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ABSTRACT 

Brain tumor is a severe cancer and a life-threatening disease. Thus, early 

detection is crucial in the process of treatment. Recent progress in the field of 

deep learning has contributed enormously to the health industry medical 

diagnosis. Convolutional  neural networks (CNNs) have been intensively used as 

a deep learning approach to detect brain tumors using CT brain images. Due to 

the limited dataset, deep learning algorithms and CNNs should be improved to 

be more efficient. Thus, one of the most known techniques used to improve 

model performance is Data Augmentation. CNN classifier used to compare the 

trained and test data, from this we can get the classified result for tumor. The 

experimental results of proposed technique have been evaluated and validated 

for classification performance on magnetic resonance brain images, based on 

accuracy, sensitivity, and specificity. Detection, extraction and classification of 

tumor from CT brain images of the brain is done by using Python. 
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I. INTRODUCTION 

 

The Medical image processing can be defined as 

picturing of body parts, tissues or organs for clinical 

analysis and treatment. It is one of the technique used 

to create an images of the human body. Imaging 

techniques are in the fields of radiology, nuclear 

medicine and optical imaging. The medical image 

processing consist of display of an image, enhancement, 

and analysis that captures an image through 

instruments like MRI (Magnetic Resonance Imaging), 

X-ray, Nuclear medicine, Ultrasound, optical imaging, 

and Computed Tomography (CT) scanners 

respectively. 

The medical imaging systems are used to analyses the 

human body in both macro and micro level such as 

organ level and cellular correspondingly. Medical 

image processing is a highly challenging research area. 

The internal parts of the human body are diagnosed 

through medical imaging technique.  Medical imaging 

have high importance because of correct diagnosis and 

treatment of diseases in health care system. The image 

of internal body parts where produced by the 

equipment’s like CT scanner, MRI. These images are 

assigned with composed pixel of discrete brightness 

and colour values. 
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II. PROBLEM STATEMENT 

• Limited number of training samples are available and 

accuracy of classification is not high. 

• The technique’s performance on the boundaries 

between different regions is relatively poor. 

• The algorithm complexity of training and testing on 

the datasets is high.  

OBJECTIVES 

• To perform pre-processing by using median filter for 

the removal of noise and enhancing the quality of 

input image. 

• To perform efficient data augmentation by altering 

the existing data to create more data for the model 

training process.  

• To perform efficient classification of brain tumour 

detection with the help of CNN for the generation of 

accurate and improved outputs.  

LITERATURE REVIEW 

Jiangjun Peng et al [2020] propose an enhanced 3DTV 

(E-3DTV) regularization term beyond the 

conventional. Instead of imposing sparsity on gradient 

maps themselves, the new term calculates sparsity on 

the subspace bases on gradient maps along all bands of 

an HSI, which naturally encodes the correlation and 

difference among all these bands, and thus more 

faithfully reflects the insightful configurations of an 

HSI. The E-3DTV term can easily replace the 

conventional 3DTV term and be embedded into an HSI 

processing model to ameliorate its performance. 

Yunping Mu et al [2019] Speckle noise removal 

problem has been researched under the framework of 

regularization-based approaches. The regularizer is 

normally defined as total variation (TV) that induces 

staircase effect. Although higher-order regularizer can 

conquer the staircase effect to some extent, it often 

leads to blurred. Considering the upper questions,  

The combination of first and second-order regularizer 

will be an effective and prior method to tackle speckle 

noise removal. So a variational model with hybrid TV 

and higher-order total curvature (TC) term is proposed 

in this paper, the data fidelity term is derived based on 

G 0 distribution. In order to preserve the edge detail 

better, the boundary detection function is combined 

with the regularizer. Furthermore, the Mellin 

transform is used to estimate the parameters of the 

model. To address the speckle noise removal 

optimization problem, alternating direction method of 

multipliers (ADMM) framework is employed to design 

a convex numerical method for the proposed model. 

The numerical method can be used to update the 

variables flexibly as required by the hybrid regularizer. 

EXISTING SYSTEM 

• In this system, we proposed a novel deep learning 

denoising framework aiming to enhance the 

quantitative accuracy of dynamic PET images.  

• This is done via introduction of deep image prior (DIP) 

combined with Regularization by Denoising (RED), as 

such the method is labeled as Deep RED denoising. 

• The network structure is based on encoder-decoder 

architecture and uses skip connections to combine 

hierarchical features to generate the estimated image. 

• Based on simulated data and real patient data, the 

quantitative performance of the proposed method was 

compared with state-of-the-art methods. The 

comparison study proves that several limitation are 

existed. 

DRAWBACKS 

• Accuracy of the results are very low. 

• The time taken for training and testing data are more. 

• The computational complexity of data is too high. 

PROPOSED SYSTEM BLOCK DIAGRAM 
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DATASET 

 
CNN CLASSIFICATION 

• CLASSIFICATIONS: Convolutional Neural Networks 

(CNN) are deep learning algorithms that are very 

powerful for the analysis of images. 

• There are three types of layers in Convolutional 

Neural Networks: 

1. Convolutional Layer 

2. Pooling Layer 

3. Fully-Connected layer 

CNN ALGORITHM 

• Classification of Brain Stroke using Convolution 

Neural Network  

• Input: Load all CT images 𝐼 from the dataset  

• Output: Classified brain stroke images (CI) into 

hemorrhagic and ischemic  

• Step 1: Function CI=Classify (I)  

• Step 2: Apply contrast stretching  

• Step 3: Perform image filtering using average filter 

with image sharpening procedure  

• Step 4: Use quad tree based image fusing technique by 

fusing contrast and filtered image  

• Step 5: Partition the fused image dataset into training 

and testing set  

• Step 6: Feed the training dataset of 512 × 512 × 1 into 

P_CNN network  

1. ReLU layer 

2. MaxPooling layer  

3. 2-D convolutional layer with 10 filters of [5 5] 

4. 2-D convolutional layer with 96 filters of [11 11] size 

where stride is 4.  

5. ReLU Layer  

6. MaxPooling layer  

7. Fully connected layer with output size of 512  

8. ReLU Layer  

9. Dropout layer with dropout probability 0.1  

10. Fully connected layer with output size of 2 to 

classify stroke as hemorrhagic or ischemic  

11. Apply softmax layer  

Classify image dataset using classification layer 

 

ACCURACY AND LOSS 

 
TESTIMAGE  

 
PREDICTED OUTPUT 
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TEST IMAGE  

 
PREDICTED OUTPUT 

 
 

TESTIMAGE 

 
 

 

 

 

 

 

PREDICTED OUTPUT 

 
TESTIMAGE  

 
PREDICTED OUTPUT       
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TESTIMAGE  

 
PREDICTED OUTPUT     

 
 

ADVANTAGES 

Time consumption is low. 

Accuracy of the results is high. 

Computational complexity of the algorithm is low. 

 

APPLICATIONS 

Image Polishing and restoration. 

Small Lesion Detection 

Image Segmentation 

 

CONCLUSION 

In this Project, we proposed a deep learning 

convolutional neural networks framework to get exact 

haemorrhage segmentation in CT brain images. 

Initially, for the input of the network, data symmetry, 

and data augmentation are considered in the proposed 

model to abstract the structural symmetry of the brain 

image and prepare enough training data. Second, 

median filter is used to segment the interest area from 

the background. Comparing the experiments based on 

CT brain images demonstrated that the proposed CNN 

based model shows great advantages compared with 

human experts on haemorrhage lesion diagnosis.           
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