
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Science, Engineering and Technology

Print ISSN: 2395-1990 | Online ISSN : 2394-4099 (www.ijsrset.com)

doi : https://doi.org/10.32628/IJSRSET

286

App Success Predictor
*1Dr E. Madhusudhana Reddy,2Nippuleti Varsha,2Gandela Supriya

*1Professor,2B.Tech. Scholar

Department of CSE, Bhoj Reddy Engineering College for Woman, Vinay Nagar, Hyderabad, Telangana, India

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted: 01 April 2023

Published: 09 April 2023

 A machinery for downloading and extracting features about applications

from the Google Play Store was developed and deployed, and the resulting

data set was used to train three different models to predict the success of a

mobile application; a na ve bayes based text classi er for the de-scription

of the application, a generalized linear model which categorizes

applications as successful or not, and a linear regression which predicts the

average rating of the application. The performance of the models is not su

cient to justify their use in driving investments in new applications,

however interesting observations about the ecosystem, such as the current

trend in photo sharing applications, are elucidated.

Keywords : Dataset, Linear Regression, Ecosystem, Linear Models.

Publication Issue

Volume 10, Issue 2

March-April-2023

Page Number

286-289

I. INTRODUCTION

Mobile applications have turned into an enormously

pro table business, with revenue from mobile appli-

cations expected to exceed fty billion USD by 2016 [6].

These pro ts are not distributed equally amongst

developers, with forty-seven percent of developers

making less than one-hundred USD, more than half of

which make nothing at all [5]; creating a successful

application is not easy. Luckily, an enormous amount

of data about mobile applications is made available

publicly by Google, Apple, and Microsoft by way of the

websites for their app stores.

In this study, features extracted from the data made

available on Google’s Play Store website is used as

input to two di erent models. Each model predicts the

success of a given application, and interesting

observations about their behavior are discussed.

II. Data Collection

Google makes data available about its applications on

http://play.google.com. These pages contain data

which can be extracted such the name of the

application, the description, the number of

installations, the average rating of the application, and

many more features. In order gather as much data as

possible without worrying about which features would

eventually be used, a web crawler based on Scrapy [3]

was created, deployed on Amazon Web Services (AWS)

Elastic Compute Cloud (EC2), and the entire rendered

DOMs of the application pages were downloaded to

AWS Simple Storage Service (S3) and stored as HTML.

The crawling job is currently still crawling, and at the

http://www.ijsrset.com/

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 10 | Issue 2

Dr E. Madhusudhana Reddy et al Int J Sci Res Sci Eng Technol, March-April-2023, 10 (2) : 286-289

287

time of training models had downloaded data for more

than 1.3 million applications.

For each desired feature, a feature extracting function

was written which, given an input HTML le, would

output just the feature in question. For all feature

extracting functions and all output HTML les, features

were extracted and the resultant data is stored in AWS

Relational Database System (RDS). As new output

HTML les are downloaded, all registered feature

extractors are automatically ran on it, and newly

registered feature extractors are back lled from the

catalogue of previously downloaded HTML les.

III. Features, Preprocessing, and Labeling

Numerous feature extractors were developed: features

extracted include the average user rating, number of f5,

4, 3, 2, 1g star ratings, the number of installations, the

description, the name of the application, whether or

not the developer is a top developer, the size of the

Android Application Package (APK), when the most

recent update was published, which Android SDKs are

supported, the number of \+1"s on the application, the

price, and more. These extractors were written as a

combination selectors [4] and regular expressions.

IV. Principal Component Analysis

Principal component analysis was performed on the

inputs to the GLM and linear regression models. While

training these models, cross validation scores were

lower than expected which might be explained

through over tting. In order to help alleviate some of

this problem, principal component analysis was

performed on the continuous features and the rst two

principal components were stored in the RDS database.

V.Text

Preparing the description for the na ve bayes algorithm

involved using the NLTK in python [1] to both remove

stop words and perform some basic stemming on the

words in the description, bringing the feature vector

dimension to on the order of one-half-million.

5.1. Success Metrics. The most obvious choice for a

success metric would be revenue, however this

information is among the small amount of information

not available publically. Instead, we use number of

installations and average user rating as a proxy for

success, the distributions of which are seen in gure 1.

Hoping to select the top ve percent of applications as

successful, a natural region of success is found. For

some application x with average rating xscore and

number of installations xinstalls, the successfulness of

an application, success x is de ned as:

(1) success x = 1 fxscore >= 4:5g 1 xinstalls >= 5

 104

This region encompasses two clusters; one extremely

high numbers of downloads and one with close to one-

hundred-thousand downloads. The cluster containing

applications with large numbers of downloads

included those applications from developers such as

Google, Facebook, and Snapchat. The cluster with a

smaller number of installations contained a large

variety of publishers but mainly consisted of very

highly rated card games and highly rated applications

targeting non-US markets.

We also consider average user rating as a possible

success metric to see how a relatively straightforward

implementation of linear regression performs.

V. Prediction

6.1. Na ve Bayes. The rst model attempted was to build

a model which would classify an application as

successful or not based on its description. A na ve based

classi er text classi er was chosen, and the

implementation was written in Java for use in a

MapReduce pipeline over the text [2]. Cross-validation

was performed so that the performance of the model

might be measured, as seen in figure 2.

While not the best performing algorithm, the run-time

performance of the algorithm was extremely good and

allowed for quick changes, and some interesting results

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 10 | Issue 2

Dr E. Madhusudhana Reddy et al Int J Sci Res Sci Eng Technol, March-April-2023, 10 (2) : 286-289

288

can be seen from the intermediate data of the

algorithm.

(2) p (x\photo" = 1jsuccess x = 1) = :35

(3) p (x\share" = 1jsuccess x = 1) = :31

(4) p (x\download" = 1jsuccess x = 1) = :0001

6.2. GLM. Given our de nition of success x, one could

say that success x = 1 is distributed Bernoulli with

parameter = p(success x = 1) = :05. We could then use

our continuous feature vectors to train a generalized

linear model to predict success x (in this case given the

distribution, the GLM would be logistic regression).

Cross validation was performed so that the

performance of the model might be measured.

The cross-validation error is remains high, suggesting

the possibility of over tting. We instead switch to

performing logistic regression on the rst two principal

components of the continuous features (described

above).

The comparison between the two approaches is shown

in the training curves in gure 3.

6.3. Linear Regression. Additionally, we try and use

the continuous features to try and predict just the

average rating of the application | one might

hypothesize that predicting a popular application

might be difficult whereas predicting whether an

application makes users happy or angry might be easier.

Figure 4 shows the performance of this model via the

RMSE.

Figure 1: Training curve for GLM models. (Left: Raw,

Right: PCA)

Figure 2. RMSE training curve for the linear model.

VI. CONCLUSION AND FUTURE SCOPE

The accuracy of the above discussed models show that

there does exists some, albeit limited, predic-tive

power in the eventual success of an application which

can be garnered from the publically available

information on the Google Play Store.

More interestingly, certain insights can be garnered

from looking at the models themselves instead of just

their output. It is shown that thirty- ve percent of all

successful applications contain the stem \photo" (eqn.

2) and thirty-one percent of all successful applications

contain the steam \share" (eqn. 3) somewhere in their

description. We are able to start to build a picture of

the genres of applications in which users are interested

by using this model.

Other interesting observation include those from the

GLM model, such that a high price and long length of

description are penalized, which is intuitive, but the

degree to which they are important is surprising, as

seen in gure 5.

While the models were shown to be able to learn to

some degree of success and interesting conclusions can

be drawn from the data, it was not shown that our de

nition of success x actually correlates with any

economic success. There exists companies, such as

AppAnnie, which attempt to make available this data

for commercial purposes. A developer interested in

modeling the current state of a airs to determine which

kind of application to develop, or an investor wishing

to invest using models such as these would do well to

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 10 | Issue 2

Dr E. Madhusudhana Reddy et al Int J Sci Res Sci Eng Technol, March-April-2023, 10 (2) : 286-289

289

subscribe to such a feed of information to ensure that

success x correlates with revenue.

VII. REFERENCES

[1]. Bird, Steven. Loper, Edward. Klein, Evan. Natural

Language Processing with Python. OReilly Media

Inc. 2009.

[2]. Maskey, Sameer. MapReduce for Statistical

NLP/Machine Learning. 2012.

[3]. Scrapy.

http://doc.scrapy.org/en/latest/intro/overview.ht

ml 2014. Web. 01 Nov 2014.

[4]. Selectors. Mozilla Developer Network Sept 2014.

Web. 01 Nov 2014.

[5]. Wilcox, Mark. Voskoglou, Christina. State of the

Developer Nation Q3 2014. Vision Mobile. July

2014.

[6]. Worldwide mobile app revenues from 2011 to

2017 (in billion U.S. dollars). Statista. 2014. Web.

30 Nov. 2014.

http://www.statista.com/statistics/269025/world

wide-mobile-app-rev

Cite this article as :

Dr E. Madhusudhana Reddy, Nippuleti Varsha,

Gandela Supriya, "App Success Predictor",

International Journal of Scientific Research in Science,

Engineering and Technology (IJSRSET), Online ISSN :

2394-4099, Print ISSN : 2395-1990, Volume 10 Issue 2,

pp. 286-289, March-April 2023.

Journal URL : https://ijsrset.com/IJSRSET2310238

