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ABSTRACT 

This paper is an overview of the Machine Learning Operations (MLOps) area. 

Our aim is to define the operation and the components of such systems by 

highlighting the current problems and trends. In this context we present the 

different tools and their usefulness in order to provide the corresponding 

guidelines. Machine learning operations (MLOps) is quickly becoming a critical 

component of successful data science project deployment in the enterprise. It’s a 

process that helps organisations and business leaders generate long-term value 

and reduce risk associated with data science, machine learning, and AI 

initiatives. Yet it’s a relatively new concept; so why has it seemingly skyrocketed 

into the data science lexicon overnight? This introductory chapter delves into 

what MLOps is at a high level, its challenges, why it has become essential to a 

successful data science strategy in the enterprise, and, critically, why it is coming 

to the forefront now. 
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I. INTRODUCTION 

 

Incorporating machine learning models in production 

is a challenge that remains from the creation of the first 

models until now. For years data scientists, machine 

learning engineers, front end engineers, production 

engineers tried to find a way to work together and 

combine their knowledge in order to deploy ready for 

production models. This task has many difficulties and 

it is not easy to overcome them. This is why only a 

small percentage of the ML projects manage to reach 

production. In the previous years a set of techniques 

and tools have been proposed and used in order to 

minimise as much as possible this kind of problems. 

The development of these tools had multiple targets. 

Data preprocessing, models’ creation, training, 

evaluation, deployment, and monitoring are some of 

them. As the field of AI progresses such kind of tools 

are constantly emerging. 

At its core, MLOps is the standardisation and 

streamlining of machine learning life cycle 

management. But taking a step back, why does the 

machine learning life cycle need to be streamlined? On 

the surface, just looking at the steps to go from business 

problem to a machine learning model at a very high 

level, it seems straightforward[1]. 

For most traditional organisations, the development of 

multiple machine learning models and their 

deployment in a production environment are 

relatively new. Until recently, the number of models 

http://www.ijsrset.com/
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may have been manageable at a small scale, or there 

was simply less interest in understanding these models 

and their dependencies at a company-wide level. With 

decision automation (that is, an increasing prevalence 

of decision making that happens without human 

intervention), models become more critical, and, in 

parallel, managing model risks becomes more 

important at the top level. 

MLOps isn’t just important because it helps mitigate 

the risk of machine learning models in production; it is 

also an essential component to massively deploying 

machine learning efforts (and in turn benefiting from 

the corresponding economies of scale). Going from one 

or a handful of models in production to tens, hundreds, 

or thousands that have a positive business impact 

requires MLOps discipline. 

To understand the key features of MLOps, it’s essential 

first to understand how machine learning works and 

be intimately familiar with its specificities. Though 

often overlooked in its role as a part of MLOps, 

ultimately algorithm selection (or how machine 

learning models are built) can have a direct impact on 

MLOps processes. 

At its core, machine learning is the science of computer 

algorithms that automatically learn and improve from 

experience rather than being explicitly programmed. 

The algorithms analyse sample data, known as training 

data, to build a software model that can make 

predictions. 

 

II. Model Development 

 

1. Establishing Business Objectives 

The development of a machine learning model 

typically begins with a business objective, which can 

be as simple as reducing fraudulent transactions to 0.1% 

or being able to recognise people's faces in social media 

photos. Business objectives, by definition, include 

performance targets, technical infrastructure 

requirements, and cost constraints; all of these factors 

can be captured as key performance indicators, or KPIs, 

allowing the business performance of models in 

production to be monitored. 

It is critical to understand that ML projects are 

typically part of a larger project that affects 

technologies, processes, and people. As a result, setting 

objectives includes change management, which may 

provide some guidance for how the ML model is to be 

built. For example, the required level of transparency 

will strongly influence algorithm selection and may 

drive the need to provide explanations alongside 

predictions in order for predictions to be turned into 

valuable business decisions. 

Different Ml Algorithms, Different MLOps Challenges 

What all ML algorithms have in common is that they 

make inferences by modelling patterns in previous 

data, and the quality and relevance of this experience 

are critical factors in their effectiveness. They differ in 

that each type of algorithm has unique characteristics 

and presents unique challenges in MLOps. 

Some ML algorithms are better suited to specific use 

cases, but governance considerations may also play a 

role in algorithm selection[2]. Highly regulated 

environments where decisions must be explained (e.g., 

financial services) cannot use opaque algorithms such 

as neural networks; instead, simpler technologies such 

as decision trees must be used. In many cases, the 

trade-off is not so much one of performance as it is one 

of cost. In other words, simpler techniques typically 

necessitate more expensive manual feature 

engineering to achieve the same level of performance 

as more complex techniques. 

2. Data Sources and Exploratory Data Analysis 

With clear business objectives in place, it is time to 

bring together subject matter experts and data 

scientists to begin the journey of developing the ML 

model[4]. This process begins with the search for 

appropriate input data. Finding data may appear to be 

a simple task, but in practice, it can be the most 

difficult part of the journey. 

Because data is required to power ML algorithms, it is 

always beneficial to gain an understanding of the 

patterns in data before attempting to train models[7]. 
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Exploratory data analysis (EDA) techniques can aid in 

the development of hypotheses about the data, the 

identification of data cleaning requirements, and the 

process of selecting potentially significant features. 

EDA can be performed visually for intuitive insight or 

statistically for greater rigour. 

● Data Exploration 

When data scientists or analysts consider data sources 

for training a model, they must first understand the 

nature of the data. Even the most effective algorithm-

trained model is only as good as its training data. A 

number of issues, such as incompleteness, inaccuracy, 

inconsistency, and so on, can prevent all or part of the 

data from being useful at this stage. 

Examples of such processes can include: 

• Documenting how the data was collected and what 

assumptions were already made 

• Looking at summarising statistics of the data: What is 

the domain of each column? Are there some rows with 

missing values? Obvious mistakes? Strange outliers? No 

outliers at all? 

• Taking a closer look at the distribution of the data 

• Cleaning, filling, reshaping, filtering, clipping, 

sampling, etc. 

• Checking correlations between the different columns, 

running statistical tests on some subpopulations, fitting 

distribution curves 

• Comparing that data to other data or models in the 

literature: Is there some usual information that seems 

to be missing? Is this data comparably distributed? 

Of course, domain knowledge is required to make 

informed decisions during this exploration. Some 

anomalies may be difficult to detect without specific 

knowledge, and assumptions can have unintended 

consequences for the untrained eye. Industrial sensor 

data is a good example: unless the data scientist is also 

a mechanical engineer or equipment expert, they may 

not understand what constitutes normal versus strange 

outliers for a specific machine. 

3.Feature Engineering and Selection 

EDA usually leads to feature engineering and feature 

selection. The process of transforming raw data from 

selected datasets into "features" that better represent 

the underlying problem to be solved is known as 

feature engineering. "Features" are fixed-size arrays of 

numbers, as they are the only object that ML 

algorithms understand. Data cleansing is a component 

of feature engineering that can account for the 

majority of the time spent on an ML project. 

● Feature Engineering Techniques 

The most common is one-hot encoding[6]. Text or 

image inputs, on the other hand, necessitate more 

intricate engineering. Deep learning has recently 

transformed this field by providing models that 

convert images and text into tables of numbers that ML 

algorithms can use. These tables are known as 

embeddings, and they enable data scientists to perform 

transfer learning because they can be used in domains 

where they have not previously been trained. 

● Feature Selection 

When it comes to feature creation and selection, the 

question of how much and when to stop comes up 

frequently. Including more features may result in a 

more accurate model, greater fairness when splitting 

into more precise groups, or compensation for other 

useful missing information. However, it has some 

drawbacks, all of which can have a significant impact 

on MLOps strategies in the long run 

Automated feature selection can help by using 

heuristics to estimate how important certain features 

will be for the model's predictive performance. For 

example, one can examine the correlation with the 

target variable or quickly train a simple model on a 

representative subset of the data and then examine 

which features are the most powerful predictors. 

4.Training and Evaluation 

After data preparation by way of feature engineering 

and selection, the next step is training. The process of 

training and optimising a new ML model is iterative; 

several algorithms may be tested, features can be 

automatically generated, feature selections may be 

adapted, and algorithm hyper parameters tuned. 

Training is the most computationally intensive step of 
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the ML model life cycle, in addition to (or in many 

cases because of) its iterative nature. 

When iterating, keeping track of the results of each 

experiment becomes increasingly difficult. Nothing 

bothers data scientists more than being unable to 

recreate the best results because they cannot recall the 

exact configuration. An experiment tracking tool can 

greatly simplify the process of remembering the data, 

selecting features, and model parameters, as well as 

tracking performance metrics. These allow 

experiments to be compared side by side, highlighting 

performance differences. 

Choosing the best solution necessitates consideration 

of both quantitative criteria, such as accuracy or 

average error, and qualitative criteria, such as the 

explainability of the algorithm or its ease of 

deployment[3]. 

● Experimentation 

Experimentation takes place throughout the entire 

model development process, and usually every 

important decision or assumption comes with at least 

some experiment or previous research to justify 

it.When experimenting, data scientists need to be able 

to quickly iterate through all the possibilities for each 

of the model 

Fortunately, there are tools to do all of this 

semi ,automatically, where you only need to define 

what should be tested (the space of possibilities) 

depending on prior knowledge (what makes sense) and 

the constraints (e.g., computation, budget). 

Trying all combinations of every possible hyper 

parameter, feature handling, etc., quickly becomes 

untraceable. Therefore, it is useful to define a time 

and/or computation budget for experiments as well as 

an acceptability threshold for usefulness of the model 

(more on that notion in the next section). 

Fortunately, more and more data science and machine 

learning platforms allow for automating these 

workflows not only on the first run, but also to 

preserve all the processing operations for repeatability. 

Some also allow for the use of version control and 

experimental branch spin-off to test theories and then 

merge, discard, or keep them 

● Evaluating and Comparing Models 

George E. P. Box, a twentieth century British 

statistician, once said that all models are wrong, but 

some are useful. In other words, a model should not 

aim to be perfect, but it should pass the bar of “good 

enough to be useful” while keeping an eye on the 

uncanny valley—typically a model that looks like it’s 

doing a good job but does a bad (or catastrophic) job for 

a specific subset of cases (say, an underrepresented 

population). 

With this in mind, it’s important to evaluate a model 

in context and have some ability to compare it to what 

existed before the model—whether a previous model 

or a rules- based process—to get an idea of what the 

outcome would be if the current model or decision 

process were replaced by the new one. 

● Choosing Evaluation Metrics 

Choosing the proper metric by which to evaluate and 

compare different models for a given problem can lead 

to very different models A simple example: accuracy is 

often used for automated classification problems but is 

rarely the best fit when the classes are unbalanced (i.e., 

when one of the outcomes is very unlikely compared 

to the other). In a binary classification problem where 

the positive class (i.e., the one that is interesting to 

predict because its prediction triggers an action) is rare, 

say 5% of occurrences, a model that constantly predicts 

the negative class is therefore 95% accurate, while also 

utterly useless. 

To get an idea of how well a model will generalise, that 

metric should be evaluated on a part of the data that 

was not used for the model’s training (a holdout 

dataset), a method called cross-testing. There can be 

multiple steps where some data is held for evaluation 

and the rest is used for training or optimising, such as 

metric evaluation or hyper parameter optimisation. 

There are different strategies as well, not necessarily 

just a simple split. In k-fold cross-validation, for 

example, data scientists rotate the parts that they hold 

out to evaluate and train multiple times. This 
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multiplies the train ing time but gives an idea of the 

stability of the metric. 

Oftentimes, data scientists want to periodically retrain 

models with the same algorithms, hyper parameters, 

features, etc., but on more recent data. Naturally, the 

next step is to compare the two models and see how 

the new version fares. But it’s also important to make 

sure all previous assumptions still hold: that the 

problem hasn’t fundamentally shifted, that the 

modelling choices made previously still fit the data, etc. 

This is more specifically part of performance and drift 

monitoring 

Unfortunately, there is no one-size-fits-all metric. You 

need to pick one that matches the problem at hand, 

which means understanding the limits and trade-offs 

of the metric (the mathematics side) and their impact 

on the optimisation of the model (the business side). 

5.Version Management and Reproducibility 

Discussing the evaluation and comparison of models 

(for fairness as discussed immediately before, but also 

a host of other factors) necessarily brings up the idea of 

version control and the reproducibility of different 

model versions. With data scientists building, testing, 

and iterating on several versions of models, they need 

to be able to keep all the versions straight. 

Version management and reproducibility address two 

different needs: 

● During the experimentation phase, data scientists 

may find themselves going back and forth on different 

decisions, trying out different combinations, and 

reverting when they don’t produce the desired results. 

That means having the ability to go back to different 

“branches” of the experiments—for example, restoring 

a previous state of a project when the experimentation 

process led to a dead end. 

● Data scientists or others (auditors, managers, etc.) 

may need to be able to replay the computations that 

led to model deployment for an audit team several 

years after the experimentation was first done. 

● Reproducibility 

While many experiments are transient, significant 

versions of a model must be saved for future use. The 

issue at hand is reproducibility, which is a key concept 

in experimental science in general. The goal of 

machine learning is to save enough information about 

the environment in which the model was developed so 

that it can be recreated with the same results from 

scratch. 

Without reproducibility, data scientists have little 

chance of confidently iterating on models, and even 

less chance of handing the model over to DevOps to 

see if what was created in the lab can be faithfully 

reproduced in production. True reproducibility 

necessitates version control of all assets and parameters 

involved, including training and evaluation data, as 

well as a record of the software environment. 

6.Productionalization and Deployment 

Model productionalization and deployment is an 

important component of MLOps that presents a 

completely different set of technical challenges than 

model development[5]. It is the responsibility of the 

software engineer and the DevOps team, and the 

organisational challenges in managing information 

exchange between data scientists and these teams 

should not be underestimated. Delays or failures to 

deploy are unavoidable without effective team 

collaboration. 

Model Deployment Types and Contents 

To understand what happens during these stages, take 

a step back and ask yourself: what exactly goes into 

production, and what does a model consist of? Model 

deployment is commonly divided into two types: 

● Live-scoring model or model-as-a-service 

The model is typically deployed in a simple framework 

to provide a REST API endpoint (the means by which 

the API can access the resources required to perform 

the task) that responds to requests in real time. 

● Embedded model 

Here the model is packaged into an application, which 

is then published. A common example is an application 

that provides batch-scoring of requests. 

What to-be-deployed models consist of depends on the 

technology used, but they typically consist of a set of 

code (typically Python, R, or Java) and data artefacts. 
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Any of these can have runtime and package version 

dependencies that must match in the production 

environment because using different versions may 

cause model predictions to differ. 

One approach to reducing dependencies on the 

production environment is to export the model to a 

portable format such as PMML, PFA, ONNX, or POJO. 

These aim to improve model portability between 

systems and simplify deployment. However, they 

come at a cost: each format supports a limited range of 

algorithms, and sometimes the portable models behave 

in subtly different ways than the original. Whether or 

not to use a portable format is a choice to be made 

based on a thorough understanding of the 

technological and business context. 

● Containerisation 

Containerisation is becoming an increasingly popular 

solution to the problems associated with dependencies 

when deploying ML models. Container technologies, 

such as Docker, are lightweight alternatives to virtual 

machines, allowing applications to be deployed in 

independent, self-contained environments that are 

tailored to the exact needs of each model.They also 

allow for the seamless deployment of new models via 

the blue-green deployment technique. Model compute 

resources can also be elastically scaled using multiple 

containers. The role of technologies such as 

Kubernetes, which can be used both in the cloud and 

on-premise, is to orchestrate many containers. 

● Runtime Environments 

The first step in sending a model to production is 

making sure it’s technically possible ideal MLOps 

systems favor rapid, automated deployment over 

labor-intensive processes, and runtime environments 

can have a big effect on which approach prevails. 

Production environments take a wide variety of forms: 

custom-built services, data science platforms, 

dedicated services like TensorFlow Serving, low-level 

infrastructure like Kubernetes clusters, JVMs on 

embedded systems, etc. To make things even more 

complex, consider that in some organisations, multiple 

heterogeneous production environments coexist. 

Ideally, models running in the development 

environment would be validated and sent as is to 

production; this minimises the amount of adaptation 

work and improves the chances that the model in 

production will behave as it did in development. 

Unfortunately, this ideal scenario is not always 

possible, and it’s not unheard of that teams finish a 

long-term project only to realise it can’t be put in 

production. 

● Adaptation from Development to Production 

Environments 

In terms of adaptation work, on one end of the 

spectrum, the development and production platforms 

are from the same vendor or are otherwise 

interoperable, and the dev model can run without any 

modification in production. In this case, the technical 

steps required to push the model into production are 

reduced to a few clicks or commands, and all efforts 

can be focused on validation. 

On the other end of the spectrum, there are cases 

where the model needs to be reimplemented from 

scratch—possibly by another team, and possibly in 

another programming language. Given the resources 

and time required, there are few cases today where this 

approach makes sense. However, it’s still the reality in 

many organisations and is often a consequence of the 

lack of appropriate tooling and processes. The reality is 

that handing over a model for another team to 

reimplement and adapt for the production 

environment means that model won’t reach 

production for months (maybe years), if at all. 

Between these two extreme cases, a number of 

transformations per formed on the model or 

interactions with its environment can be made to make 

it production compatible. In all cases, validation should 

be performed in an environment that is as close to 

production as possible, rather than in the development 

environment. 

● Tooling considerations 

The format required to send to production should be 

considered early, as it may have a large impact on the 

model itself and the quantity of work required to 
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productionalize it. For example, when a model is 

developed using scikit-learn (Python) and production 

is a Java-based environment that expects PMML or 

ONNX as input, conversion is obviously required. 

● Performance considerations 

Another common reason conversion may be required 

is for performance. For example, a Python model will 

typically have higher latency for scoring a single 

record than its equivalent converted to C++. The 

resulting model will likely be dozens of times faster 

(although obviously it depends on many factors, and 

the result can also be a model that is dozens of times 

slower). 

● Data Access Before Validation and Launch to 

Production 

In some cases, data can be frozen and bundled with the 

model. But when this is not possible (e.g., if the dataset 

is too large or the enrichment data needs to always be 

up to date), the production environment should access 

a database and thus have the appropriate network 

connectivity, libraries, or drivers required to 

communicate with the data storage installed, and 

authentication credentials stored in some form of 

production configuration. 

Managing this setup and configuration can be quite 

complex in practice since, again, it requires appropriate 

tooling and collaboration (in particular to scale to more 

than a few dozen models). When using external data 

access, model validation in situations that closely 

match production is even more critical as technical 

connectivity is a common source of production 

malfunction. 

7.Model Deployment Requirements 

So, what needs to be addressed in the 

productionalization process between completing 

model development and physically deploying into 

production? One thing is certain: rapid, automated 

deployment is always preferable to time-consuming 

processes. 

Testing and validation are frequently unnecessary for 

short-lived, self-service applications. If the model's 

maximum resource demands can be safely capped by 

technologies like Linux groups, then a fully automated 

single-step push-to-production may be perfectly 

adequate. When using this lightweight deployment 

mode, it is even possible to handle multiple user 

interfaces with frameworks such as Flask. In addition 

to integrated data science and machine learning 

platforms, some business rule management systems 

may allow for the automatic deployment of basic ML 

models. 

In customer-facing, mission-critical use cases, a more 

robust CI/CD pipeline is required. This typically 

involves: 

 

1. Ensuring all coding, documentation and sign-off 

standards have been met 

2. Re-creating the model in something approaching the 

production environment 

3. Revalidating the model accuracy 

4. Performing explainability checks 

5. Ensuring all governance requirements have been 

met 

6. Checking the quality of any data artefacts 

7. Testing resource usage under load 

8. Embedding into a more complex application, 

including integration tests  

 

8.Monitoring 

Once a model is deployed to production, it is crucial 

that it continue to perform well over time. But good 

performance means different things to different people, 

in particular to the DevOps team, to data scientists, and 

to the business. 

● DevOps Concerns 

The DevOps team's concerns are well-known, and 

they include questions such as: 

1. Is the model doing the job quickly enough? 

2. Is it utilising an appropriate amount of memory and 

processing time? 

This is traditional IT performance monitoring, and 

DevOps teams are already adept at it. In this regard, 

the resource requirements of ML models are not 

dissimilar to those of traditional software. 
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The scalability of computing resources is important to 

consider, Overall, the existing expertise in DevOps 

teams for resource monitoring and management can be 

easily applied to ML models. 

● Data Scientist Concerns 

The real world does not stop. The training data used to 

build a fraud detection model six months ago will not 

reflect a new type of fraud that began in the last three 

months. If a website begins to attract a younger user 

base, a model that generates advertisements is likely to 

produce less and less relevant advertisements. At some 

point, the performance will become unacceptable, 

necessitating model retraining. How frequently 

models must be retrained is determined by how 

quickly the real world changes and how accurate the 

model must be, but also, and most importantly, by how 

simple it is to build and deploy a better model. 

● Ground truth 

The ground truth, put simply, is the correct answer to 

the question that the model was asked to solve.,In 

knowing the ground truth for all the predictions a 

model has made, one can judge how well that model is 

performing. Sometimes ground truth is obtained 

rapidly after a prediction 

● Input drift 

Input drift is based on the idea that a model can only 

predict accurately if the data it was trained on is an 

accurate representation of the real world. So, if a 

comparison of recent requests to a deployed model 

against training data reveals significant differences, 

then the model performance is likely to be 

compromised. This is the foundation for monitoring 

input drift. The beauty of this approach is that all of 

the data needed for this test already exists, eliminating 

the need to wait for ground truth or other information. 

Identifying drift is one of the most important 

components of an adaptable MLOps strategy, and one 

that can bring agility to the organisation’s enterprise 

AI efforts overall. 

● Iteration and Life Cycle 

Developing and deploying improved versions of a 

model is an important and difficult part of the MLOps 

life cycle. One of the reasons for developing a new 

model version is model performance degradation due 

to model drift, as discussed in the preceding section. 

Sometimes there is a need to reflect refined business 

objectives and KPIs, and other times the data scientists 

have simply developed a better way to design the 

model. 

Iteration 

In some industries with a high rate of change, new 

training data is made available daily. Daily retraining 

and redeployment of the model are frequently 

automated to ensure that the model accurately reflects 

recent experience. 

 

The most basic scenario for iterating a new model 

version is retraining an existing model with the most 

recent training data. However, even though there are 

no changes to the feature selection or algorithm, there 

are still numerous pitfalls. More specifically: 

● Does the new training data look as expected? 

Automated validation of the new data through 

predefined metrics and checks is essential. 

● Is the data complete and consistent? 

● Are the distributions of features broadly similar to 

those in the previous training set? Remember 

● that the goal is to refine the model, not radically 

change it.  

 

After creating a new model version, compare the 

metrics to the current live model version. To do so, 

both models must be evaluated on the same 

development dataset, whether the previous or latest 

version. If metrics and checks show that the models 

differ significantly, automated scripts should not be 

reused, and manual intervention should be sought. 

● Even in the “simple” automated retraining scenario 

with new training data, there is a need for multiple 

development datasets based on scoring data 

reconciliation (with ground truth when it becomes 

available), data cleaning and validation, the previous 

model version, and a set of carefully considered checks. 

Retraining in other scenarios is likely to be even more 
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complicated, rendering automated redeployment 

unlikely. 

 

The Feedback Loop 

DevOps best practices usually dictate that the live 

model scoring environment and the model retraining 

environment be separate in large enterprises. As a 

result, the evaluation of a new model version on the 

retraining environment is very likely. 

One approach to mitigating this uncertainty is shadow 

testing, where the new model version is deployed into 

the live environment alongside the existing model. All 

live scoring is handled by the incumbent model 

version, but each new request is then scored again by 

the new model version and the results logged, but not 

returned to the requestor. Once sufficient requests 

have been scored by both versions, the results can be 

compared statistically. Shadow scoring also gives more 

visibility to the SMEs on the future versions of the 

model and may thus allow for a smoother transition. 

 

III. Summary 

 

Putting machine learning models into production is a 

significant challenge for many organisations. As AI 

initiatives expand, MLOps is the cornerstone in 

ensuring deployed models are well maintained, 

perform as expected, and do not adversely affect the 

business. Therefore, proper MLOps practices are 

essential. 

While we can run standard software in production for 

years without updating it, this is far from realistic for a 

machine learning (ML) model. There is an inherent 

decay in model predictions that requires regular 

retraining. Managing these updates manually quickly 

becomes tedious and is not scalable. Automation 

begins with identifying which metrics to monitor, 

when these metrics become worrisome, and what 

indicators are used to determine whether a new 

version of a model is outperforming the current 

version. 

These challenges highlight the importance of seeing 

MLOps as a complete puzzle with the pieces coming 

from designing, building, deploying, monitoring, and 

governing models. 

 

In this paper we have discussed how we can handle 

some of these issues in developing modern day ML 

solutions. 

 
MLOps 

Principles 
Data ML Model Code 

Documentation 1) Data sources 

2) Decisions, 

how/where to get 
data 

3) Labelling 

methods 

1) Model 

selection criteria 

2) Design of 
experiments 

3) Model pseudo-

code 

1) 

Deployment 

process 
2) How to run 

locally 

Project 

Structure 
1) Data folder for 

raw and processed 

data 

2) A folder for 
data engineering 

pipeline 

3) Test folder for 

data engineering 

methods 

1) A folder that 

contains the 

trained model 

2) A folder for 
notebooks 

3) A folder for 

feature 

engineering 

4)A folder for ML 

model engineering 

1) A folder for 

bash/shell 

scripts 

2) A folder for 
tests 

3) A folder for 

deployment 

files (e.g 

Docker files) 

Versioning 1) Data 

preparation 

pipelines 

2) Features store 

3) Datasets 

4) Metadata 

1) ML model 

training pipeline 

2) ML model 

(object) 

3) 

Hyperparameter

s 

4) Experiment 

tracking 

1) 

Application 

code 

2) 

Configuratio

ns 

Testing 1) Data 

Validation (error 

detection) 

2) Feature 

creation unit 

testing 

1) Model 

specification is 

unit tested 

2) ML model 

training pipeline 

is integration 

tested 

3) ML model is 

validated before 

being 

operationalized 

4) ML model 

staleness test (in 

production) 

5) Testing ML 

model relevance 

and correctness 

6) Testing non-

functional 

requirements 

(security, 

fairness, 

interpretability) 

1) Unit 

testing 

2) 

Integration 

testing for 

the end-to-

end pipeline 
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Automation 1) Data 

transformation 

2) Feature 

creation and 

manipulation 

1) Data 

engineering 

pipeline 

2) ML model 

training pipeline 

3) 

Hyperparameter

/Parameter 

selection 

1) ML 

model 

deployment 

with CI/CD 

2) 

Application 

build 

Reproducibilit

y 
1) Backup data 

2) Data 

versioning 

3) Extract 

metadata 

4) Versioning of 

feature 

engineering 

1) 

Hyperparameter 

tuning is 

identical 

between dev 

and prod 

2) The order of 

features is the 

same 

3) Ensemble 

learning: the 

combination of 

ML models is 

same 

4)The model 

pseudo-code is 

documented 

1) Versions 

of all 

dependencie

s in dev and 

prod are 

identical 

2) Same 

technical 

stack for dev 

and 

production 

environment

s 

3) 

Reproducing 

results by 

providing 

container 

images or 

virtual 

machines 
Deployment 1) Feature store 

is used in dev 

and prod 

environments 

1) 

Containerizatio

n of the ML 

stack 

2) REST API 

3) On-premise, 

cloud, or edge 

1) On-

premise, 

cloud, or 

edge 

Monitoring 1) Data 

distribution 

changes 

(training vs. 

serving data) 

2) Training vs 

serving features 

1) ML model 

decay 

2) Numerical 

stability 

3) 

Computational 

performance of 

the ML model 

1) Predictive 

quality of 

the 

application 

on serving 

data 

 

IV. REFERENCES 

 

[1] S. Makinen, H. Skogstr ¨ om, V. Turku, E. 

Laaksonen, and ¨ T. Mikkonen, “Who needs 

mlops: What data scientists seek to accomplish 

and how can mlops help?” 

[2] C. Renggli, L. Rimanic, N. M. Gurel, B. Karla ¨ s, 

W. Wu, ˇ C. Zhang, and E. Zurich, “A data 

quality-driven view of mlops,” 2 2021. [Online]. 

Available: https://arxiv.org/abs/ 2102.07750v1 

[3] P. Ruf, M. Madan, C. Reich, and D. Ould-

Abdeslam, “Demystifying mlops and presenting a 

recipe for the selection of open-source tools,” 

Applied Sciences 2021, Vol. 11, Page 8861, vol. 11, 

p. 8861, 9 2021. [Online]. Available: 

https://www.mdpi.com/2076-3417/11/ 

19/8861/htmhttps://www.mdpi.com/2076-

3417/11/19/8861 

[4] J. Klaise, A. V. Looveren, C. Cox, G. Vacanti, and 

A. Coca, “Monitoring and explainability of models 

in production,” 7 2020. [Online]. Available: 

https://arxiv.org/abs/2007.06299v1 

[5] S. Alla and S. K. Adari, “What is mlops?” in 

Beginning MLOps with MLFlow. Springer, 2021, 

pp. 79–124. 

[6] Introducing MLOps “How to Scale Machine 

Learning in the Enterprise “  by Mark Treveil and 

the Dataiku Team  

[7] E. RAJ, “Mlops using azure machine learning 

rapidly test, build, and manage production-ready 

machine learning life cycles at scale.” PACKT 

PUBLISHING LIMITED, pp. 45–62, 202 

 

Cite this article as : 

 

Rohan S Siddeshwara, V Sai Rohit, Arshad Pasha, 

Aditya S Manakar, "Design and Development of 

Modern day Machine Learning Applications - A 

Survey ", International Journal of Scientific Research 

in Science, Engineering and Technology (IJSRSET), 

Online ISSN : 2394-4099, Print ISSN : 2395-1990, 

Volume 9 Issue 6, pp. 251-260, November-December 

2022. Available at doi : 

https://doi.org/10.32628/IJSRSET229632           

Journal URL : https://ijsrset.com/IJSRSET229632 


