Multiplication and Addition of Tetrajection Operator

Dr. Rajiv Kumar Mishra

Associate Professor, Department of Mathematics, Rajendra College Chapra, J.P. University, Chapra, Bihar, India
E-mail - dr.rkm65@gmail.com

Abstract

In this paper we define a tetrajection operator in analogue to a projection and a trijection operator. We study condition for multiplication of two tetrajections to be a tetrajection and relation between their ranges and null spaces. We obtain condition for addition of two tetrajections to be a tetrajection and relation between their ranges and null spaces.

Keywords : Projection, Trijection, Tetrajection

INTRODUCTION

In this paper we have introduced a new type of linear operator called tetrajection operator on a linear space as well as on a Hilbert space. It is a generalization of projection operator as defined in Dunford and Schwartz [2] page 37 and Rudin [3] page 126 in the sense that every projection is a tetrajection but a tetrajection is not necessarily a projection.

A projection operator E on a Hilbert space H, as defined in Simmons G. F., p-274 [4] by the formula
$\mathrm{E}^{2}=\mathrm{E}$ and $\mathrm{E}^{*}=\mathrm{E}$, where E^{*} is the adjoint of E .

A trijection operator has been defined by Chandra [1] by the formula $\mathrm{E}^{3}=\mathrm{E}$. We study condition for multiplication of two tetrajections to be a tetrajection and relation between their ranges and null spaces. We obtain condition for addition of two tetrajections to be a tetrajection and relation between their ranges and null spaces.

A special type of operator:

We define E , a linear operator on a linear space L to be a tetrajection if $\mathrm{E}^{4}=\mathrm{E}$. If E is a projection operator on the linear space L , then $\mathrm{E}^{2}=\mathrm{E}$.

$$
\begin{aligned}
& \Rightarrow E^{3}=E^{2} \cdot E=E \cdot E=E^{2}=E \\
& \text { and } E^{4}=E^{3} \cdot E=E \cdot E=E^{2}=E
\end{aligned}
$$

This shows that a projection is necessarily a tetrajection but a tetrajection is not necessarily a projection or a trijection. This would be clear from the following example:
Let C be the set of the set of all complex numbers and let $\mathrm{L}=\mathrm{C}^{2}$. Let $\mathrm{E}(\mathrm{x}, \mathrm{y})=(\mathrm{x}, \omega \mathrm{y})$ where x, y are the complex numbers and ω is an imaginary cube root of unity.
$E^{2}(x, y)=E(E(x, y))=E(x, \omega y)=\left(x, \omega^{2} y\right)$ $\neq E(x, y)$
Hence $\mathrm{E}^{2} \neq \mathrm{E}$
Therefore E is not a projection.
$E^{3}(x, y)=E\left(E^{2}(x, y)\right)=E\left(x, \omega^{2} y\right)=\left(x, \omega^{3} y\right)$

$$
\neq E(x, y)
$$

So $\mathrm{E}^{3} \neq \mathrm{E}$.
Hence E is not a trijection.
$\mathrm{E}^{4}(\mathrm{x}, \mathrm{y})=\mathrm{E}\left(\mathrm{E}^{3}(\mathrm{x}, \mathrm{y})\right)=\mathrm{E}(\mathrm{x}, \mathrm{y})$
So $\mathrm{E}^{4}=\mathrm{E}$.
Hence E is a tetrajection but it is neither a projection nor a trijection.

We define null space of the tetrajection E as $\{\mathrm{z}: \mathrm{Ez}=0\}$ which we denote by N (or N_{E}) and range of the tetrajection E is defined by $\left\{z: E^{3} z=z\right\}$ which we denote by R (or R_{E}).
A linear operator E defined on a Hilbert space H is called tetrajection if $\mathrm{E}^{4}=\mathrm{E}$ and $\mathrm{E}^{*}=\mathrm{E}$, where E^{*} is the adjoint of E.

Theorem(3.i):

If A and B are the tetrajection on closed linear subspaces M and N of H, then $A B$ is a tetrajection \Leftrightarrow $\mathrm{AB}=\mathrm{BA}$
Also in this case $A B$ is the tetrajection on $M \cap N$ and $\mathrm{N}_{\mathrm{AB}}=\mathrm{N}_{\mathrm{A}}+\mathrm{N}_{\mathrm{B}}$.

Proof:

Let $A B=B A$, then
$(A B)^{2}=(A B)(A B)=A(A B) B=A(A B) B$
$=(A A)(B B)=A^{2} B^{2}$
$(A B)^{3}=(A B)^{2} A B=A^{2} B^{2} A B=A^{2} B(B A) B$
$=A^{2} B(A B) B=A^{2}(B A) B^{2}$
$=A^{2}(A B) B^{2}$
$A^{2} A B B^{2}=A^{3} B^{3}$
Hence $(A B)^{4}=(A B)^{3} A B=A^{3} B^{3} A B$

$$
=A^{3} B^{2}(B A) B
$$

$=A^{3} B^{2}(A B) B=A^{3} B(B A) B^{2}$
$=A^{3} B(A B) B^{2}=A^{3}(B A) B^{3}$
$=A^{3}(A B) B^{3}$
$=A^{3} A B B^{3}=A^{4} B^{4}=A B$
(Since A and B are tetrajections)
Also $(A B)^{*}=B^{*} A^{*}=B A=A B$
Hence $A B$ is a tetrajection.
Conversely, let $A B$ be a tetrajection, the $(A B)^{*}=$
$A B \Rightarrow B^{*} A^{*}=A B$
$\Rightarrow B A=A B$
Now again if AB is a tetrajection, then
$R_{A B}=\left\{x:(A B)^{3} x=x\right\}$
$=\left\{x: A^{3} B^{3} x=x\right\}$
Let $\mathrm{x} \in M \cap N$, then $\mathrm{x} \in \mathrm{M}$ and $\mathrm{x} \in \mathrm{N}$
$\Rightarrow A^{3} x=x$ and $B^{3} x=x$
Hence $(A B)^{3} x=A^{3} B^{3} x=A^{3} x=x$
$\Rightarrow x \in R_{A B}$
Therefore $x \in M \cap N \Rightarrow x \in R_{A B}$
Hence $M \cap N \subseteq R_{A B}$
Again, let $x \in R_{A B}$, then $(A B)^{3} x=x \Rightarrow A^{3} B^{3} x=x$
Therefore $x=A^{3}\left(B^{3} x\right)=A\left(A^{2} B^{3} x\right) \in M$

Since $(B A)^{3}=B^{3} A^{3},(A B)^{3}=A^{3} B^{3}$ and
$B A=A B$ we have $B^{3} A^{3}=A^{3} B^{3}$
Hence $x=A^{3} B^{3} x=B^{3} A^{3} x=B\left(B^{2} A^{3} x\right) \in M$
Now $x \in M$ and $x \in N$, so $x \in M \cap N$
Thus $x \in R_{A B} \Rightarrow x \in M \cap N$
Hence $R_{A B} \subseteq M \cap N$
From (3.11) and (3.12), we get
$R_{A B}=M \cap N=R_{A} \cap R_{B}$
Also, $N_{A B}=\left\{z:(A B)^{3} z=0\right\}=\left\{z:\left(A^{3} B^{3}\right) z=0\right\}$
Let $z \in N_{A B}$, then $A^{3}\left(B^{3} z\right)=0$
Therefore $B^{3} Z \in N_{A^{3}}=N_{A}$ as A is a tetrajection.
$\left[z \in N_{A^{3}} \Rightarrow A^{3} z=0 \Rightarrow A^{4} z=A\left(A^{3} z\right)=A(0)=\right.$ 0
$\Rightarrow A z=0$
$\Rightarrow z \in N_{A}$
Therefore $N_{A^{3}} \subseteq N_{A}$
Conversely, $z \in N_{A} \Rightarrow A z=0$
$\Rightarrow A^{2} z=A(A z)=A(0)=0$
$\Rightarrow A^{3} z=A\left(A^{2} z\right)=A(0)=0$
$\Rightarrow \mathrm{z} \in N_{A^{3}}$
Therefore $N_{A} \subseteq N_{A^{3}}$
Thus $N_{A^{3}} \subseteq N_{A}$ and $N_{A} \subseteq N_{A^{3}}$
Hence $\left.N_{A^{3}}=N_{A}\right]$
Since $B\left(z-B^{3} z\right)=B z-B^{4} z$
$=B z-B z=0$
So $z-B^{3} z \in N_{B}$
Therefore $z=B^{3} z+\left(z-B^{3} z\right) \epsilon N_{A}+N_{B}$
Thus $z \in N_{A B} \Rightarrow z \in N_{A}+N_{B}$
Hence $\mathrm{N}_{\mathrm{AB}} \subseteq \mathrm{N}_{\mathrm{A}}+\mathrm{N}_{\mathrm{B}}$
Let $z \in N_{A}+N_{B}$, then we can write
$z=z_{1}+z_{2}$ where $z_{1} \in N_{A}$ and $z_{2} \in N_{B}$
$\Rightarrow A\left(z_{1}\right)=0$ and $B\left(z_{2}\right)=0$
Now $(A B) z=(A B)\left(z_{1}+z_{2}\right)$
$=A B z_{1}+A B z_{2}$
$=B\left(A z_{1}\right)+A\left(B z_{2}\right)$
$=B(0)+A(0)$
$=0+0=0$
Therefore $z \in N_{A B}$
Thus $\mathrm{z} \epsilon \mathrm{N}_{\mathrm{A}}+\mathrm{N}_{\mathrm{B}} \Rightarrow \mathrm{z} \epsilon \mathrm{N}_{\mathrm{AB}}$
Hence $N_{A}+N_{B} \subseteq N_{A B}$
From (3.13) and (3.14), we get
$\mathrm{N}_{\mathrm{AB}}=\mathrm{N}_{\mathrm{A}}+\mathrm{N}_{\mathrm{B}}$

Theorem (3.II) :
If A and B are tetrajections on a Hilbert Space H and $A B=0$ then $A+B$ is also a tetrajection such that the null space of $A+B$ is the intersection of the null spaces of A and B and the range of $A+B$ is the direct sum of ranges of A and B.

Proof:

We have $(A+B)^{2}=(A+B)(A+B)=A^{2}+A B+$ $B A+B^{2}$
Now, $A B=0 \Rightarrow(A B)^{*}=O^{*} \Rightarrow B^{*} A^{*}=0 \Rightarrow B A=0$
Therefore $A B=B A=0$
Hence $(A+B)^{2}=A^{2}+B^{2}$
$(A+B)^{3}=(A+B)(A+B)^{2}$
$(A+B)\left(A^{2}+B^{2}\right)=A^{3}+A B^{2}+B A^{2}+B^{3}$
$=A^{3}+(A B) B+(B A) A+B^{3}=A^{3}+B^{3}$
$(A+B)^{4}=(A+B)(A+B)^{3}$
$=(A+B)\left(A^{3}+B^{3}\right)=A^{4}+A B^{3}+B A^{3}+B^{4}$
$=A^{4}+(A B) B^{2}+(B A) A^{2}+B^{4}$
$=A^{4}+B^{4}$
$=A+B$ and $(A+B)^{*}=A^{*}+B^{*}=A+B$
Hence $A+B$ is a tetrajection
Now we have to prove that
$N_{A+B}=N_{A} \cap N_{B}$ and $R_{A+B}=R_{A} \oplus R_{B}$
We have $N_{A+B}=\{z:(A+B) z=0\}$
$=\{z: A z+B z=0\}$
$=\{z: A z=-B z\}$
Let $z \in N_{A+B}$. Since $A B=0$
Therefore $0=(A B) z=A(B z)=A(-A z)=-A^{2} z$
Hence $A^{2} z=0$
$\Rightarrow A^{3} z=A\left(A^{2} z\right)=A(0)=0$
$\Rightarrow z \in N_{A}\left(\right.$ since $\left.N_{A^{3}}=N_{A}\right)$
Again, since $B A=0$, therefore
$0=(B A) z=B(A z)=B(-B z)=-B^{2} z$
$\Rightarrow B^{2} Z=0$
$\Rightarrow B^{3} Z=B\left(B^{2} z\right)=B(0)=0$
$\Rightarrow z \in N_{B}$
Therefore $z \in N_{A}$ and $z \in N_{B}$
$\Rightarrow z \in N_{A} \cap N_{B}$
Thus $z \in N_{A+B} \Rightarrow z \in N_{A} \cap N_{B}$
Therefore $N_{A+B} \subseteq N_{A} \cap N_{B}--------------------\quad 3.15$
Let $z \in N_{A} \cap N_{B}$, then $z \in N_{A}$ and $z \in N_{B}$
$\Rightarrow A z=0$ and $B z=0$
$\Rightarrow A z+B z=0+0=0$
$\Rightarrow(A+B) z=0$
$\Rightarrow z \in N_{A+B}$
Thus $z \in N_{A} \cap N_{B} \Rightarrow z \in N_{A+B}$
Therefore $N_{A} \cap N_{B} \subseteq N_{A+B}$
Hence from (3.15) and (3.16)
We get, $N_{A+B}=N_{A} \cap N_{B}$
Let z be an element in R_{A+B}, then $(A+B)^{3} z=z \Rightarrow$ $\left(A^{3}+B^{3}\right) z=z$
Now as A and B are tetrajections on H, so
$A^{3} z=A\left(A^{2} z\right) \in R_{A}$ and $B^{3} z=B\left(B^{2} z\right) \in R_{B}$
Hence $z=A^{3} z+B^{3} z \in R_{A}+R_{B}$
Hence $R_{A+B} \subseteq R_{A}+R_{B}$
Conversely, let $z \in R_{A}+R_{B}$, then we can write $z=$ $z_{1}+z_{2}$
Such that $z_{1} \in R_{A}$ and $z_{2} \in R_{B}$
Hence $A^{3} z_{1}=z_{1}$ and $B^{3} z_{2}=z_{2}$
Therefore $(A+B)^{3} z=\left(A^{3}+B^{3}\right)\left(z_{1}+z_{2}\right)$
$=A^{3} z_{1}+A^{3} z_{2}+B^{3} z_{1}+B^{3} z_{2}$
$=A^{3} z_{1}+A^{3}\left(B^{3} z_{2}\right)+B^{3}\left(A^{3} z_{1}\right)+B^{3} z_{2}$
$=z_{1}+(A B)^{3} z_{2}+(B A)^{3} z_{1}+z_{2}$
$=z_{1}+z_{2}($ as $A B=0, B A=0)$
$=z$
Hence $z \in R_{A+B}$
Thus $z \in R_{A}+R_{B} \Rightarrow z \in R_{A+B}$
Therefore $R_{A}+R_{B} \subseteq R_{A+B}$
From (3.17) and (3.18), we get
$R_{A+B}=R_{A}+R_{B}$
Now, let $z \in R_{A} \cap R_{B}$, then $z \in R_{A}$ and $z \in R_{B}$
$z \in R_{A} \Rightarrow A^{3} z=z$ and $z \in R_{B} \Rightarrow B^{3} Z$
Therefore $\quad z=A^{3} z=A^{3}\left(B^{3} z\right)=\left(A^{3} B^{3}\right) z=$ $(A B)^{3} z=0$
Hence $R_{A} \cap R_{B}=\{0\}$
Therefore $R_{A+B}=R_{A} \oplus R_{B}$

Remark

From theorem (3.I), we see that with the given conditions in the above theorem, AB is also a tetrajection.

REFERENCES

1. Chandra, P : "Investigation into the theory of operators and linear spaces" (Ph.D. Thesis, P.U.1977)
2. Dunford, N. and Schwartz, J.: "Linear operators, part I" Interscience publishers, Inc., New York, 1967, P 37
3. Rudin, W.: "Functional Analysis", McGraw- Hill Book Company, Inc., New York, 1973, p. 126.
4. Simmons G. F., "Introduction to Topology and Modern Analysis"
Mc. Graw-Hill Book Company Inc., New York, 1963; p-274

Cite This Article :

Dr. Rajiv Kumar Mishra, "Multiplication and Addition of Tetrajection Operator, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 3, Issue 1, pp.588591, January-February-2017.
Journal URL : https://ijsrset.com/IJSRSET218210

