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ABSTRACT 

Autoregressive speech-to-text alignment is a critical component of neural text-

to-speech (TTS) models. Commonly, autoregressive TTS models rely on an 

attention mechanism to train these alignments online--but they are often brittle 

and fail to generalize in long utterances or out-of-domain text, leading to missing 

or repeating words. Non-autoregressive endto end TTS models usually rely on 

durations extracted from external sources. Our work exploits the alignment 

mechanism proposed in RAD -, which can be applied to various neural TTS 

architectures. In our experiments, the proposed alignment learning framework 

improves all tested TTS architectures—both autoregressive (Flowtron and 

Tacotron 2) and non-autoregressive (FastPitch, FastSpeech 2, RAD-TTS). 

Specifically, it improves alignment convergence speed of existing attention-

based mechanisms; simplifies the training pipeline; and makes models more 

robust to errors on long utterances. Most importantly, it also improved the 

perceived speech synthesis quality when subject to expert human evaluation. 

Keywords: Neural Text-To-Speech, RAD-TTS, TTS models, Artificial 

intelligence (AI), RecSLAM 

 

I. INTRODUCTION 

 

Neural text-to-speech (TTS) models often produce 

natural sounding speech for in-domain text, though 

they can have pronounced issues with comprehension 

and repetition when processing out-of-domain texts. A 

typical neural TTS model consists of a series of stages: 

mapping spoken words to their corresponding 

representations, generating audio files based on this 

representation, then aligning those sounds with what 

you've already heard. Older autoregressive TTS 

algorithms relied on an automatic system called 

content which matched the visual stimuli that are 

being encoded. However newer approaches use both 

content and location sensitivity called attention. 

Additionto being dependent on alignments from 

outside sources, these models can sufferfrom 

inefficient training methods, require well-crafted 

scheduling to maintain stable development, and may 

be difficultto expand across multiple languages if there 

are no pre-existing tools available or the output doesn't 

match what we're looking for. Ideally, the alignment 

should be trained end-to-end as part of the TTS 

program so that it would simplify an already long 

process. It would also help if it could make progress 

quickly enough so that other elements in the process 
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won't slow down too much waiting for it. Perhaps 

most importantly, its final quality level needs to be as 

good or even better than what you'd get with 

externally sourced alignments alone.This report 

leverages the alignment framework discussed in which 

simplifies alignment learning in several TTS models. 

We show that it is able to easily convert all TTS models 

into a simpler end-to-end pipeline with much better 

convergence rates, and improved robustness against 

long utterances.We improve upon prior work on 

alignments in autoregressive speech synthesis by 

including a constraint that directly maximizes the 

probability of text given speech mel-spectrograms; we 

demonstrate how this approach can also be used online 

to learn alignments in parallel TTS models, thus 

eliminating the need for external aligners or 

alignments obtained from an already trained TTS 

model.Plus, we examined what an initial static 

alignment would do to help guide attentional 

learning.We show that our framework improves the 

performance of auto-regressive and parallel models 

when it comes to convergence rates in speech text 

alignments, their closeness to hand-annotated 

durations - but most importantly, they also tend to 

sound less robotic than other competing methods. In 

conclusion, this experiment showed that TTS models 

trained with our guidance on alignment-learning had 

reduced repetition and missed words during playback; 

improved stability on long sequences synthesis; and 

overall improved quality according to human 

evaluation. 

II. Features  

1) Speech AI. Large Language Models. 

Artificial intelligence (AI) has transformed 

synthesized speech from monotone robocalls and 

decades-old GPS navigation systems to the polished 

tone of virtual assistants in smartphones and smart 

speakers.It has never been so easy for organizations to 

use customized state-of-the-art speech AI technology 

for their specific industries and domains.Speech AI is 

being used to power virtual assistants, scale call centers, 

humanize digital avatars, enhance AR experiences, and 

provide a frictionless medical experience for patients 

by automating clinical note-taking. 

 

2) Accelerated Computing for Enterprise IT. 

Colocation. Networking 

Modern applications are transforming every business, 

from data analytics for better business forecasting, to 

AI for autonomous vehicles, to advanced visualization 

for medical diagnosis. NVIDIA Accelerated 

Computing platforms provide the infrastructure to 

power these applications, no matter where they are 

run. An accelerated system is the next phase in the 

evolution of computers. Just like how all Smartphone’s 

today have processors for graphics and AI, so too will 

every server and workstation have compute 

accelerators to power today’s modern applications, 

including AI, visualization, and autonomous machines. 

Many of these systems will also have data processing 

units, which accelerate the network, storage and 

security services that are central to cloud native and 

cloud computing frameworks. 

 

3) Design and Simulation. Overview. Metaverse. 

The term ‘simulation’ has come to refer to a wide 

variety of forms of learning and activity. Definition is 

problematic, not least because the field is fast-moving 

and conceptions are being altered at fundamental 

levels by new technology and practice. A good example 

of this is the usual distinction that is made between 

symbolic and experiential simulations. Symbolic 

simulations ‘depict the characteristics of a particular 

population, system or process through symbols; and 

the user performs experiments with variables that are 

a part of the program's population 

 

4) Robotics and Edge Computing. 

With the wide penetration of smart robots in 

multifarious fields, Simultaneous Localization and 

Mapping (SLAM) technique in robotics has attracted 
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growing attention in the community. Yet collaborating 

SLAM over multiple robots still remains challenging 

due to performance contradiction between the 

intensive graphics computation of SLAM and the 

limited computing capability of robots tailored to 

heterogeneous edge resource conditions. Extensive 

evaluations show RecSLAM can achieve up to 39% 

processing latency reduction over the state-of-the-art. 

Besides, a proof-of-concept prototype is developed and 

deployed in real scenes to demonstrate its effectiveness. 

 

5) HPC and AI. Simulation and Modeling. Scientific 

Visualization. 

Modeling and Simulation (M&S) offer adequate 

abstractions to manage the complexity of analyzing big 

data in scientific and engineering domains. 

Unfortunately, big data problems are often not easily 

amenable to efficient and effective use of High 

Performance Computing (HPC) facilities and 

technologies. Furthermore, M&S communities 

typically lack the detailed expertise required to exploit 

the full potential of HPC solutions while HPC 

specialists may not be fully aware of specific modeling 

and simulation requirements and applications. 

 

III. How it works  

 

This program takes encoded text input Φ ∈ R Ctxt ×

N and aligns it to mel-spectrograms X ∈ R Cmel ×T 

where T is number of mel frames and N is the text 

length. The alignment is done by splitting up the input 

into sections of T consecutive frames in both 

spectrogram and input and finding the correspondence 

of each section to its corresponding section in the other 

matrix. 

 

3.1 Alignment learning objective 

To learn the alignment between mel-spectrograms X 

and text Φ, we use the alignment learning objective 

proposed in RADTTS. The idea is to find a maximum 

likelihood estimate of the probability that a given 

frame in X is generated from Φ. we constrain the 

alignment between text and speech to be monotonic, 

in order to avoid missing or repeating tokens. 

 

 P (S (Φ) | X; θ) = X s∈S(Φ) YT t=1 P(st | xt; θ) 

 

The above formulation of the alignment learning 

objective does not depend on how the likelihood P(st 

= φi xt) is obtained, which makes it possible to explore 

both bottom-up and top-down approaches to the 

problem of alignment. Hence, it can be applied to both 

autoregressive and parallel models. 

 

3.2 Autoregressive TTS Models 

Autoregressive TTS models typically use a sequential 

formulation of attention to learn online alignments. 

TTS models such as Tacotron and Flowtron use a 

content based attention mechanism that relies only on 

decoder inputs and the current attention hidden state 

to compute an attention map between encoder and 

decoder steps. Autoregressive TTS models such as 

Tacotron and Flowtron use a content based attention 

mechanism that relies only on decoder inputs and the 

current attention hidden state to compute an attention 

map between encoder and decoder steps. In these 

autoregressive models, the alignment of input and 

output has a direct effect on the likelihood of a misstep 

in the alignment. Alignment learning is tightly 

coupled with the decoder and can be learned with the 

mel-spectrogram reconstruction objective. 

 

However, it has been observed that the likelihood of a 

misstep in the alignment increases with the length of 

the utterance. This results in catastrophic failure on 

long sequences and out-of domain text. 

 

IV. How it is used  

 

The autoregressive setup for Flowtron uses the 

standard stateful content based attention mechanism 

and a hybrid attention mechanism that uses both 

content and location based features for Tacotron2. The 
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standard stateful content based attention mechanism is 

not a novel approach to solving this problem but it can 

be effective in some contexts, whereas the hybrid 

attention mechanism is more robust and versatile 

because it can leverage both content and location based 

features. 

 

Use of a Tacotron2 encoder to obtain the sequence of 

encoded text representations (φ enc i ) N i=1 and an 

attention RNN to produce a sequence of states ht. 

 

4.1 Parallel Models of TSS 

Recently, researchers have developed a system in 

which the alignment learning module is decoupled 

from the Mel decoder as a standalone aligner. The 

benefits of this system are that it is more efficient and 

has less latency than the traditional approach to TTS 

models, allowing for better understanding of what is 

being said. Furthermore, as the duration is factored out 

from the decoder, there is no need for an initial frame 

alignment between speech and text, which saves 

processing time for all three modules and reduces 

latency for this particular step in the pipeline. We 

compute the soft alignment distribution based on the 

learned pairwise affinity between all text tokens and 

mel frames, which is normalized with softmax across 

the text domain 

Di,j = distL2(φenci , x encj ), 

 Asoft = softmax(−D, dim = 0) 

 

4.2 Architecture of TSS 

A parallel model is a sequence modeling technique that 

does not require any information about the input 

sequence to be specified beforehand and is instead 

inferred from the input data as it goes along. Parallel 

models can either be generative or discriminative and 

are considered an example of a statistical model. The 

alignment of the input sequence to the output 

sequence can be specified beforehand by determining 

the number of output samples for every input 

phoneme, equivalent to a binary alignment map. 

However, attention models produce soft alignment 

maps, constituting a train-test domain gap. As such, the 

Viterbi algorithm is a powerful tool for finding the 

most likely monotonic path through the soft alignment 

map in order to convert soft alignments (A soft) to hard 

alignments (A hard). 

 

 4.3 Acceleration of alignment 

Faster convergence of alignments means faster training 

for the full TTS model, as the decoder needs a stable 

alignment representation to build upon. Training relies 

on a stable alignment representation to build upon, so 

the slower it takes to find an initial alignment, the 

longer it takes to train and find a final alignment that 

is useful in generating speech. To speed up this process, 

we use a static 2D prior with uniform scaling near the 

corners and more aggressive scaling near the center of 

Mel-spectrograms during training. . Although our 

formulation with the 2D static prior is slightly 

different than Tachibana et al [18], but we believe both 

should yield similar results 

 

V. Experiment  

 

We compare the effectiveness of the alignment 

learning framework by comparing its performance in 

terms of convergence speed, distance from human 

annotated ground truth durations, and speech quality. 

For autoregressive models like Flowtron and Tacotron 

2, we compare with the baseline alignment methods 

therein. For FastPitch, we compare with an alignment 

method that relies on an external TTS model 

(Tacotron2) to obtain token durations. For the parallel 

models: FastSpeech 2 and RAD-TTS, we compare 

against an alignment method that obtains durations 

from the MFA aligner. We use LJ dataset for all our 

experiments. 

 

5.1 Convergence Rate 

To compare the convergence rate of different 

alignment methods, we use the mean mel-cepstral 

distance (MCD). MCD compares the distance between 

synthesized and ground truth mel-spectrograms 
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aligned temporarily with dynamic time warping 

(DTW). MCD is calculated by taking the mean of all 

distances between synthesized and ground truth mel-

spectrograms when aligning with DTW. The 

difference in convergence rates can be observed by 

comparing the MCD values obtained by different 

methods. 

 

Parallel models such as RAD-TTS, FastPitch, and 

FastSpeech2 with the alignment framework converge 

at the same rate as their baseline models using a forced 

aligner. Furthermore, its been noted that even without 

forcing an alignment algorithm to be applied, these 

parallel models converged at the same rate as their 

baseline models. The model that benefits the most 

from using the alignment framework is Flowtron. It 

has two autoregressive flows running in opposing 

directions, each with their own learned alignment. 

Notably, the second autoregressive flow is performed 

on top of the autoregressive outputs of the previous 

flow. This means that if the alignment in the first flow 

fails, so will the second. The second flow can only be 

added after the first has converged in order to train 

properly. Prior attempts to train both flows 

simultaneously have resulted in poor minima where 

neither flow has learned to align with each other. By 

using just the attention prior, we are now able to train 

at least two flows simultaneously, with further 

improvements with adding the unsupervised 

alignment learning Lalign objective. This significantly 

reduces training time and improves convergence of 

Flowtron. 

 

5.2 Alignment Sharpness  

The alignment objective consistently makes the 

attention distribution sharper with more connected 

alignment paths. This suggests that models with Lalign 

produce more confident and continuous alignments, 

and by extension, continuous speech without 

repeating or missing words. 

 

 

5.3 Durational Analysis 

To measure the effectiveness of an unsupervised 

alignment loss, we examine the difference between 

average durations from our model based alignments 

and human-annotated durations. For autoregressive 

models, we extract every part after adjusting for 

human-annotations and find which one has highest 

attention weights among those two sequences (current 

+ next). This will give us a binary line segmented 

alignment which allows us to find how long each 

phoneme is said in both ground truth text as well as 

our own text. As shown by the Figure, it seems that by 

using our method, the time taken to reach convergence 

rates are shorter than when basing on just the baseline 

or even worse - no supervision at all! Thus it can be 

inferred that this unsupervised approach provides 

better results since it doesn't depend on external data 

besides what could already been seen before hand. 

 

5.4 Pair wise Opinion Scores 

To measure the effectiveness of an unsupervised 

alignment loss, we examine the difference between 

average durations from our model based alignments 

and human-annotated durations. For autoregressive 

models, we extract every part after adjusting for 

human-annotations and find which one has highest 

attention weights among those two sequences (current 

+ next). This will give us a binary line segmented 

alignment which allows us to find how long each 

phoneme is said in both ground truth text as well as 

our own text. As shown by Figure 1, it seems that by 

using our method, the time taken to reach convergence 

rates are shorter than when basing on just the baseline 

or even worse - no supervision at all! Thus it can be 

inferred that this unsupervised approach provides 

better results since it doesn't depend on external data 

besides what could already been seen before hand. 

  

5.5 Robustness to Errors on Long Utterances 

We measure the character error rate between 

synthesized and input texts when we evaluate the 

robustness of the alignments on long utterances. Using 
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14,045 full sentences from Libri TTS dataset, we 

generate sequences of speech with a model trained on 

LJ Speech and then use Jasper to recognize them. As 

you can see in Figure below (which plots CER), 

autoregressive models with Lalign are less prone to 

errors than other methods such as parallel models. 

Parallel models - like RAD-TTS - don't experience 

alignment issues because they predict how much time 

is left for speech generation based on average sentence 

lengths in a corpus; however, this does not apply to 

autoregressive models which can only deal with one 

sentence at a time. 

 

VI. Pros 

 

Parallel TTS models provide a lot of flexibility in 

choosing the architecture to formulate the distribution. 

The process, which includes both autoregressive and 

parallel architectures, combines guidance in the form 

of forward-sum, Viterbi, and diagonal priors with 

attention-based online alignment training. This 

ensures stability and fast convergence while 

eliminating the need for costly forced aligners. 

 

VII. Cons 

 

One of the difficulties of text-to-speech algorithms is 

that the alignment learning module and the Mel 

decoder are coupled together. 

 

Attention models produce soft alignment maps, 

constituting a train-test domain gap. Models with a 

focus on attention generate maps of soft alignment, 

which creates a difference between the training and 

testing domains. 

 

VIII. Conclusion 

 

We present a new process for TTS alignment to 

improve voice recognition rates. The process, which 

includes both autoregressive and parallel architectures, 

combines guidance in the form of forward-sum, 

Viterbi, and diagonal priors with attention-based 

online alignment training. This ensures stability and 

fast convergence while eliminating the need for costly 

forced aligners. To ensure we reach optimal alignment 

performance our approach has been tested on 

synthesizing texts of arbitrary lengths that were 

chosen among those typically encountered by such 

systems. 
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