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 A machinery for downloading and extracting features about applications 

from the Google Play Store was developed and deployed, and the resulting 

data set was used to train three different models to predict the success of a 

mobile application; a na ve bayes based text classi er for the de-scription 

of the application, a generalized linear model which categorizes 

applications as successful or not, and a linear regression which predicts the 

average rating of the application. The performance of the models is not su 

cient to justify their use in driving investments in new applications, 

however interesting observations about the ecosystem, such as the current 

trend in photo sharing applications, are elucidated. 
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I. INTRODUCTION 

 

Mobile applications have turned into an enormously 

pro table business, with revenue from mobile appli-

cations expected to exceed fty billion USD by 2016 [6]. 

These pro ts are not distributed equally amongst 

developers, with forty-seven percent of developers 

making less than one-hundred USD, more than half of 

which make nothing at all [5]; creating a successful 

application is not easy. Luckily, an enormous amount 

of data about mobile applications is made available 

publicly by Google, Apple, and Microsoft by way of the 

websites for their app stores. 

 

In this study, features extracted from the data made 

available on Google’s Play Store website is used as 

input to two di erent models. Each model predicts the 

success of a given application, and interesting 

observations about their behavior are discussed. 

 

II. Data Collection 

 

Google makes data available about its applications on 

http://play.google.com. These pages contain data 

which can be extracted such the name of the 

application, the description, the number of 

installations, the average rating of the application, and 

many more features. In order gather as much data as 

possible without worrying about which features would 

eventually be used, a web crawler based on Scrapy [3] 

was created, deployed on Amazon Web Services (AWS) 

Elastic Compute Cloud (EC2), and the entire rendered 

DOMs of the application pages were downloaded to 

AWS Simple Storage Service (S3) and stored as HTML. 

The crawling job is currently still crawling, and at the 

http://www.ijsrset.com/
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time of training models had downloaded data for more 

than 1.3 million applications. 

For each desired feature, a feature extracting function 

was written which, given an input HTML le, would 

output just the feature in question. For all feature 

extracting functions and all output HTML les, features 

were extracted and the resultant data is stored in AWS 

Relational Database System (RDS). As new output 

HTML les are downloaded, all registered feature 

extractors are automatically ran on it, and newly 

registered feature extractors are back lled from the 

catalogue of previously downloaded HTML les. 

 

III. Features, Preprocessing, and Labeling 

 

Numerous feature extractors were developed: features 

extracted include the average user rating, number of f5, 

4, 3, 2, 1g star ratings, the number of installations, the 

description, the name of the application, whether or 

not the developer is a top developer, the size of the 

Android Application Package (APK), when the most 

recent update was published, which Android SDKs are 

supported, the number of \+1"s on the application, the 

price, and more. These extractors were written as a 

combination selectors [4] and regular expressions. 

 

IV. Principal Component Analysis 

 

Principal component analysis was performed on the 

inputs to the GLM and linear regression models. While 

training these models, cross validation scores were 

lower than expected which might be explained 

through over tting. In order to help alleviate some of 

this problem, principal component analysis was 

performed on the continuous features and the rst two 

principal components were stored in the RDS database. 

V.Text 

Preparing the description for the na ve bayes algorithm 

involved using the NLTK in python [1] to both remove 

stop words and perform some basic stemming on the 

words in the description, bringing the feature vector 

dimension to on the order of one-half-million. 

5.1. Success Metrics. The most obvious choice for a 

success metric would be revenue, however this 

information is among the small amount of information 

not available publically. Instead, we use number of 

installations and average user rating as a proxy for 

success, the distributions of which are seen in gure 1. 

Hoping to select the top ve percent of applications as 

successful, a natural region of success is found. For 

some application x with average rating xscore and 

number of installations xinstalls, the successfulness of 

an application, success x is de ned as: 

 

(1) success x = 1 fxscore >= 4:5g 1 xinstalls >= 5

 104 

 

This region encompasses two clusters; one extremely 

high numbers of downloads and one with close to one-

hundred-thousand downloads. The cluster containing 

applications with large numbers of downloads 

included those applications from developers such as 

Google, Facebook, and Snapchat. The cluster with a 

smaller number of installations contained a large 

variety of publishers but mainly consisted of very 

highly rated card games and highly rated applications 

targeting non-US markets. 

We also consider average user rating as a possible 

success metric to see how a relatively straightforward 

implementation of linear regression performs. 

 

V. Prediction 

 

6.1. Na ve Bayes. The rst model attempted was to build 

a model which would classify an application as 

successful or not based on its description. A na ve based 

classi er text classi er was chosen, and the 

implementation was written in Java for use in a 

MapReduce pipeline over the text [2]. Cross-validation 

was performed so that the performance of the model 

might be measured, as seen in figure 2. 

While not the best performing algorithm, the run-time 

performance of the algorithm was extremely good and 

allowed for quick changes, and some interesting results 
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can be seen from the intermediate data of the 

algorithm. 

(2) p (x\photo" = 1jsuccess x = 1) = :35 

(3) p (x\share" = 1jsuccess x = 1) = :31 

(4) p (x\download" = 1jsuccess x = 1) = :0001 

 

 

6.2. GLM. Given our de nition of success x, one could 

say that success x = 1 is distributed Bernoulli with 

parameter = p(success x = 1) = :05. We could then use 

our continuous feature vectors to train a generalized 

linear model to predict success x (in this case given the 

distribution, the GLM would be logistic regression). 

Cross validation was performed so that the 

performance of the model might be measured. 

The cross-validation error is remains high, suggesting 

the possibility of over tting. We instead switch to 

performing logistic regression on the rst two principal 

components of the continuous features (described 

above). 

The comparison between the two approaches is shown 

in the training curves in gure 3. 

6.3. Linear Regression. Additionally, we try and use 

the continuous features to try and predict just the 

average rating of the application | one might 

hypothesize that predicting a popular application 

might be difficult whereas predicting whether an 

application makes users happy or angry might be easier. 

Figure 4 shows the performance of this model via the 

RMSE. 

 
Figure 1: Training curve for GLM models. (Left: Raw, 

Right: PCA) 

 
Figure 2. RMSE training curve for the linear model. 

 

VI. CONCLUSION AND FUTURE SCOPE 

 

The accuracy of the above discussed models show that 

there does exists some, albeit limited, predic-tive 

power in the eventual success of an application which 

can be garnered from the publically available 

information on the Google Play Store. 

 

More interestingly, certain insights can be garnered 

from looking at the models themselves instead of just 

their output. It is shown that thirty- ve percent of all 

successful applications contain the stem \photo" (eqn. 

2) and thirty-one percent of all successful applications 

contain the steam \share" (eqn. 3) somewhere in their 

description. We are able to start to build a picture of 

the genres of applications in which users are interested 

by using this model. 

 

Other interesting observation include those from the 

GLM model, such that a high price and long length of 

description are penalized, which is intuitive, but the 

degree to which they are important is surprising, as 

seen in gure 5. 

 

While the models were shown to be able to learn to 

some degree of success and interesting conclusions can 

be drawn from the data, it was not shown that our de 

nition of success x actually correlates with any 

economic success. There exists companies, such as 

AppAnnie, which attempt to make available this data 

for commercial purposes. A developer interested in 

modeling the current state of a airs to determine which 

kind of application to develop, or an investor wishing 

to invest using models such as these would do well to 
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subscribe to such a feed of information to ensure that 

success x correlates with revenue. 
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