

Multiplication and Addition of Tetrajection Operator

Dr. Rajiv Kumar Mishra

Associate Professor, Department of Mathematics, Rajendra College Chapra, J.P. University, Chapra, Bihar, India E-mail - dr.rkm65@gmail.com

ABSTRACT

In this paper we define a tetrajection operator in analogue to a projection and a trijection operator. We study condition for multiplication of two tetrajections to be a tetrajection and relation between their ranges and null spaces. We obtain condition for addition of two tetrajections to be a tetrajection and relation between their ranges and null spaces.

Keywords: Projection, Trijection, Tetrajection

INTRODUCTION

In this paper we have introduced a new type of linear operator called tetrajection operator on a linear space as well as on a Hilbert space. It is a generalization of projection operator as defined in Dunford and Schwartz [2] page 37 and Rudin [3] page 126 in the sense that every projection is a tetrajection but a tetrajection is not necessarily a projection.

A projection operator E on a Hilbert space H, as defined in Simmons G. F., p-274 [4] by the formula

 $E^2 = E$ and $E^* = E$, where E^* is the adjoint of E.

A trijection operator has been defined by Chandra [1] by the formula $E^3 = E$. We study condition for multiplication of two tetrajections to be a tetrajection and relation between their ranges and null spaces. We obtain condition for addition of two tetrajections to be a tetrajection and relation between their ranges and null spaces.

A special type of operator:

We define E, a linear operator on a linear space L to be a tetrajection if $E^4 = E$. If E is a projection operator on the linear space L, then $E^2 = E$.

$$\Rightarrow E^{3} = E^{2}.E = E.E = E^{2} = E$$

and $E^{4} = E^{3}.E = E.E = E^{2} = E$

This shows that a projection is necessarily a tetrajection but a tetrajection is not necessarily a projection or a trijection. This would be clear from the following example:

Let C be the set of the set of all complex numbers and let L = C². Let $E(x,y) = (x, \omega y)$ where x, y are the complex numbers and ω is an imaginary cube root of unity.

$$E^{2}(x, y) = E(E(x, y)) = E(x, \omega y) = (x, \omega^{2} y)$$

$$\neq E(x, y)$$

Hence $E^2 \neq E$ Therefore E is not a projection.

$$E^{3}(x,y) = E(E^{2}(x,y)) = E(x,\omega^{2}y) = (x,\omega^{3}y)$$

$$\neq E(x,y)$$

So $E^3 \neq E$.

Hence E is not a trijection.

$$E^{4}(x,y) = E(E^{3}(x,y)) = E(x,y)$$

So
$$E^4 = E$$
.

Hence E is a tetrajection but it is neither a projection nor a trijection.

We define null space of the tetrajection E as $\{z:Ez = 0\}$ which we denote by N (or N_E) and range of the tetrajection E is defined by $\{z:E^3z = z\}$ which we denote by R (or R_E).

A linear operator E defined on a Hilbert space H is called tetrajection if $E^4=E$ and $E^* = E$, where E^* is the adjoint of E.

Theorem(3.i):

If A and B are the tetrajection on closed linear subspaces M and N of H, then AB is a tetrajection \Leftrightarrow AB=BA

Also in this case AB is the tetrajection on $M \cap N$ and N_{AB} = N_A + N_B.

Proof:

Let AB = BA, then $(AB)^2 = (AB)(AB) = A(AB)B = A(AB)B$ $= (AA)(BB) = A^2B^2$ $(AB)^3 = (AB)^2 AB = A^2 B^2 AB = A^2 B(BA)B$ $= A^2 B(AB)B = A^2(BA)B^2$ $= A^2(AB)B^2$ $A^2 A B B^2 = A^3 B^3$ Hence $(AB)^4 = (AB)^3 AB = A^3 B^3 AB$ $= A^3 B^2 (BA) B$ $= A^3 B^2 (AB)B = A^3 B (BA)B^2$ $= A^{3}B(AB)B^{2} = A^{3}(BA)B^{3}$ $= A^3(AB)B^3$ $= A^3 A B B^3 = A^4 B^4 = A B$ (Since A and B are tetrajections) Also $(AB)^* = B^*A^* = BA = AB$ Hence AB is a tetrajection. Conversely, let AB be a tetrajection, the $(AB)^* =$ $AB \Rightarrow B^*A^* = AB$ $\Rightarrow BA = AB$ Now again if AB is a tetrajection, then $R_{AB} = \{x: (AB)^3 x = x\}$ $= \{x: A^3 B^3 x = x\}$ Let $x \in M \cap N$, then $x \in M$ and $x \in N$ $\Rightarrow A^3 x = x$ and $B^3 x = x$ Hence $(AB)^{3}x = A^{3}B^{3}x = A^{3}x = x$ $\Rightarrow x \in R_{AB}$ Therefore $x \in M \cap N \Rightarrow x \in R_{AB}$ Hence $M \cap N \subseteq R_{AB}$ — (3.11) Again, let $x \in R_{AB}$, then $(AB)^3 x = x \Rightarrow A^3 B^3 x = x$ Therefore $x = A^3(B^3x) = A(A^2B^3x) \in M$

Since $(BA)^3 = B^3 A^3$, $(AB)^3 = A^3 B^3$ and BA = AB we have $B^3A^3 = A^3B^3$ Hence $x = A^{3}B^{3}x = B^{3}A^{3}x = B(B^{2}A^{3}x) \in M$ Now $x \in M$ and $x \in N$, so $x \in M \cap N$ Thus $x \in R_{AB} \Rightarrow x \in M \cap N$ Hence $R_{AB} \subseteq M \cap N$ — (3.12) From (3.11) and (3.12), we get $R_{AB} = M \cap N = R_A \cap R_B$ Also, $N_{AB} = \{z: (AB)^3 z = 0\} = \{z: (A^3B^3)z = 0\}$ Let $z \in N_{AB}$, then $A^3(B^3z) = 0$ Therefore $B^3 z \in N_{A^3} = N_A$ as A is a tetrajection. $[z \in N_{A^3} \Rightarrow A^3 z = 0 \Rightarrow A^4 z = A(A^3 z) = A(0) =$ 0 $\Rightarrow Az = 0$ $\Rightarrow z \in N_A$ Therefore $N_{A^3} \subseteq N_A$ Conversely, $z \in N_A \Rightarrow Az = 0$ $\Rightarrow A^2 z = A(Az) = A(0) = 0$ $\Rightarrow A^3 z = A(A^2 z) = A(0) = 0$ \Rightarrow z ϵN_{4^3} Therefore $N_A \subseteq N_{A^3}$ Thus $N_{A^3} \subseteq N_A$ and $N_A \subseteq N_{A^3}$ Hence $N_{A^3} = N_A$] Since $B(z - B^3 z) = Bz - B^4 z$ = Bz - Bz = 0So $z - B^3 z \in N_R$ Therefore $z = B^3 z + (z - B^3 z) \epsilon N_A + N_B$ Thus $z \in N_{AB} \Rightarrow z \in N_A + N_B$ Hence $N_{AB} \subseteq N_A + N_B$ —---------- (3.13) Let $z \in N_A + N_B$, then we can write $z = z_1 + z_2$ where $z_1 \in N_A$ and $z_2 \in N_B$ \Rightarrow $A(z_1) = 0$ and $B(z_2) = 0$ Now $(AB)z = (AB)(z_1 + z_2)$ $= ABz_1 + ABz_2$ $= B(Az_1) + A(Bz_2)$ = B(0) + A(0)= 0 + 0 = 0Therefore $z \in N_{AB}$ Thus $z \in N_A + N_B \Rightarrow z \in N_{AB}$ Hence $N_A + N_B \subseteq N_{AB}$ — (3.14) From (3.13) and (3.14), we get $N_{AB} = N_A + N_B$

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Theorem (3.II) :

If A and B are tetrajections on a Hilbert Space H and AB=0 then A+B is also a tetrajection such that the null space of A+B is the intersection of the null spaces of A and B and the range of A+B is the direct sum of ranges of A and B.

Proof:

We have $(A + B)^2 = (A + B)(A + B) = A^2 + AB + AB$ $BA + B^2$ Now, $AB = 0 \Rightarrow (AB)^* = 0^* \Rightarrow B^*A^* = 0 \Rightarrow BA = 0$ Therefore AB = BA = 0Hence $(A + B)^2 = A^2 + B^2$ $(A + B)^3 = (A + B)(A + B)^2$ $(A + B)(A^{2} + B^{2}) = A^{3} + AB^{2} + BA^{2} + B^{3}$ $= A^{3} + (AB)B + (BA)A + B^{3} = A^{3} + B^{3}$ $(A+B)^4 = (A+B)(A+B)^3$ $= (A + B)(A^{3} + B^{3}) = A^{4} + AB^{3} + BA^{3} + B^{4}$ $= A^4 + (AB)B^2 + (BA)A^2 + B^4$ $= A^4 + B^4$ = A + B and $(A + B)^* = A^* + B^* = A + B$ Hence A + B is a tetrajection Now we have to prove that $N_{A+B} = N_A \cap N_B$ and $R_{A+B} = R_A \oplus R_B$ We have $N_{A+B} = \{z: (A+B)z = 0\}$ $= \{z: Az + Bz = 0\}$ $= \{z: Az = -Bz\}$ Let $z \in N_{A+B}$. Since AB = 0Therefore $0 = (AB)z = A(Bz) = A(-Az) = -A^2z$ Hence $A^2 z = 0$ $\Rightarrow A^3 z = A(A^2 z) = A(0) = 0$ $\Rightarrow z \in N_A \ (since \ N_{A^3} = N_A)$ Again, since BA = 0, therefore $0 = (BA)z = B(Az) = B(-Bz) = -B^2z$ $\Rightarrow B^2 z = 0$ $\Rightarrow B^3 z = B(B^2 z) = B(0) = 0$ $\Rightarrow z \in N_B$ Therefore $z \in N_A$ and $z \in N_B$ $\Rightarrow z \in N_A \cap N_B$ Thus $z \in N_{A+B} \Rightarrow z \in N_A \cap N_B$ Therefore $N_{A+B} \subseteq N_A \cap N_B$ — 3.15 Let $z \in N_A \cap N_B$, then $z \in N_A$ and $z \in N_B$ \Rightarrow *Az* = 0 and *Bz* = 0 $\Rightarrow Az + Bz = 0 + 0 = 0$ $\Rightarrow (A + B)z = 0$

 $\Rightarrow z \in N_{A+B}$ Thus $z \in N_A \cap N_B \Rightarrow z \in N_{A+B}$ Therefore $N_A \cap N_B \subseteq N_{A+B}$ — (3.16) Hence from (3.15) and (3.16) We get, $N_{A+B} = N_A \cap N_B$ Let z be an element in R_{A+B} , then $(A+B)^3 z = z \Rightarrow$ $(A^3 + B^3)z = z$ Now as A and B are tetrajections on H, so $A^3z = A(A^2z) \in R_A$ and $B^3z = B(B^2z) \in R_B$ Hence $z = A^3 z + B^3 z \in R_A + R_B$ Hence $R_{A+B} \subseteq R_A + R_B$ (3.17) Conversely, let $z \in R_A + R_B$, then we can write z = $z_1 + z_2$ Such that $z_1 \in R_A$ and $z_2 \in R_B$ Hence $A^{3}z_{1} = z_{1}$ and $B^{3}z_{2} = z_{2}$ Therefore $(A + B)^3 z = (A^3 + B^3)(z_1 + z_2)$ $= A^{3}z_{1} + A^{3}z_{2} + B^{3}z_{1} + B^{3}z_{2}$ $= A^{3}z_{1} + A^{3}(B^{3}z_{2}) + B^{3}(A^{3}z_{1}) + B^{3}z_{2}$ $= z_1 + (AB)^3 z_2 + (BA)^3 z_1 + z_2$ $= z_1 + z_2$ (as AB = 0, BA = 0) = zHence $z \in R_{A+B}$ Thus $z \in R_A + R_B \Rightarrow z \in R_{A+B}$ Therefore $R_A + R_B \subseteq R_{A+B}$ — (3.18) From (3.17) and (3.18), we get $R_{A+B} = R_A + R_B$ Now, let $z \in R_A \cap R_B$, then $z \in R_A$ and $z \in R_B$ $z \in R_A \Rightarrow A^3 z = z \text{ and } z \in R_B \Rightarrow B^3 z$ $z = A^3 z = A^3 (B^3 z) = (A^3 B^3) z =$ Therefore $(AB)^{3}z = 0$ Hence $R_A \cap R_B = \{0\}$ Therefore $R_{A+B} = R_A \bigoplus R_B$

Remark

From theorem (3.I), we see that with the given conditions in the above theorem, AB is also a tetrajection.

REFERENCES

 Chandra, P : "Investigation into the theory of operators and linear spaces" (Ph.D. Thesis, P.U.1977)

- Dunford, N. and Schwartz, J.: "Linear operators, part I" Interscience publishers, Inc., New York, 1967, P 37
- Rudin, W.: "Functional Analysis", McGraw- Hill Book Company, Inc., New York, 1973, p. 126.
- 4. Simmons G. F., "Introduction to Topology and Modern Analysis"
 Mc. Graw-Hill Book Company Inc., New York, 1963; p-274

Cite This Article :

Dr. Rajiv Kumar Mishra, "Multiplication and Addition of Tetrajection Operator, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 3, Issue 1, pp.588-591, January-February-2017.

Journal URL : https://ijsrset.com/IJSRSET218210