
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Science, Engineering and Technology

Print ISSN: 2395-1990 | Online ISSN : 2394-4099 (www.ijsrset.com)

doi : https://doi.org/10.32628/IJSRSET229632

251

Design and Development of Modern day Machine Learning Applications -

 A Survey
Rohan S Siddeshwara, V Sai Rohit, Arshad Pasha, Aditya S Manakar

Department of Artificial Intelligence and Machine Learning, New Horizon College of Engineering, Bangalore,

India

Article Info

Volume 9, Issue 6

Page Number : 251-260

Publication Issue :

November-December-2022

Article History

Accepted : 10 Nov 2022

Published: 28 Nov 2022

ABSTRACT

This paper is an overview of the Machine Learning Operations (MLOps) area.

Our aim is to define the operation and the components of such systems by

highlighting the current problems and trends. In this context we present the

different tools and their usefulness in order to provide the corresponding

guidelines. Machine learning operations (MLOps) is quickly becoming a critical

component of successful data science project deployment in the enterprise. It’s a

process that helps organisations and business leaders generate long-term value

and reduce risk associated with data science, machine learning, and AI

initiatives. Yet it’s a relatively new concept; so why has it seemingly skyrocketed

into the data science lexicon overnight? This introductory chapter delves into

what MLOps is at a high level, its challenges, why it has become essential to a

successful data science strategy in the enterprise, and, critically, why it is coming

to the forefront now.

Keywords : Machine Learning Operations, Ml Algorithms, MLOps

I. INTRODUCTION

Incorporating machine learning models in production

is a challenge that remains from the creation of the first

models until now. For years data scientists, machine

learning engineers, front end engineers, production

engineers tried to find a way to work together and

combine their knowledge in order to deploy ready for

production models. This task has many difficulties and

it is not easy to overcome them. This is why only a

small percentage of the ML projects manage to reach

production. In the previous years a set of techniques

and tools have been proposed and used in order to

minimise as much as possible this kind of problems.

The development of these tools had multiple targets.

Data preprocessing, models’ creation, training,

evaluation, deployment, and monitoring are some of

them. As the field of AI progresses such kind of tools

are constantly emerging.

At its core, MLOps is the standardisation and

streamlining of machine learning life cycle

management. But taking a step back, why does the

machine learning life cycle need to be streamlined? On

the surface, just looking at the steps to go from business

problem to a machine learning model at a very high

level, it seems straightforward[1].

For most traditional organisations, the development of

multiple machine learning models and their

deployment in a production environment are

relatively new. Until recently, the number of models

http://www.ijsrset.com/

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 6

Rohan S Siddeshwara et al Int J Sci Res Sci Eng Technol, November-December-2022, 9 (6) : 251-260

252

may have been manageable at a small scale, or there

was simply less interest in understanding these models

and their dependencies at a company-wide level. With

decision automation (that is, an increasing prevalence

of decision making that happens without human

intervention), models become more critical, and, in

parallel, managing model risks becomes more

important at the top level.

MLOps isn’t just important because it helps mitigate

the risk of machine learning models in production; it is

also an essential component to massively deploying

machine learning efforts (and in turn benefiting from

the corresponding economies of scale). Going from one

or a handful of models in production to tens, hundreds,

or thousands that have a positive business impact

requires MLOps discipline.

To understand the key features of MLOps, it’s essential

first to understand how machine learning works and

be intimately familiar with its specificities. Though

often overlooked in its role as a part of MLOps,

ultimately algorithm selection (or how machine

learning models are built) can have a direct impact on

MLOps processes.

At its core, machine learning is the science of computer

algorithms that automatically learn and improve from

experience rather than being explicitly programmed.

The algorithms analyse sample data, known as training

data, to build a software model that can make

predictions.

II. Model Development

1. Establishing Business Objectives

The development of a machine learning model

typically begins with a business objective, which can

be as simple as reducing fraudulent transactions to 0.1%

or being able to recognise people's faces in social media

photos. Business objectives, by definition, include

performance targets, technical infrastructure

requirements, and cost constraints; all of these factors

can be captured as key performance indicators, or KPIs,

allowing the business performance of models in

production to be monitored.

It is critical to understand that ML projects are

typically part of a larger project that affects

technologies, processes, and people. As a result, setting

objectives includes change management, which may

provide some guidance for how the ML model is to be

built. For example, the required level of transparency

will strongly influence algorithm selection and may

drive the need to provide explanations alongside

predictions in order for predictions to be turned into

valuable business decisions.

Different Ml Algorithms, Different MLOps Challenges

What all ML algorithms have in common is that they

make inferences by modelling patterns in previous

data, and the quality and relevance of this experience

are critical factors in their effectiveness. They differ in

that each type of algorithm has unique characteristics

and presents unique challenges in MLOps.

Some ML algorithms are better suited to specific use

cases, but governance considerations may also play a

role in algorithm selection[2]. Highly regulated

environments where decisions must be explained (e.g.,

financial services) cannot use opaque algorithms such

as neural networks; instead, simpler technologies such

as decision trees must be used. In many cases, the

trade-off is not so much one of performance as it is one

of cost. In other words, simpler techniques typically

necessitate more expensive manual feature

engineering to achieve the same level of performance

as more complex techniques.

2. Data Sources and Exploratory Data Analysis

With clear business objectives in place, it is time to

bring together subject matter experts and data

scientists to begin the journey of developing the ML

model[4]. This process begins with the search for

appropriate input data. Finding data may appear to be

a simple task, but in practice, it can be the most

difficult part of the journey.

Because data is required to power ML algorithms, it is

always beneficial to gain an understanding of the

patterns in data before attempting to train models[7].

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 6

Rohan S Siddeshwara et al Int J Sci Res Sci Eng Technol, November-December-2022, 9 (6) : 251-260

253

Exploratory data analysis (EDA) techniques can aid in

the development of hypotheses about the data, the

identification of data cleaning requirements, and the

process of selecting potentially significant features.

EDA can be performed visually for intuitive insight or

statistically for greater rigour.

● Data Exploration

When data scientists or analysts consider data sources

for training a model, they must first understand the

nature of the data. Even the most effective algorithm-

trained model is only as good as its training data. A

number of issues, such as incompleteness, inaccuracy,

inconsistency, and so on, can prevent all or part of the

data from being useful at this stage.

Examples of such processes can include:

• Documenting how the data was collected and what

assumptions were already made

• Looking at summarising statistics of the data: What is

the domain of each column? Are there some rows with

missing values? Obvious mistakes? Strange outliers? No

outliers at all?

• Taking a closer look at the distribution of the data

• Cleaning, filling, reshaping, filtering, clipping,

sampling, etc.

• Checking correlations between the different columns,

running statistical tests on some subpopulations, fitting

distribution curves

• Comparing that data to other data or models in the

literature: Is there some usual information that seems

to be missing? Is this data comparably distributed?

Of course, domain knowledge is required to make

informed decisions during this exploration. Some

anomalies may be difficult to detect without specific

knowledge, and assumptions can have unintended

consequences for the untrained eye. Industrial sensor

data is a good example: unless the data scientist is also

a mechanical engineer or equipment expert, they may

not understand what constitutes normal versus strange

outliers for a specific machine.

3.Feature Engineering and Selection

EDA usually leads to feature engineering and feature

selection. The process of transforming raw data from

selected datasets into "features" that better represent

the underlying problem to be solved is known as

feature engineering. "Features" are fixed-size arrays of

numbers, as they are the only object that ML

algorithms understand. Data cleansing is a component

of feature engineering that can account for the

majority of the time spent on an ML project.

● Feature Engineering Techniques

The most common is one-hot encoding[6]. Text or

image inputs, on the other hand, necessitate more

intricate engineering. Deep learning has recently

transformed this field by providing models that

convert images and text into tables of numbers that ML

algorithms can use. These tables are known as

embeddings, and they enable data scientists to perform

transfer learning because they can be used in domains

where they have not previously been trained.

● Feature Selection

When it comes to feature creation and selection, the

question of how much and when to stop comes up

frequently. Including more features may result in a

more accurate model, greater fairness when splitting

into more precise groups, or compensation for other

useful missing information. However, it has some

drawbacks, all of which can have a significant impact

on MLOps strategies in the long run

Automated feature selection can help by using

heuristics to estimate how important certain features

will be for the model's predictive performance. For

example, one can examine the correlation with the

target variable or quickly train a simple model on a

representative subset of the data and then examine

which features are the most powerful predictors.

4.Training and Evaluation

After data preparation by way of feature engineering

and selection, the next step is training. The process of

training and optimising a new ML model is iterative;

several algorithms may be tested, features can be

automatically generated, feature selections may be

adapted, and algorithm hyper parameters tuned.

Training is the most computationally intensive step of

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 6

Rohan S Siddeshwara et al Int J Sci Res Sci Eng Technol, November-December-2022, 9 (6) : 251-260

254

the ML model life cycle, in addition to (or in many

cases because of) its iterative nature.

When iterating, keeping track of the results of each

experiment becomes increasingly difficult. Nothing

bothers data scientists more than being unable to

recreate the best results because they cannot recall the

exact configuration. An experiment tracking tool can

greatly simplify the process of remembering the data,

selecting features, and model parameters, as well as

tracking performance metrics. These allow

experiments to be compared side by side, highlighting

performance differences.

Choosing the best solution necessitates consideration

of both quantitative criteria, such as accuracy or

average error, and qualitative criteria, such as the

explainability of the algorithm or its ease of

deployment[3].

● Experimentation

Experimentation takes place throughout the entire

model development process, and usually every

important decision or assumption comes with at least

some experiment or previous research to justify

it.When experimenting, data scientists need to be able

to quickly iterate through all the possibilities for each

of the model

Fortunately, there are tools to do all of this

semi ,automatically, where you only need to define

what should be tested (the space of possibilities)

depending on prior knowledge (what makes sense) and

the constraints (e.g., computation, budget).

Trying all combinations of every possible hyper

parameter, feature handling, etc., quickly becomes

untraceable. Therefore, it is useful to define a time

and/or computation budget for experiments as well as

an acceptability threshold for usefulness of the model

(more on that notion in the next section).

Fortunately, more and more data science and machine

learning platforms allow for automating these

workflows not only on the first run, but also to

preserve all the processing operations for repeatability.

Some also allow for the use of version control and

experimental branch spin-off to test theories and then

merge, discard, or keep them

● Evaluating and Comparing Models

George E. P. Box, a twentieth century British

statistician, once said that all models are wrong, but

some are useful. In other words, a model should not

aim to be perfect, but it should pass the bar of “good

enough to be useful” while keeping an eye on the

uncanny valley—typically a model that looks like it’s

doing a good job but does a bad (or catastrophic) job for

a specific subset of cases (say, an underrepresented

population).

With this in mind, it’s important to evaluate a model

in context and have some ability to compare it to what

existed before the model—whether a previous model

or a rules- based process—to get an idea of what the

outcome would be if the current model or decision

process were replaced by the new one.

● Choosing Evaluation Metrics

Choosing the proper metric by which to evaluate and

compare different models for a given problem can lead

to very different models A simple example: accuracy is

often used for automated classification problems but is

rarely the best fit when the classes are unbalanced (i.e.,

when one of the outcomes is very unlikely compared

to the other). In a binary classification problem where

the positive class (i.e., the one that is interesting to

predict because its prediction triggers an action) is rare,

say 5% of occurrences, a model that constantly predicts

the negative class is therefore 95% accurate, while also

utterly useless.

To get an idea of how well a model will generalise, that

metric should be evaluated on a part of the data that

was not used for the model’s training (a holdout

dataset), a method called cross-testing. There can be

multiple steps where some data is held for evaluation

and the rest is used for training or optimising, such as

metric evaluation or hyper parameter optimisation.

There are different strategies as well, not necessarily

just a simple split. In k-fold cross-validation, for

example, data scientists rotate the parts that they hold

out to evaluate and train multiple times. This

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 6

Rohan S Siddeshwara et al Int J Sci Res Sci Eng Technol, November-December-2022, 9 (6) : 251-260

255

multiplies the train ing time but gives an idea of the

stability of the metric.

Oftentimes, data scientists want to periodically retrain

models with the same algorithms, hyper parameters,

features, etc., but on more recent data. Naturally, the

next step is to compare the two models and see how

the new version fares. But it’s also important to make

sure all previous assumptions still hold: that the

problem hasn’t fundamentally shifted, that the

modelling choices made previously still fit the data, etc.

This is more specifically part of performance and drift

monitoring

Unfortunately, there is no one-size-fits-all metric. You

need to pick one that matches the problem at hand,

which means understanding the limits and trade-offs

of the metric (the mathematics side) and their impact

on the optimisation of the model (the business side).

5.Version Management and Reproducibility

Discussing the evaluation and comparison of models

(for fairness as discussed immediately before, but also

a host of other factors) necessarily brings up the idea of

version control and the reproducibility of different

model versions. With data scientists building, testing,

and iterating on several versions of models, they need

to be able to keep all the versions straight.

Version management and reproducibility address two

different needs:

● During the experimentation phase, data scientists

may find themselves going back and forth on different

decisions, trying out different combinations, and

reverting when they don’t produce the desired results.

That means having the ability to go back to different

“branches” of the experiments—for example, restoring

a previous state of a project when the experimentation

process led to a dead end.

● Data scientists or others (auditors, managers, etc.)

may need to be able to replay the computations that

led to model deployment for an audit team several

years after the experimentation was first done.

● Reproducibility

While many experiments are transient, significant

versions of a model must be saved for future use. The

issue at hand is reproducibility, which is a key concept

in experimental science in general. The goal of

machine learning is to save enough information about

the environment in which the model was developed so

that it can be recreated with the same results from

scratch.

Without reproducibility, data scientists have little

chance of confidently iterating on models, and even

less chance of handing the model over to DevOps to

see if what was created in the lab can be faithfully

reproduced in production. True reproducibility

necessitates version control of all assets and parameters

involved, including training and evaluation data, as

well as a record of the software environment.

6.Productionalization and Deployment

Model productionalization and deployment is an

important component of MLOps that presents a

completely different set of technical challenges than

model development[5]. It is the responsibility of the

software engineer and the DevOps team, and the

organisational challenges in managing information

exchange between data scientists and these teams

should not be underestimated. Delays or failures to

deploy are unavoidable without effective team

collaboration.

Model Deployment Types and Contents

To understand what happens during these stages, take

a step back and ask yourself: what exactly goes into

production, and what does a model consist of? Model

deployment is commonly divided into two types:

● Live-scoring model or model-as-a-service

The model is typically deployed in a simple framework

to provide a REST API endpoint (the means by which

the API can access the resources required to perform

the task) that responds to requests in real time.

● Embedded model

Here the model is packaged into an application, which

is then published. A common example is an application

that provides batch-scoring of requests.

What to-be-deployed models consist of depends on the

technology used, but they typically consist of a set of

code (typically Python, R, or Java) and data artefacts.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 6

Rohan S Siddeshwara et al Int J Sci Res Sci Eng Technol, November-December-2022, 9 (6) : 251-260

256

Any of these can have runtime and package version

dependencies that must match in the production

environment because using different versions may

cause model predictions to differ.

One approach to reducing dependencies on the

production environment is to export the model to a

portable format such as PMML, PFA, ONNX, or POJO.

These aim to improve model portability between

systems and simplify deployment. However, they

come at a cost: each format supports a limited range of

algorithms, and sometimes the portable models behave

in subtly different ways than the original. Whether or

not to use a portable format is a choice to be made

based on a thorough understanding of the

technological and business context.

● Containerisation

Containerisation is becoming an increasingly popular

solution to the problems associated with dependencies

when deploying ML models. Container technologies,

such as Docker, are lightweight alternatives to virtual

machines, allowing applications to be deployed in

independent, self-contained environments that are

tailored to the exact needs of each model.They also

allow for the seamless deployment of new models via

the blue-green deployment technique. Model compute

resources can also be elastically scaled using multiple

containers. The role of technologies such as

Kubernetes, which can be used both in the cloud and

on-premise, is to orchestrate many containers.

● Runtime Environments

The first step in sending a model to production is

making sure it’s technically possible ideal MLOps

systems favor rapid, automated deployment over

labor-intensive processes, and runtime environments

can have a big effect on which approach prevails.

Production environments take a wide variety of forms:

custom-built services, data science platforms,

dedicated services like TensorFlow Serving, low-level

infrastructure like Kubernetes clusters, JVMs on

embedded systems, etc. To make things even more

complex, consider that in some organisations, multiple

heterogeneous production environments coexist.

Ideally, models running in the development

environment would be validated and sent as is to

production; this minimises the amount of adaptation

work and improves the chances that the model in

production will behave as it did in development.

Unfortunately, this ideal scenario is not always

possible, and it’s not unheard of that teams finish a

long-term project only to realise it can’t be put in

production.

● Adaptation from Development to Production

Environments

In terms of adaptation work, on one end of the

spectrum, the development and production platforms

are from the same vendor or are otherwise

interoperable, and the dev model can run without any

modification in production. In this case, the technical

steps required to push the model into production are

reduced to a few clicks or commands, and all efforts

can be focused on validation.

On the other end of the spectrum, there are cases

where the model needs to be reimplemented from

scratch—possibly by another team, and possibly in

another programming language. Given the resources

and time required, there are few cases today where this

approach makes sense. However, it’s still the reality in

many organisations and is often a consequence of the

lack of appropriate tooling and processes. The reality is

that handing over a model for another team to

reimplement and adapt for the production

environment means that model won’t reach

production for months (maybe years), if at all.

Between these two extreme cases, a number of

transformations per formed on the model or

interactions with its environment can be made to make

it production compatible. In all cases, validation should

be performed in an environment that is as close to

production as possible, rather than in the development

environment.

● Tooling considerations

The format required to send to production should be

considered early, as it may have a large impact on the

model itself and the quantity of work required to

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 6

Rohan S Siddeshwara et al Int J Sci Res Sci Eng Technol, November-December-2022, 9 (6) : 251-260

257

productionalize it. For example, when a model is

developed using scikit-learn (Python) and production

is a Java-based environment that expects PMML or

ONNX as input, conversion is obviously required.

● Performance considerations

Another common reason conversion may be required

is for performance. For example, a Python model will

typically have higher latency for scoring a single

record than its equivalent converted to C++. The

resulting model will likely be dozens of times faster

(although obviously it depends on many factors, and

the result can also be a model that is dozens of times

slower).

● Data Access Before Validation and Launch to

Production

In some cases, data can be frozen and bundled with the

model. But when this is not possible (e.g., if the dataset

is too large or the enrichment data needs to always be

up to date), the production environment should access

a database and thus have the appropriate network

connectivity, libraries, or drivers required to

communicate with the data storage installed, and

authentication credentials stored in some form of

production configuration.

Managing this setup and configuration can be quite

complex in practice since, again, it requires appropriate

tooling and collaboration (in particular to scale to more

than a few dozen models). When using external data

access, model validation in situations that closely

match production is even more critical as technical

connectivity is a common source of production

malfunction.

7.Model Deployment Requirements

So, what needs to be addressed in the

productionalization process between completing

model development and physically deploying into

production? One thing is certain: rapid, automated

deployment is always preferable to time-consuming

processes.

Testing and validation are frequently unnecessary for

short-lived, self-service applications. If the model's

maximum resource demands can be safely capped by

technologies like Linux groups, then a fully automated

single-step push-to-production may be perfectly

adequate. When using this lightweight deployment

mode, it is even possible to handle multiple user

interfaces with frameworks such as Flask. In addition

to integrated data science and machine learning

platforms, some business rule management systems

may allow for the automatic deployment of basic ML

models.

In customer-facing, mission-critical use cases, a more

robust CI/CD pipeline is required. This typically

involves:

1. Ensuring all coding, documentation and sign-off

standards have been met

2. Re-creating the model in something approaching the

production environment

3. Revalidating the model accuracy

4. Performing explainability checks

5. Ensuring all governance requirements have been

met

6. Checking the quality of any data artefacts

7. Testing resource usage under load

8. Embedding into a more complex application,

including integration tests

8.Monitoring

Once a model is deployed to production, it is crucial

that it continue to perform well over time. But good

performance means different things to different people,

in particular to the DevOps team, to data scientists, and

to the business.

● DevOps Concerns

The DevOps team's concerns are well-known, and

they include questions such as:

1. Is the model doing the job quickly enough?

2. Is it utilising an appropriate amount of memory and

processing time?

This is traditional IT performance monitoring, and

DevOps teams are already adept at it. In this regard,

the resource requirements of ML models are not

dissimilar to those of traditional software.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 6

Rohan S Siddeshwara et al Int J Sci Res Sci Eng Technol, November-December-2022, 9 (6) : 251-260

258

The scalability of computing resources is important to

consider, Overall, the existing expertise in DevOps

teams for resource monitoring and management can be

easily applied to ML models.

● Data Scientist Concerns

The real world does not stop. The training data used to

build a fraud detection model six months ago will not

reflect a new type of fraud that began in the last three

months. If a website begins to attract a younger user

base, a model that generates advertisements is likely to

produce less and less relevant advertisements. At some

point, the performance will become unacceptable,

necessitating model retraining. How frequently

models must be retrained is determined by how

quickly the real world changes and how accurate the

model must be, but also, and most importantly, by how

simple it is to build and deploy a better model.

● Ground truth

The ground truth, put simply, is the correct answer to

the question that the model was asked to solve.,In

knowing the ground truth for all the predictions a

model has made, one can judge how well that model is

performing. Sometimes ground truth is obtained

rapidly after a prediction

● Input drift

Input drift is based on the idea that a model can only

predict accurately if the data it was trained on is an

accurate representation of the real world. So, if a

comparison of recent requests to a deployed model

against training data reveals significant differences,

then the model performance is likely to be

compromised. This is the foundation for monitoring

input drift. The beauty of this approach is that all of

the data needed for this test already exists, eliminating

the need to wait for ground truth or other information.

Identifying drift is one of the most important

components of an adaptable MLOps strategy, and one

that can bring agility to the organisation’s enterprise

AI efforts overall.

● Iteration and Life Cycle

Developing and deploying improved versions of a

model is an important and difficult part of the MLOps

life cycle. One of the reasons for developing a new

model version is model performance degradation due

to model drift, as discussed in the preceding section.

Sometimes there is a need to reflect refined business

objectives and KPIs, and other times the data scientists

have simply developed a better way to design the

model.

Iteration

In some industries with a high rate of change, new

training data is made available daily. Daily retraining

and redeployment of the model are frequently

automated to ensure that the model accurately reflects

recent experience.

The most basic scenario for iterating a new model

version is retraining an existing model with the most

recent training data. However, even though there are

no changes to the feature selection or algorithm, there

are still numerous pitfalls. More specifically:

● Does the new training data look as expected?

Automated validation of the new data through

predefined metrics and checks is essential.

● Is the data complete and consistent?

● Are the distributions of features broadly similar to

those in the previous training set? Remember

● that the goal is to refine the model, not radically

change it.

After creating a new model version, compare the

metrics to the current live model version. To do so,

both models must be evaluated on the same

development dataset, whether the previous or latest

version. If metrics and checks show that the models

differ significantly, automated scripts should not be

reused, and manual intervention should be sought.

● Even in the “simple” automated retraining scenario

with new training data, there is a need for multiple

development datasets based on scoring data

reconciliation (with ground truth when it becomes

available), data cleaning and validation, the previous

model version, and a set of carefully considered checks.

Retraining in other scenarios is likely to be even more

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 6

Rohan S Siddeshwara et al Int J Sci Res Sci Eng Technol, November-December-2022, 9 (6) : 251-260

259

complicated, rendering automated redeployment

unlikely.

The Feedback Loop

DevOps best practices usually dictate that the live

model scoring environment and the model retraining

environment be separate in large enterprises. As a

result, the evaluation of a new model version on the

retraining environment is very likely.

One approach to mitigating this uncertainty is shadow

testing, where the new model version is deployed into

the live environment alongside the existing model. All

live scoring is handled by the incumbent model

version, but each new request is then scored again by

the new model version and the results logged, but not

returned to the requestor. Once sufficient requests

have been scored by both versions, the results can be

compared statistically. Shadow scoring also gives more

visibility to the SMEs on the future versions of the

model and may thus allow for a smoother transition.

III. Summary

Putting machine learning models into production is a

significant challenge for many organisations. As AI

initiatives expand, MLOps is the cornerstone in

ensuring deployed models are well maintained,

perform as expected, and do not adversely affect the

business. Therefore, proper MLOps practices are

essential.

While we can run standard software in production for

years without updating it, this is far from realistic for a

machine learning (ML) model. There is an inherent

decay in model predictions that requires regular

retraining. Managing these updates manually quickly

becomes tedious and is not scalable. Automation

begins with identifying which metrics to monitor,

when these metrics become worrisome, and what

indicators are used to determine whether a new

version of a model is outperforming the current

version.

These challenges highlight the importance of seeing

MLOps as a complete puzzle with the pieces coming

from designing, building, deploying, monitoring, and

governing models.

In this paper we have discussed how we can handle

some of these issues in developing modern day ML

solutions.

MLOps

Principles
Data ML Model Code

Documentation 1) Data sources

2) Decisions,

how/where to get
data

3) Labelling

methods

1) Model

selection criteria

2) Design of
experiments

3) Model pseudo-

code

1)

Deployment

process
2) How to run

locally

Project

Structure
1) Data folder for

raw and processed

data

2) A folder for
data engineering

pipeline

3) Test folder for

data engineering

methods

1) A folder that

contains the

trained model

2) A folder for
notebooks

3) A folder for

feature

engineering

4)A folder for ML

model engineering

1) A folder for

bash/shell

scripts

2) A folder for
tests

3) A folder for

deployment

files (e.g

Docker files)

Versioning 1) Data

preparation

pipelines

2) Features store

3) Datasets

4) Metadata

1) ML model

training pipeline

2) ML model

(object)

3)

Hyperparameter

s

4) Experiment

tracking

1)

Application

code

2)

Configuratio

ns

Testing 1) Data

Validation (error

detection)

2) Feature

creation unit

testing

1) Model

specification is

unit tested

2) ML model

training pipeline

is integration

tested

3) ML model is

validated before

being

operationalized

4) ML model

staleness test (in

production)

5) Testing ML

model relevance

and correctness

6) Testing non-

functional

requirements

(security,

fairness,

interpretability)

1) Unit

testing

2)

Integration

testing for

the end-to-

end pipeline

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 9 | Issue 6

Rohan S Siddeshwara et al Int J Sci Res Sci Eng Technol, November-December-2022, 9 (6) : 251-260

260

Automation 1) Data

transformation

2) Feature

creation and

manipulation

1) Data

engineering

pipeline

2) ML model

training pipeline

3)

Hyperparameter

/Parameter

selection

1) ML

model

deployment

with CI/CD

2)

Application

build

Reproducibilit

y
1) Backup data

2) Data

versioning

3) Extract

metadata

4) Versioning of

feature

engineering

1)

Hyperparameter

tuning is

identical

between dev

and prod

2) The order of

features is the

same

3) Ensemble

learning: the

combination of

ML models is

same

4)The model

pseudo-code is

documented

1) Versions

of all

dependencie

s in dev and

prod are

identical

2) Same

technical

stack for dev

and

production

environment

s

3)

Reproducing

results by

providing

container

images or

virtual

machines
Deployment 1) Feature store

is used in dev

and prod

environments

1)

Containerizatio

n of the ML

stack

2) REST API

3) On-premise,

cloud, or edge

1) On-

premise,

cloud, or

edge

Monitoring 1) Data

distribution

changes

(training vs.

serving data)

2) Training vs

serving features

1) ML model

decay

2) Numerical

stability

3)

Computational

performance of

the ML model

1) Predictive

quality of

the

application

on serving

data

IV. REFERENCES

[1] S. Makinen, H. Skogstr ¨ om, V. Turku, E.

Laaksonen, and ¨ T. Mikkonen, “Who needs

mlops: What data scientists seek to accomplish

and how can mlops help?”

[2] C. Renggli, L. Rimanic, N. M. Gurel, B. Karla ¨ s,

W. Wu, ˇ C. Zhang, and E. Zurich, “A data

quality-driven view of mlops,” 2 2021. [Online].

Available: https://arxiv.org/abs/ 2102.07750v1

[3] P. Ruf, M. Madan, C. Reich, and D. Ould-

Abdeslam, “Demystifying mlops and presenting a

recipe for the selection of open-source tools,”

Applied Sciences 2021, Vol. 11, Page 8861, vol. 11,

p. 8861, 9 2021. [Online]. Available:

https://www.mdpi.com/2076-3417/11/

19/8861/htmhttps://www.mdpi.com/2076-

3417/11/19/8861

[4] J. Klaise, A. V. Looveren, C. Cox, G. Vacanti, and

A. Coca, “Monitoring and explainability of models

in production,” 7 2020. [Online]. Available:

https://arxiv.org/abs/2007.06299v1

[5] S. Alla and S. K. Adari, “What is mlops?” in

Beginning MLOps with MLFlow. Springer, 2021,

pp. 79–124.

[6] Introducing MLOps “How to Scale Machine

Learning in the Enterprise “ by Mark Treveil and

the Dataiku Team

[7] E. RAJ, “Mlops using azure machine learning

rapidly test, build, and manage production-ready

machine learning life cycles at scale.” PACKT

PUBLISHING LIMITED, pp. 45–62, 202

Cite this article as :

Rohan S Siddeshwara, V Sai Rohit, Arshad Pasha,

Aditya S Manakar, "Design and Development of

Modern day Machine Learning Applications - A

Survey ", International Journal of Scientific Research

in Science, Engineering and Technology (IJSRSET),

Online ISSN : 2394-4099, Print ISSN : 2395-1990,

Volume 9 Issue 6, pp. 251-260, November-December

2022. Available at doi :

https://doi.org/10.32628/IJSRSET229632

Journal URL : https://ijsrset.com/IJSRSET229632

