} u_{t}$.
Case-vii: If u_{s} and y_{t} are the end nodes of the path with $1 \leq s \leq n, 1 \leq t \leq n-1$ and $s \neq t$ then the rainbow-vertex path is
$\left\{\begin{array}{c}u_{s} y_{s} u_{s+1} y_{s+1} \ldots u_{t} y_{t}, s<t \\ u_{s} y_{s-1} u_{s-1} y_{s-2} \ldots u_{t+1} u_{t}, s>t\end{array}\right.$
Case-viii: The shortest path between the end nodes
w_{s} and $w_{t}, 1 \leq s, t \leq n, s \neq t$ and $s<t$, is
$w_{s} u_{s} y_{s} u_{s+1} y_{s+1} \ldots u_{t} w_{t}$. This is the rainbow-vertex
path between these vertices.
Case-ix: The shortest path between the nodes
$\left(w_{s}, y_{t}\right), 1 \leq s \leq n, 1 \leq t \leq n-1$ is
$\left\{\begin{array}{lr}w_{s} u_{s} y_{s}, & s=t \\ w_{s} u_{s} y_{s} u_{s+1} \ldots u_{t} y_{t}, & s<t \\ w_{s} u_{s} y_{s-1} u_{s-1} \ldots u_{t+1} y_{t}, & s>t\end{array}\right.$. This is the rainbow-
vertex path.
Case-x: The shortest path between the end points
$\left(y_{s}, y_{t}\right), 1 \leq s, t \leq n-1, s \neq t$ and $s<t$ is $y_{s} u_{s+1} y_{s+1} \ldots . u_{t} y_{t}$. This is the rainbow-vertex path. Between each and every vertex, there is a rainbowvertex path.
Therefore, $\operatorname{rvcn}\left(S\left(P_{n} \odot K_{1}\right)\right)=3 n-1, \forall n \geq 2$.
Example 3.1

Figure 3: Rainbow-vertex colouring of subdivision graph of Comb
graph $P_{5} \odot K_{1}$
The $\operatorname{rvc}\left(S\left(P_{5} \odot K_{1}\right)\right)=14$

III.CONCLUSION

In this study, we discovered the rainbow vertex colouring number(rven) for the subdivision graph of comb, triangular snake, and friendship graphs.

IV. REFERENCES

[1]. J. Kim, Dharamvirsinh Parmar, Shah Pratik, Bharat Suthar, Rainbow connection number of triangular snake graph, 2019 JETIR March 2019, Volume 6, Issue 3.
[2]. Bharat Suthar, Dharamvirsinh Parmar, Yachana Modi, Rainbow connection number of some graphs, Webology (ISSN: 1735-188X), Volume 19, Number 2, 2022.
[3]. C. S. Hariramkumar and N. Parvathi, "Rainbow Vertex Coloring for Line, Middle, Central, Total Graph of Comb Graph, IndianJournal of Science and technology, Vol 9(S1), DOI:10.17485/ijst/2016/v9iS1/97463, December 2016.
[4]. Paloma T. Lima, Erik Jan van Leeuwen, Marieke van der Wegen, Algorithms for the rainbow vertex coloring problem on Graph classes, Theoretical Computer Science, Volume 887, 2 October2021, Pages 122-142.
[5]. Dian N. S. Simamora, A. N. M. Salman, "The Rainbow (Vertex) Connection Number of Pencil Graphs, International Conference on Graph Theory and Information Security, Procedia Computer Science 74(2015) 138-142, doi:10.1016/j.procs.2015.12.089.
[6]. Weissten, Eric W. "Triangular Snake Graph." From MathWorld-A Wolfram Web Resource.
[7]. M. Krivelevich and R. Yuster, The rainbow connection of a graph is (atmost) reciprocal to its minimum degree, J. Graph Theory 63 (2010) 185-191.
[8]. A. Annammal and D. Angel, "Rainbow Coloring of certain classes of graphs", International

Journal of Advanced Information Science and Technology, Volume 4, Number 1.
[9]. A. Annammal and M. Mercy, "Rainbow coloring of shadow graph", International Journal of Pure and Applied Mathematics,Volume 101 No. 6, pp 873-881,2015.
[10]. G. Chartrand, G. L. Johns, K.A. McKeon and P. Zhang, "Rainbow connection in graphs", Math. Bohem. 133(2008), pp85-98.
[11]. E. Esakkiammal, B. Deepa, K. Thirusangu, "Some Labelings On Square Graph of Comb", International Journal of Mathematics Trends and Technology(IJMTT)- Special Issue NCCFQET May 2018, ISSN: 2231-5373
[12]. J. Gross and J. Yellen, "Graph Theory and its applications", CRC Press.
[13]. Li. Hengzhe, Ma. Yingbin, "Rainbow connection number and graph operations", Discrete Applied Mathematics, 2017.
[14]. S. Chakraborty, E. Fischer, A. Matsliah and R. Yuster, "Hardness and algorithms for rainbow connectivity", J. Comb. Optim. 21(2011) pp330347.
[15]. S. S. Sandhya, E. Merly and S. Kavitha, "Stolarsky-3 Mean Labeling on Triangular Snake graphs", International Journal of Mathematics Trends and technology (IJMTT), Volume 53 Number 2, January 2018.
[16]. X. Li and Y. Sun, "Rainbow Connections of graphs", Springer Briefs in Math., Springer, New York, 2012.

Cite this article as :

Dechamma K. K., Dr. Rajanna K. R., "The RainbowVertex Connection Number [RVCN] of Subdivision of Certain Graphs", International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Online ISSN : 2394-4099, Print ISSN : 23951990, Volume 9 Issue 4, pp. 222-227, July-August 2022. Available at doi https://doi.org/10.32628/IJSRSET229436
Journal URL : https://ijsrset.com/IJSRSET229436

