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Semantic searching over encrypted data is a crucial task for secure 

information retrieval in public cloud. It aims to provide retrieval service to 

arbitrary words so that queries and search results are flexible. In existing 

semantic searching schemes, the verifiable searching does not be supported 

since it is dependent on the forecasted results from predefined keywords to 

verify the search results from cloud, and the queries are expanded on 

plaintext and the exact matching is performed by the extended semantically 

words with predefined keywords, which limits their accuracy.  

In this paper, we propose a secure verifiable semantic searching scheme. For 

semantic optimal matching on ciphertext, we formulate word transportation 

(WT) problem to calculate the minimum word transportation cost (MWTC) 

as the similarity between queries and documents, and propose a secure 

transformation to transform WT problems into random linear programming 

(LP) problems to obtain the encrypted MWTC. For verifiability, we explore 

the duality theorem of LP to design a verification mechanism using the 

intermediate data produced in matching process to verify the correctness of 

search results. Security analysis demonstrates that our scheme can guarantee 

verifiability and confidentiality. Experimental results on two datasets show 

our scheme has higher accuracy than other schemes. 

Index Terms - public cloud, results verifiable searching, secure semantic 

searching, word transportation. 
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I. INTRODUCTION 

 

Inherent scalability and flexibility of cloud computing 

make cloud services so popular and attract cloud 

customers to outsource their storage and computation 

into the public cloud. Although the cloud computing 

technique develops magnificently in both academia 

and industry, cloud security  is becoming one of the 

critical factors restricting its development. The events 

of data breaching in cloud computing, such as the 

Apple Fappening and the Uber data breaches, are 

increasingly attracting public attention. In principle, 

the  cloud services are trusted and honest, should 

ensure data confidentiality and integrity according to 

predefined protocols. Unfortunately, as the cloud 

server providers take full control of data and execute 

protocols, they may conduct dishonest behavior in the 

real world, such as sniffing sensitive data or performing 

http://www.ijsrset.com/
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incorrect calculations. Therefore, cloud customers 

should encrypt their data and establish a result 

verification mechanism before outsourcing storage and 

computation to the cloud. Since Song et al. [1] 

proposed the pioneering work about the searchable 

encryption scheme, searchable encryption has 

attracted significant attention. However, the 

traditional searchable encryption schemes require that 

query words must be the predefined keywords in the 

outsourced documents, which leads to an obvious 

limitation of these schemes that similarity 

measurement solely base on the exact matching 

between keywords in the queries and documents. 

Therefore, some works proposed semantic searching 

schemes to provide retrieval service to arbitrary words, 

making the query words and search results flexible and 

uncertain. However, the verifi- able searching schemes 

are dependent on forecasting the fixed results of 

predefined keywords to verify the correctness of the 

search result returned by the cloud. Therefore, the 

flexibility of semantic schemes and the fixity of 

verifiable schemes enlarge the gap between semantic 

searching and verifiable searching over encrypted data. 

Although Fu et al. [2] proposed a verifi- able semantic 

searching scheme that extends the query words to get 

the predefined keywords related to query words, then 

they used the extended keywords to search on a 

symbol-based trie index. However, their scheme only 

verifies whether all the documents containing the 

extended keywords are returned to users or not, and 

needs users to rank all the documents for getting top-k 

related documents. Therefore, it is challenging to 

design a secure semantic searching scheme to support 

verifiable searching. 

 

In this paper, we propose a secure verifiable semantic 

searching scheme that treats matching between 

queries and documents as an optimal matching task. 

We treat the document words as “suppliers,” the query 

words as “consumers,” and the semantic information as 

“product,” and design the minimum word 

transportation cost (MWTC) as the similarity metric 

between queries and documents. Therefore, we 

introduce word embeddings to represent words and 

compute Euclidean dis- tance as the similarity distance 

between words, then formulate the word 

transportation (WT) problems based on the word 

embeddings representation. However, the cloud server 

could learn sensitive information in the WT problems, 

such as the similarity between words. For semantic 

optimal matching on the ciphertext, we further 

propose a secure transformation to transform WT 

problems into random linear programming (LP) 

problems. In this way, the cloud can leverage any 

ready- made optimizer to solve the RLP problems and 

obtain the encrypted MWTC as measurements 

without learning sensitive information. Considering 

the cloud server may be dishonest to return 

wrong/forged search results, we explore the duality 

theorem of linear programming (LP) and derive a set 

of necessary and sufficient conditions that the 

intermediate data produced in the matching process 

must satisfy. Thus, we can verify whether the cloud 

solves correctly RLP problems and further confirm the 

correctness of search results. Our new ideas are 

summarized as follows: 

 

1. Treating the matching between queries and 

documents as an optimal matching task, we explore the 

fundamental theorems of linear programming (LP) to 

propose a se- cure verifiable semantic searching 

scheme that performs semantic optimal matching on 

the ciphertext.  

2. For secure semantic optimal matching on the 

ciphertext, we formulate the word transportation (WT) 

problem and propose a secure transformation 

technique to transform WT problems into random 

linear programming (LP) problems for obtaining the 

encrypted minimum word transportation cost as 

measurements between queries and documents.  

3. For supporting verifiable searching, we explore the 

dual- ity theorem of LP and present a novel insight that 

using the intermediate data produced in the matching 
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process as proof to verify the correctness of search 

results. 

 

II. RELATED WORK 

 

Since Song et al. [1] proposed the notion of searching 

over encrypted cloud data, searchable encryption has 

received significant attention for its practicability in 

the past 20 years. Therefore, many works have made 

efforts on the security as well as functionality in the 

searchable encryption field. 

 

Along the research line about security, many works 

formulate the definitions of security as well as novel 

attack pattern against the existing schemes. Goh et al. 

[10] formulated a security model for document indexes 

known as semantic security against adaptive chosen 

keyword attack (IND-CKA), which requires the 

document indexes not to reveal contents of documents. 

However, we note that the definition of IND-CKA 

does not indicate that the queries must be secure. 

Curtmola et al. [11] further improved security 

definitions for symmetric 2 searchable encryption, 

then put forth chosen-keyword attacks and adaptive 

chosen-keyword attacks. Besides, Islam et al. [12] first 

introduced the access pattern disclosure used to learn 

sensitive information about the encrypted documents, 

then Liu et al. [13] presented a novel attack based on 

the search pattern leakage. Stefanov et al. [14] 

introduced the notions of forward security and 

backward security for the dynamic searchable 

encryption schemes that support data addition and 

deletion. Along another research line about 

functionality, many works introduced practical 

functions to meet the demand in practice, such as 

ranked search and semantic searching for improving 

search accuracy. Additionally, some works proposed 

verifiable searching schemes to verify the correctness 

of search results. Ranked Search over Encrypted Data. 

Ranked search means that the cloud server can 

calculate the relevance scores be- tween the query and 

each document, then ranks the documents without 

leaking sensitive information. The notion of single- 

keyword ranked search was proposed in [15] that used 

a modified one-to-many order-preserving encryption 

(OPE) to encrypt relevance scores and rank the 

encrypted documents. Cao et al. [16] first proposed a 

privacy-preserving multi- keyword ranked search 

scheme (MRSE), which represents documents and 

queries with binary vectors and uses the secure kNN 

algorithm (SeckNN) [17] to encrypt the vectors, then 

use the inner product of the encrypted vectors as the 

similarity measure. Besides, Yu et al. [18] introduced 

homomorphic encryption to encrypt relevance scores 

and realize a multi- keyword ranked search scheme 

under the vector space model. Recently, Kermanshahi 

et al. [19] used various homomor- phic encryption 

techniques to propose a generic solution for supporting 

multi-keyword ranked searching schemes that can 

resist against several attacks brought by OPE-based 

schemes. Secure Semantic Searching. A general 

limitation of tradi- tional searchable encryption 

schemes is that they fail to utilize semantic 

information among words to evaluate the relevance 

between queries and documents. Fu et al. [3] proposed 

the first synonym searchable encryption scheme under 

the vector space model to bridge the gap between 

semantically related words and given keywords. They 

first extended the keyword set from the synonym 

keyword thesaurus built on the New American Roget’s 

College Thesaurus (NARCT), then used the extended 

keyword set to build secure indexes with SeckNN. 

Using the order-preserving encryption algorithm, [5] 

and [6] presented secure semantic searching schemes 

based on the mutual information model. Xia et al. [6] 

proposed a scheme that requires the cloud to 

constructs a semantic relationship library based on the 

mutual information used in [20]. However, any 

schemes based on the inverted index can calculate the 

mutual information model. Using the SeckNN 

algorithm, [7], [8], [2] proposed secure semantic 

searching schemes based on the concept hierarchy.  
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III. PROBLEM FORMULATION 

 

In this section, we define the system architecture, the 

security model, and the main notations used in this 

paper. 

A. System Architecture 

As illustrated in Fig. 1, there are three entities involved 

in our system: the data owner, data users, and the cloud 

server. The data owner has a lot of useful documents, 

but only has limited resources on the local machines. 

Therefore, the owner is highly motivated to perform 

Initialize () for initializing the proposed scheme. The 

owner encrypts documents F to get ciphertext 

documents C with secret key K, then outsources C to 

the cloud server. The data owner builds forward 

indexes I, then sends indexes I and K to data users. 

 

Data users are the searching requesters that send the 

trap- door of a query to the cloud server for acquiring 

top-k related documents. Specifically, users input 

arbitrary query words q, then perform BuildRLP () to 

generate word transportation problems Ψ, after 

transform Ψ to random linear programming problems 

Ω and the corresponding constant terms ∆ as a trap- 

door. Afterward, users receive top-k encrypted 

documents and proofs Λ returned from the cloud. 

Users perform VerDec () to decrypt documents when 

Λ passes our verification mechanism. The cloud server 

is an intermediate service provider that stores the 

encrypted document dataset C and performs the 

retrieval process. Once receiving the trapdoor, the 

cloud server performs SeaPro () for leveraging any 

ready-made optimizer to solve the Ω, then obtains the 

encrypted minimum word transportation cost values 

with ∆. The cloud ranks the values in ascending order 

and returns the top-k encrypted documents to users. In 

the process, the cloud server also provides proofs Λ for 

proving the correctness of the search results. 

Figure 1. The system architecture of our secure 

verifiable semantic searching scheme. 

B. Security Model 

We assume that the data owner is trusted, and the data 

users are authorized by the data owner. The 

communication channels between the owner and users 

are secure on existing security protocols such as SSL, 

TLS. 

With regard to the cloud server, our scheme resists a 

more challenging security model which is beyond the 

“semi-honest server” used in other secure semantic 

searching schemes [3], [4], [5], [6], [7], [8], [9]. In our 

model, the dishonest cloud server attempts to return 

wrong/forged search results and learn sensitive 

information, but would not maliciously delete or 

tamper with the outsourced documents. Therefore, our 

secure semantic scheme should guarantee the 

verifiability, and confidentiality under such a security 

model. As for verifiability, we first re-formalized the 

definitions of the Result Forgeries Attack and Proof 

Forgeries Attack in [24], then adopt a game-based 

security definition to analyze the verifiability of the 

proposed scheme in Section VII. Definition 1 (Result 

Forgeries Attack). The Result Forgeries Attack is that a 

dishonest cloud server attempts to return erro- neous 

search results to the users for some reasons. Formally, 

let q be arbitrary query words, and C be the encrypted 
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documents. Then, let T (C, q) denote the correct search 

result, let R(C, q) denote the search result returned 

from the cloud server. In this attack, R(C, q) 6 = T (C, 

q). Definition 2 (Proof Forgeries Attack). The Proof 

Forgeries Attack is that a dishonest cloud server 

attempts to return erro- neous search results and 

forged proofs to the users. The cloud must generate 

some forged proofs at a small computational cost for 

passing the result verification mechanism. Formally, 

let q be arbitrary query words, C be the encrypted 

documents. Next, let V(C, q, Λ) = 0 denote the proof Λ 

pass the verification; otherwise V(C, q, Λ) > 0. Then, 

let C(Λ) denote the real proofs, let F(Λ) denote the 

proofs returned from the cloud. In this attack, V(C, q, 

F(Λ)) = 0 and F(Λ) 6 = C(Λ). As for confidentiality, we 

follow the widely-accepted Real/Ideal simulation [11], 

[24], [29] to analyze the confi- dentiality of symmetric 

searchable encryption schemes. Below we give the 

definition of confidentiality with respect to the 

verifiable semantic searching scheme we are going to 

propose. Definition 3 (Confidentiality). Our verifiable 

secure semantic searching scheme is secure against 

adaptively chosen query attack, if for any PPT stateful 

adversary A, there exists a PPT stateful simulator S, L 

is stateful leakage algorithms, consider the following 

probabilistic experiments: Real A (ε) : The adversary A 

chooses dataset F for a chal- lenger. The challenger 

runs {K, I, C} ← Initialize (1 ε , F ), where ε is our 

security parameter. A makes a polynomial num- ber of 

adaptive queries q. For any query q, the challenger acts 

as a data user and calls (Ω, ∆) ← BuildRLP (q, I, 1 ε , 

CV ). A act as the cloud server and runs SeaPro (). 

Finally, A returns a bit b as the output of the 

experiment. Ideal A,S (ε) : The adversary A chooses a 

document dataset F and makes a polynomial number 

of adaptive queries q for a simulator S. Given L, S 

generates and sends C to A, then as a data user to 

generate the trapdoor, namely Ω and ∆. Finally, A acts 

as the cloud server and returns a bit b, which is the 

output of the experiment. A semantic searching 

scheme is L-confidential if for any PPT adversary A, 

there exists a PPT simulator S such that: |P r [Real A 

(ε) = 1] − P r [Ideal A,S (ε) = 1]| ≤ negl(ε) where negl(ε) 

is a negligible function. 

C. Notations 

The main notations used in this paper are shown as 

follows: 

• q: The query inputted from a data user. 

• d: The number of documents in the dataset. 

• m: The number of keywords in a document. 

• n: The number of query words in the query. 

• F : Plaintext documents dataset F = {f 1 , f 2 . . . f 

i . . . f d }, where f i denotes a document in the F. 

• C: Encrypted documents C = {c 1 , c 2 . . . c i . . . c 

d },   where c i denotes a document in the 

C. 

• Ψ: WT problems for the q and documents, and Ψ = 

{ψ 1 , ψ 2 . . . ψ i . . . ψ d }, where ψ i denotes a WT 

 problem for the q with f i. 

• Ω: RLP problems for the q and documents, and Ω 

= 

{ω 1 , ω 2 . . . ω i . . . ω d }, where ω i denotes a RLP 

 problem for the q with f i. 

• θ: The dual problems of the RLP problem ω. 

• ∆: Constant terms of every RLP problems, and ∆ = 

{δ 1 , δ 2 . . . δ i . . . δ d }, where δ i denotes the 

 constant  term of the RLP problem ω i. 

• Λ: Proofs for every RLP problems, and Λ= 

{λ 1 , λ 2 . . . λ i . . . λ d }, where λ i denotes the proof 

 for  ω i. 

• β: The minimum word transportation cost value of 

a WT 

problem. 

• Π: Optimal values of RLP problems, and Π = 

{π 1 , π 2 . . . π i . . . π d }, where π i denotes the 

 optimal value of the RLP problem ω i. 

TABLE I 

THE EUCLIDEAN DISTANCE VALUES BETWEEN 

WORDS 

 university college professor office 

university 0 4.94 5.25 6.82 

college 4.94 0 5.11 5.18 

professor 5.25 5.11 0 5.48 

office 6.82 5.18 5.48 0 
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Ξ: The encrypted minimum word transportation cost 

values  as measurements between q and documents, 

and Ξ = {ξ1 , ξ 2 , ξ 3 . . . ξ i . . . ξ d }, where ξ i  denotes 

the measurement between q and f i. 

 

IV. PRELIMINARIES 

A. Word Embedding 

Word embedding is a representative method for words 

in vector space, through which we can preserve the 

fundamental properties of words and the semantic 

relations between them. Neural language models are 

trained to minimize the prediction error to learn 

vector representations for words. Therefore, we can 

perform algebraic operations with word embeddings to 

probe semantic information between words. As 

illustrated in Table I, take “university, college, 

professor, and office” as an example, the Euclidean 

distance values are just in line with our intuition that 

the more relevant the words are, the smaller the 

Euclidean distance is. Word embedding has been 

studied in plaintext information retrieval tasks, such as 

query expansion zero-shot retrieval and cross-modal 

retrieval. In this paper, we use word embeddings to 

capture semantic information between words without 

revealing semantic information to the cloud server. 

B. Earth Mover’s Distance 

Earth Mover’s Distance (EMD) is introduced as a 

metric in computer vision to capture the signatures 

distribution differences between images. The name of 

EMD comes from its intuitive interpretation: Given 

two distributions, we regard one as a mass of earth 

spread properly in space, the other as a collection of 

holes in that same space. Then, EMD is the result that 

the minimum amount of work cost to fill the holes 

with earth. As EMD has advantages in representing 

problems involving multifeatured signatures, it has 

been applied to some practical scenarios, such as 

gesture recognition [36], music genre classification 

[37], document classification [38], plaintext retrieval 

[39] and gene identifica- tion [40]. We observe that 

EMD is a particular case of linear programming 

problems. Therefore, in this paper, we explore the 

fundamental theorems of linear programming and 

security algorithms to design our scheme for realizing 

secure semantic optimal matching on the ciphertext. 

 

V. PROPOSED APPROACHES 

In this section, we present the proposed core 

approaches in Fig. 1, namely, the word transportation 

problem, the secure transformation technique, and 

the verification mechanism. 

 
Figure 2. An example of the word transportation 

optimal matching. The relative area of the shadow 

represents the weight of a word; the length of the line 

segment represents the relative Euclidean distance 

between two connected words; as for the value M-N 

on the line segment, M represents the Euclidean 

distance between two words, N represents the amount 

of transportation between them. In this example, the 

MWTC between document-1 and the query is 4.794; 

the MWTC between document-2 and the query is 

6.003, so document-1 is more relevant to the query 

compared with document-2. 
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Figure 3. An example of the forward indexes of 

documents. Forward indexes are the data structure 

storing the mapping from each document to its 

keywords. In our scheme, each keyword carries a 

normalized weight representing the relevant score 

between the keyword and a specific document. 

A. Word Transportation Problem for Optimal 

Matching 

Treating the matching between queries and documents 

as an optimal matching task, we formulate the word 

transportation (WT) problem following the optimal 

transportation problem of linear programming. We 

utilize WT problems to calculate the minimum word 

transportation cost (MWTC) as the similarity metric 

between queries and documents, as illustrated in Fig 2.  

To represent the documents in WT problems, we 

introduce the forward indexes as semantic information 

of documents. An example of forward indexes, as 

illustrated in Fig. 3. We define each keyword and its 

weight in the forward index of a document as the 

keywords distributions for the document. Therefore, 

we need to select keywords for each document and 

calculate the weight of each keyword in a specific 

document. Without loss of generality, we use TF-IDF 

(term frequency- inverse document frequency) as a 

criterion to select keywords in our scheme. Besides, we 

calculate weights via using (1): 

 

𝑤𝑒𝑖𝑔ℎ𝑡(𝑤, 𝑓) =
1

|𝑓𝑖|
·  (1 + 𝐼𝑛 𝑓𝑖.𝑤) · 𝐼𝑛 (1 +

𝑑

𝑓𝑤
) ,

(1) 

 

where w denotes a specific keyword, f expresses a 

specific document, |fi| indicates the length of the 

document, f i,w is the term frequency TF of the 

keyword w in the f , fw denotes the number of 

documents that contain the keyword w and d is 

the number of documents in the dataset. We adopt the 

same method to represent the query and define the 

weights of query words are equivalent. In this work, 

we normalize the amount of weight of each 

document/query to 1. Given forward indexes of 

documents and the query, we treat the document 

words as “suppliers,” the query words as “consumers,” 

and the semantic information as “product.” Therefore, 

given the forward index of a document f and the query 

q, we can formulate the WT problem as follows: 

 
where the d i,j represents the transportation cost of 

each movement, namely, the Euclidean distance values 

between word embeddings in this work. The f i,j 

denotes the trans- portation value in a word 

transportation strategy. The m and n indicate the 

number of keywords in a document and the query, 

respectively. The e fi and e qj denote the weight of each 

word in the document and the query, respectively. 

Next, we use the matrixes expression method to 

express (2), as follows: 

 

min    𝑐𝑇𝑥 

subject to Vx = W    (3) 

Ix ≥ 0 , 

 

here, we still define symbol m and n as the number of 

keywords in a document and the query, respectively. 

The c T x denotes the total word transportation cost 

between the query and a document. The symbol c is an 

mn × 1 cost vector whose elements are Euclidean 

distance values between word embeddings. The 

symbol x denotes an mn × 1 decision vector, which 

means one of the feasible solutions for the word 

transportation problem. The Vx = W is a constraint 

condition that requires the amount of each word 

transportation equal to its weight. The symbol V is an 
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(m + n) × mn known matrix whose elements are 0 or 1. 

To facilitate the understanding, we show an example 

for V (when m=3, n=2), The symbol W is an (m+n)×1 

weight. 

In this work, we calculate the semantic difference 

between the queries and documents via the word 

transportation optimal matching. In this way, we can 

observe that the document is more semantically 

related to the query when there is less transportation 

cost between them. 

 

B. Secure Transformation Technique 

Word transportation problems can not be applied 

directly to the secure semantic searching scheme due 

to that the original WT problem can reveal sensitive 

information. Therefore, we propose a secure 

transformation technique to realize semantic optimal 

matching on the ciphertext so that the confidentiality 

and integrity of the information in word 

transportation prob- lems can be guaranteed. 

In our scheme, the users utilize our secure 

transformation technique to transform the WT 

problems into random linear programming (RLP) 

problems so that the cloud can lever- age any ready-

made optimizer to solve the RLP problems and get the 

encrypted minimum word transportation cost 

(EMWTC) without learning sensitive information. 

Specifi- cally, our secure transformation technique 

encrypts each WT problem ψ = (c, V, W, I) with a one-

time secret key K T = (A, Q, γ, r, R), where A is an mn 

× mn random invertible matrix, Q is an (m + n) × (m + 

n) random invertible matrix, γ is a real positive value, 

r is an mn × 1 random vector and R is an mn × mn 

generalized permutation matrix. We first transform 

the original objective function 

We first transform the original objective function c T 

x to the encrypted form cT Ay − cTr with x = Ay − r. 

The symbol y denotes an mn × 1 decision vector, which 

denotes one of the feasible solutions for the RLP 

problem. Note that, we require each r i is no less than 

0, where i=1, 2,..., mn. With x replaced by Ay − r, we 

transform the original WT problem ψ to (4). In (4), we 

define the constraint condition IAy ≥ Ir is equivalent 

to that the i-th element in the vector T1 = IAy is not 

less than the i-th element in the vector T2 = Ir, where 

i=1, 2,..., mn. 

min   cTAy − cTr 

subject to  VAy = W + Vr   (4) 

IAy ≥ Ir . 

 

Next, we use a random invertible matrix Q to encrypt 

the weight vector W, and then we use a real positive 

value γ to protect the optimal value. Meanwhile, we 

leave out the identity matrix I due to IA = A is 

established. Therefore, we transform the original WT 

problem ψ to (5). In (5), we define the constraint 

condition Ay ≥ r is equivalent to that the i-th element 

in the vector T 3 = Ay is not less than the i-th element 

in the vector r, where i=1, 2,..., mn. 

min   γc T Ay − γc T r 

subject to QVAy = Q(W + Vr)  (5) 

Ay ≥ r . 

 

To encrypt Ay ≥ r, we construct an mn × mn 

generalized permutation matrix R based on the 

elements in r. Specifically, the nonzero elements in R 

are reciprocal of elements in the r. We show an 

example for r and R (when m = 3, n = 2), as illustrated 

in Fig.5. Therefore, we transform the ψ to (6). In (6), 

we define the constraint condition RAy ≥ 1 is 

equivalent to that the elements in the vector T 4 = RAy 

are not less than 1, where i=1, 2,..., mn 

min   γc T Ay − γc T r 

subject to  QVAy = Q(W + Vr)  (6) 

RAy ≥ 1. 

 

C. Result Verification Mechanism 

To verify the correctness of search results, we design a 

result verification mechanism using the intermediate 

data produced in the matching process.  

As the optimal matching on the ciphertext is a linear 

programming (LP) task, we further explore the duality 

theorem of LP and use the strong theorem of LP 
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problem to design our verification mechanism, 

inspired by [41]. We first construct the dual 

programming problem of each RLP problem ω. Given 

the (7) of ω, we adopt Lagrange multipliers to 

construct its dual problem θ, as follows:construct the 

dual programming problem of each RLP problem ω. 

Given the (7) of ω, we adopt Lagran 

max   g(s, t) 

subject to Vs + ITt = c 0 

t ≥ 0    (8) 

g(s, t) = WT s + LTt , 

 

where, g(s, t) is the objective function of the dual 

problem θ = (c 0 , V 0 , W 0 , I 0 , L), L is an (m + n) × 

1 vector whose elements are 1. In the (8), s and t are 

(m + n) × 1 decision vectors of the dual problem θ. 

 

Figure 4. Overview of our secure verifiable semantic 

searching scheme. 

 

VI. OUR SCHEME 

In this section, we present the detailed design of our 

scheme that consists of four phases, namely, 

Initialization, BuildRLP, Search&Prove, 

Verification&Decryption. The overview of our 

scheme, as illustrated in Fig. 6. 

 

A. Initialization 

In this phase, the data owner performs Initialize () to 

initialize our scheme. To describe this algorithm in 

detail, we 

split it into three algorithms, as follows: 

K KeyGen (1ε) is a probabilistic secret key generation 

algorithm, corresponding to the “Secret Key 

Generator” in Fig.4. The data owner takes the security 

parameter ε as input, thengenerates secret key K for 

encrypting documents.  

C EncDoc(K, F) is a deterministic algorithm, corre- 

sponding to the “Symmetric Encryption” in Fig. 4. The 

data owner takes the documents dataset F and the 

secret key K as input, then generates the ciphertext 

dataset C.  

I BuildIndex(F) is a deterministic building index 

algorithm, corresponding to the “Indexer” in Fig. 4. 

The data owner takes F as input, then generates 

forward indexes I as semantic information of 

documents.  

The data owner first calls KeyGen() and EncDoc() to 

generate a secret key K for encrypting documents 

dataset F and get the ciphertext dataset C, then 

outsources C to the cloud server. Afterward, the owner 

calls BuildIndex() to build forward indexes I. In this 

algorithm, the data owner extracts keywords and 

calculates weights for building forward indexes as 

semantic information of documents. Finally, the 

owner sends the secret key K and indexes I to data 

users. 

B.  BuildRLP 

In this phase, data users perform BuildRLP () to 

generate trapdoor the searching query q. To describe 

this algorithm in detail, we split it into three 

algorithms, as follows:  

Ψ BuildWT(q, I, E) is a deterministic algorithm, corre- 

sponding to the “WT Builder” in Fig. 6. The users take 

query q, forward indexes I and word embedding 
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library E as input, then generate word transportation 

problems Ψ for each pair of query and each document.  

K T ← TranKeyGen (1 ε ) is a probabilistic 

transformation key generation algorithm, 

corresponding to the “One-Secret Key Generator” in 

Fig. 6. The user takes the security parameter ε as input, 

then generates one-time transformation secret key K T 

= (A, Q, γ, r, R) for encrypting Ψ. 

 (Ω, ∆) ← SecTran (Ψ, K T ) is a deterministic 

algorithm, corresponding to the “Secure 

Transformation” in Fig. 6. The users take WT problems 

Ψ and transformation key K T as input, then generate 

random linear programming problems Ω and the 

corresponding constant terms ∆.  

The users first call BuildWT() to build WT problems Ψ 

for the query and forward index of each document. 

Specifically, The users use word embeddings to 

represent all words and calculate Euclidean distance 

values between word embeddings, then build word 

transportation problems Ψ according to the proposed 

approach. After building WT problems Ψ, the data 

users call TranKeyGen() to generate a one-time secure 

key K T for encrypting Ψ. Then, the users call 

SecureTran() to encrypt each ψ i and get the 

corresponding RLP problem ω i with its constant term 

δ i , where ψ i ∈ Ψ, ω i ∈ Ω, δ i ∈ ∆, and i = 1, 2, . . . , 

d. Finally, the user sends all RLP problems Ω and the 

corresponding constant terms ∆ to the cloud server. 

 

C. Search&Prove 

In this phase, the cloud server performs SeaPro () to 

search documents and generate proofs. To describe this 

algorithm in detail, we split SeaPro () into two 

algorithms, namely, SolveRLP () and Rank (), as 

follows: 

 (Π, Λ) ← SolveRLP(Ω) is a deterministic algorithm, 

cor- responding to the “Any Ready-made Optimizer” 

in Fig. 6. The cloud server takes RLP problems Ω as 

input, then generates the optimal values Π and proofs 

Λ for RLP problems. 

 (Γ, Ξ) Rank(Π, ∆, C, k) is a deterministic ranking 

algorithm, corresponding to the “Subtractor” and 

“Ranker” in Fig. 6. The cloud server takes optimal 

values Π, the constant terms ∆, the ciphertext dataset 

C and the number k as input, first calculates all the 

measurements Ξ, then generates the top-k related 

encrypted documents Γ, where Ξ = {ξ 1 , ξ 2 , ξ 3 . . . ξ 

i . . . ξ d }, and i = 1, 2, . . . , d.  

The cloud server calls SolveRLP() to solve RLP 

problems. The cloud can leverage any ready-made 

optimizer to solve each RLP ω i and get the 

corresponding optimal value π i and proof λ i , where 

ω i ∈ Ω, π i ∈ Π, λ i ∈ Λ, and i = 1, 2, . . . , d. The cloud 

calls RankDoc() to calculate each encrypted minimum 

word transportation cost ξ i = π i − δ i as measurement, 

where i = 1, 2, . . . , d. Then, the cloud ranks 

measurements Ξ in ascending order and obtains the 

top-k related encrypted documents Γ. Finally, the 

cloud returns the top-k related encrypted documents Γ 

and proofs Λ to the users. 

 

D. Verification&Decryption 

In this phase, data users perform VerDec () to verify 

the correctness of the search results and decrypt the 

top-k en- crypted documents. To describe this 

algorithm in detail, we split it into Verify () and 

DecDoc (), as follows:  

(0 or α) ← Verify(Λ) is a deterministic verification 

algo- rithm, corresponding to the “Verify ?” in Fig. 6. 

Data users take proofs Λ as input, then generate the 

result of verification 0 or α, where α ∈ N ∗ , N ∗ denotes 

the positive integer set.  

Υ DecDoc(K, Γ) is a deterministic decryption algo- 

rithm, corresponding to the “Documents Decryption” 

in Fig. 6. The users take the top-k related encrypted 

documents Γ and secret key K as input, then generate 

the top-k related plaintext documents Υ for the query 

q.  

The users first call Verify() to verify the correctness of 

the search results. The users verify the correctness of 

each proof λ i according to (9), thus verifying whether 

the cloud performs the correct calculations for each 

RLP problem and determining the correctness of the 

search result, where λ i ∈ Λ, and i = 1, 2, . . . , d. The 
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Verify() will output 0 when the verification pass; 

otherwise, this algorithm calls “Annunciator” to 

output α as the warning which denotes the number of 

failing proofs. The users call DecDoc() to decrypt the 

top- k encrypted documents Γ with the secret key K 

and obtains the top-k related documents Υ if the proofs 

Λ pass our result verification mechanism. 

 

VII. CONCLUSIONS 

 

We propose a secure verifiable semantic searching 

scheme that treats matching between queries and 

documents as a word transportation optimal matching 

task. Therefore, we investigate the fundamental 

theorems of linear programming (LP) to design the 

word transportation (WT) problem and a result 

verification mechanism. We formulate the WT 

problem to calculate the minimum word 

transportation cost (MWTC)as the similarity metric 

between queries and documents, and further propose a 

secure transformation technique to trans- form WT 

problems into random LP problems. Therefore, our 

scheme is simple to deploy in practice as any ready-

made optimizer can solve the RLP problems to obtain 

the encrypted MWTC without learning sensitive 

information in the WT problems. Meanwhile, we 

believe that the proposed secure transformation 

technique can be used to design other privacy- 

preserving linear programming applications. We 

bridge the semantic-verifiable searching gap by 

observing an insight that using the intermediate data 

produced in the optimal matching process to verify the 

correctness of search results. Specifically, we 

investigate the duality theorem of LP and derive a set 

of necessary and sufficient conditions that the 

intermediate data must meet. The experimental results 

on two TREC collections show that our scheme has 

higher accuracy than other schemes. In the future, we 

plan to research on applying the principles of secure 

semantic searching to design secure cross-language 

searching schemes. 
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