
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Science, Engineering and Technology

Print ISSN: 2395-1990 | Online ISSN : 2394-4099 (www.ijsrset.com)

doi : https://doi.org/10.32628/IJSRSET2310267

496

Real-Time Chat Application
Ms. Archana Nikose, Sakshi Dosani, Shreya Pardhi, Deep Nikode, Anurag Jais

Department of Computer Science and Engineering, Priyadarshini Bhagwati College of Engineering, Nagpur,

Maharashtra, India

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted: 01 April 2023

Published: 15 April 2023

The emergence of new technologies has brought about significant changes

in the way people communicate with each other. One of the most popular

ways of communication in today's digital age is through messaging

applications. To facilitate this need, several chat applications have been

developed. In this thesis, we introduce a chat application built using the

MERN stack, which is a popular technology stack used for building web

applications. This application provides users with the ability to create

accounts, join chat rooms, and send messages to other users in real-time.

With the use of web sockets and Angular's two-way binding, the application

allows users to see messages as soon as they are sent. Moreover, the

application also includes features such as user authentication and

authorization to ensure secure access to the chat rooms. Through this project,

we aim to demonstrate the feasibility and effectiveness of building real-time

chat applications using the Mern stack.

Keywords: Real time chat app, Chat app using mern stack, Chat app.

Publication Issue

Volume 10, Issue 2

March-April-2023

Page Number

496-501

I. INTRODUCTION

Chat applications have become an integral part of our

day-to-day life and have had a significant impact on

how we communicate with each other. With

numerous chat applications available in the market,

each offering unique features and capabilities, users are

spoilt for choice. Companies that develop these

applications compete with each other to add new

features and improve the user experience with each

release. This competition has led to the development

of some of the world's top companies, generating high

revenue and employing a large number of people.

However, with the growing concern of data theft,

companies must ensure the security of their users' data

and protect them from third-party data breaches. To

address this, the basic chatting system should involve

both sending and receiving processes simultaneously,

which can be achieved through the MERN concept.

Developers worldwide are constantly striving to

enhance the user experience of chat applications and

improve their workflow to deliver projects and

changes quickly. This is where stacks come into play,

which allow developers to build web applications

quickly and efficiently. Mern and MERN are two

popular stacks built on JavaScript that offer an end-to-

http://www.ijsrset.com/

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 10 | Issue 2

Ms. Archana Nikose et al Int J Sci Res Sci Eng Technol, March-April-2023, 10 (2) : 496-501

497

end framework for building comprehensive web apps

that enable browsers to connect with databases.

Our team recognized the need for a reliable and user-

friendly chat app that could be used across different

platforms and devices, and we decided to build it using

the Mern stack. This allowed us to take advantage of

the strengths of each technology and create a seamless

user experience.

II. METHODS AND MATERIAL

To develop a chat application, the first step was to

design a database schema that could store user

information, chat rooms, and messages. MongoDB, a

document-oriented database, was chosen for this

purpose due to its flexibility and ease of use. The

schema was designed to have multiple collections, each

responsible for storing different types of data.

Once the database schema was in place, the next step

was to build the server-side API that would handle

requests from the client-side application. Express.js, a

fast and flexible Node.js web application framework,

was used to build the server-side API. It provides

features such as routing, middleware, and templating,

making it an ideal choice for building web applications

and APIs.

On the client-side, AngularJS was chosen to create a

responsive and intuitive user interface. AngularJS is a

JavaScript-based framework that simplifies the

development of web applications by providing a

structured framework for creating dynamic views. It

allows developers to create complex user interfaces

with ease, using reusable code and components.

The chat application required real-time message

updates, which were achieved using socket.io, a

JavaScript library for real-time web applications.

Socket.io enables bidirectional communication

between the server and the client, allowing for real-

time updates and notifications.

User authentication was also an important feature of

the chat application, and this was implemented using

JSON Web Tokens (JWT). JWT is a secure and easy-to-

use authentication mechanism that allows users to

securely transmit information between parties.

Finally, Node.js was used to deploy the application on

a cloud hosting service. Node.js is a platform built on

the Chrome V8 JavaScript engine that allows

developers to run JavaScript code outside of a web

browser on the server side, providing a powerful and

efficient way to build server-side applications using

JavaScript. It allows Users to run JavaScript code on the

server. It is fast and scalable, making it ideal for

building web applications that can handle high traffic.

In conclusion, developing a chat application requires a

combination of technologies and frameworks, each

serving a specific purpose. The choice of technologies

depends on the specific requirements of the application,

such as real-time message updates, user authentication,

and scalability. MongoDB, Express.js, AngularJS,

socket.io, JWT, and Node.js were the technologies

chosen for this particular chat application, resulting in

a robust and feature-rich application that met the

requirements of the project.

Here is a more detailed explanation of the technologies

used in the chat application:

1. HTML, CSS, and JavaScript form the backbone of

web development and are essential tools for creating

dynamic and interactive websites. HTML is used to

structure and define the content of web pages, CSS is

used for styling and layout, and JavaScript is used for

creating dynamic interactions and functionality.

2. MongoDB: It is a cross-platform document-oriented

NoSQL database. MongoDB stores data in JSON-like

documents, making it easy to work with for developers.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 10 | Issue 2

Ms. Archana Nikose et al Int J Sci Res Sci Eng Technol, March-April-2023, 10 (2) : 496-501

498

It provides support for ad-hoc queries, indexing, and

aggregation, making it a popular choice for building

web and mobile applications that require a flexible and

scalable database.

3. Express: Express is a web application framework for

Node.js that provides developers with a powerful set of

tools to build back-end web applications and APIs. It

includes features such as routing and middleware,

which make it easier to handle HTTP requests and

responses. Express is known for being flexible and easy

to use, making it a popular choice among developers

for building web applications and APIs.

4. React: React is based on a component-based

architecture, which Merns developers can create

reusable UI components that can be used across an

application. React also manages the state of an

application more efficiently, making it easier to build

complex applications.

5. Node.js: Node.js is a JavaScript runtime environment

that enables developers to execute JavaScript code on

the server-side. It is cross-platform and open-source,

which allows for the creation of scalable and high-

performance web applications and APIs. Node.js is

known for its speedy and efficient event-driven, non-

blocking I/O model.

The MERN stack combines these technologies to

create a comprehensive web application framework.

MongoDB provides a flexible and scalable database,

Express provides a simple and minimalist back-end

framework, React provides a powerful front-end

library for building user interfaces, and Node.js used to

run JavaScript code on the server-side. Together, these

technologies provide a full-stack solution for building

robust and scalable web applications.

III. PROPOSED SCHEME

This section explains the development plan for this

web application :

The development plan for our chat application

involved creating a platform for users to communicate

with each other in real-time using the MERN stack,

which is a widely used and modern technology stack

in the industry. The application's frontend was

developed using React, while the backend was

developed using Node.js and Express.js, and the data

was stored in MongoDB.

In the first phase, we focused on setting up the

development environment and installing the necessary

tools and libraries. We created a project skeleton and

defined the basic structure of our application. This

phase was critical in establishing a solid foundation for

our development process.

In the second phase, we designed the database schema

and created the necessary models and controllers. We

also implemented user authentication and

authorization, as well as RESTful APIs to handle data

retrieval and manipulation. This phase was essential

for ensuring that our application was secure and that

users' data was protected.

In the third phase, we built the frontend user interface

using React. We used various UI libraries and

frameworks, such as Material-UI and Bootstrap, to

create an attractive and responsive design. We also

implemented client-side routing and integrated with

the backend APIs.

In the final phase, we conducted extensive testing and

debugging to ensure that our application was free of

errors and performed optimally. We also deployed the

application to a cloud platform, such as AWS or

Heroku, to make it accessible to users.

Overall, we believe that our chat application using the

MERN stack provides users with a seamless and

efficient way to communicate with each other in real-

time.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 10 | Issue 2

Ms. Archana Nikose et al Int J Sci Res Sci Eng Technol, March-April-2023, 10 (2) : 496-501

499

Fig 4.1:Data flow diagram of the system

The flow of working of a chat application built using

the Mern stack can be explained as follows:

User registration and authentication: The first step in

using the chat application is to create an account. The

user is required to enter their details and register to

access the application. Once registered, the user can

log in to the application using their email and password.

Joining chat rooms: The next step is to join a chat room.

The user can either create a new chat room or join an

existing one by entering the room name or code. Once

the user has joined a chat room, they can start chatting

with other users who are also part of that chat room.

Sending and receiving messages: The core feature of

the chat application is the ability to send and receive

messages in real-time. Using web sockets, the

application enables users to send and receive messages

instantly, allowing for a seamless conversation

experience.

User authentication and authorization: To ensure data

security and user privacy, the application incorporates

user authentication and authorization features. Users

must log in to access the application and only

authorized users can join specific chat rooms.

Error handling and notifications: The application also

includes error handling and notifications to ensure a

smooth user experience. For example, if a user tries to

join a chat room that does not exist, the application will

display an error message. Similarly, if a user receives a

new message while they are offline, the application

will send them a notification.

IV. IV. RESULTS AND DISCUSSION

Following are some of the results from our application:

Fig 3.1 :Sign-up Page

This is our signup page where users have to enter their

details like name ,email address, password and also can

upload your pictures to signup our applications.

Fig 3.2 : Main Interface

This is the main interface of our application where

different options are available like user can create

groups , can message any person in personal , can see

how many users are online ,etc.

Fig 3.3 : SEARCH USERS

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 10 | Issue 2

Ms. Archana Nikose et al Int J Sci Res Sci Eng Technol, March-April-2023, 10 (2) : 496-501

500

The application interface allows users to communicate

with any registered user directly, enabling seamless

communication and fostering community engagement.

Fig 3.4: NOTIFICATIONS

Fig 3.5: CHATTING INTERFACE

V. V. CONCLUSION

In conclusion, developing a chat application using the

MERN stack has been a challenging but rewarding

experience. The use of MongoDB, Express, React, and

Node.js provides a powerful and flexible framework for

creating real-time communication and collaboration

solutions that can be tailored to meet a wide range of

use cases and industries. The app has been designed

with user experience in mind, and features such as

real-time message updates and user a

uthentication have been implemented to provide a

seamless and secure communication experience. The

scalability and robustness of the MERN stack ensure

that the app can handle a high volume of users and

messages without compromising on performance.

Going forward, there are many opportunities for

further development and improvement of the app.

This includes adding new features such as video and

voice chat, integrating with other applications and

platforms, and enhancing the user interface to make it

more intuitive and user-friendly. Overall, the chat app

developed using the MERN stack represents a

significant achievement in the field of real-time

communication and collaboration, and has the

potential to revolutionize the way people connect and

communicate online.

VI. REFERENCES

[1]. Masiello Eric. Mastering React Native. January

11; 2017. This book is a comprehensive guide to

building mobile applications using React Native.

[2]. Naimul Islam Naim. ReactJS: An Open-Source

JavaScript library for front-end development.

Metropolia University of Applied Sciences. This

article provides an overview of ReactJS and its

key features for front-end web development.

[3]. Stefanov Stoyan, editor. React: Up and Running:

Building web Applications. First Edition; 2016.

This book is a beginner-friendly introduction to

React, covering its core concepts and providing

practical examples for building web applications.

[4]. Horton Adam, Vice Ryan. Mastering React;

February 23; 2016. This book provides a

comprehensive guide to React, covering its core

concepts, practical examples, and advanced

techniques for building complex applications.

[5]. Alex Kondov. Express Architecture Review. This

article provides a review of the architecture of

Express.js, a popular web framework for building

Node.js applications.

[6]. Express.js documentation. This documentation

provides a comprehensive guide to building web

applications using Express.js.

[7]. Adam Horton. Node.js vs Python: What to

Choose. This article provides a comparison of

Node.js and Python for web development,

highlighting their strengths and weaknesses.

[8]. Node.js documentation. This documentation

provides a comprehensive guide to building

server- side applications using Node.js.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 10 | Issue 2

Ms. Archana Nikose et al Int J Sci Res Sci Eng Technol, March-April-2023, 10 (2) : 496-501

501

[9]. VSChart. This website provides a comparison of

various programming languages and frameworks

based on popularity, community support, and

other factors.

[10]. MongoDB documentation. This documentation

provides a comprehensive guide to using

MongoDB, a popular NoSQL database for

building web applications.

[11]. The paper by Lakshmi Prasanna Chitra and

Ravikanth Satapathy aims to compare the

performance of Node.js and traditional web

servers, specifically Internet Information

Services (IIS), in optimizing web application

development.The authors conducted various

tests to evaluate the performance of both

platforms and determine which one is better for

developing high-performance web applications.

[12]. Guru99. React vs Angular: Key Differences. This article

provides a comparison of React and Angular, two

popular front-end frameworks for building web

applications.

Cite this article as :

Ms. Archana Nikose, Sakshi Dosani, Shreya Pardhi,

Deep Nikode, Anurag Jais, "Real-Time Chat

Application", International Journal of Scientific

Research in Science, Engineering and Technology

(IJSRSET), Online ISSN : 2394-4099, Print ISSN : 2395-

1990, Volume 10 Issue 2, pp. 496-501, March-April

2023. Available at doi :

https://doi.org/10.32628/IJSRSET2310267

Journal URL : https://ijsrset.com/IJSRSET2310267

