

Study of a Polynomial I+aE+bE² in (**λ**,**μ**) Jection of Third Order

Dr. Rajiv Kumar Mishra

Associate Professor, Department of Mathematics, Rajendra College Chapra (J. P. University, Chapra, Bihar, PIN - 841301) E-mail - dr.rkm65@gmail.com

ABSTRACT

In this paper, I study a polynomial of form $I+aE+bE^2$, where E is a (λ, μ) -jection; a,b being scalars. I

investigate when I+aE+bE² is a (λ, μ) -jection.

Keywords:- (λ, μ) -jection, projection

Introduction

In his Ph.D. thesis titled "Investigation into the theory of operators and linear spaces" [1], Dr. P. Chandra had defined a trijection operator by $E^3 = E$ where E is an operator. An operator E has been defined to be a projection if $E^2 = E$ as given in Dunford and Schwartz [2], p.37 or Rudin [3], p.126. I had defined previously E to be a λ -jection (or λ -jection of third order) [4], if $E^3 + \lambda E^2 = (1 + \lambda)E$, λ being a scalar For further generalisation I define E to be a (λ, μ) -jection if $\lambda E^3 + \mu E^2 = (\lambda + \mu)E$, λ, μ being scalars Let us consider different values of λ, μ and corresponding operators. When $\lambda = 1, \mu = 0$ then $E^3 = E$, a trijection When $\lambda = 0, \mu = 1$ then $E^2 = E$, a projection When $\lambda = 1, \mu = \lambda$ then E is a λ -jection

Main Result

Theorem 1 Let E be a (λ, μ) -jection, then E can be expressed as a linear combination of two mutually orthogonal projections. (assuming $\lambda \neq 0, \lambda + \mu \neq 0, 2\lambda + \mu \neq 0$)

Proof:- Let us assume that E can be expressed as a linear combination aL+bM of two mutually orthogonal projections L and M.

Thus E = aL + bM where $L^2 = L$, $M^2 = M$ and LM = 0So, $aE = a^2L + abM$ —-----(1) Also, $E^2 = a^2 L + b^2 M$ —(2) Subtracting (2) from (1), $aE - E^2 = (ab - b^2)M = b(a - b)M$ Hence $M = \frac{aE - E^2}{b(a - b)}$ assuming $(a \neq 0, b \neq 0, a \neq b)$ So, $bM = \frac{aE - E^2}{a - b}$ Hence $aL = E - bM = E - \frac{(aE - E^2)}{a - b} = \frac{E^2 - bE}{a - b}$ $\Rightarrow L = \frac{E^2 - bE}{a(a-b)}$ But LM = 0Hence $\frac{E^2 - bE}{a(a-b)} * \frac{aE - E^2}{b(a-b)} = 0$ $\Rightarrow (E^2 - bE)(aE - E^2) = 0$ $\Rightarrow aE^3 - E^4 - abE^2 + bE^3 = 0$ $\Rightarrow E^4 = (a+b)E^3 - abE^2 \qquad (3)$ Since E is a (λ, μ) -jection, $\lambda E^3 + \mu E^2 = (\lambda + \mu)E$ $\Rightarrow \lambda E^3 = (\lambda + \mu)E - \mu E^2$ $\Rightarrow \lambda E^4 = (\lambda + \mu)E^2 - \mu E^3$ $\Rightarrow E^4 = \frac{(\lambda + \mu)}{\lambda} E^2 - \frac{\mu}{\lambda} E^3 \text{ (assuming } \lambda \neq 0) \quad \dots \quad (4)$ Comparing (3) and (4), $a + b = \frac{-\mu}{\lambda}$ and $ab = \frac{-(\lambda + \mu)}{\lambda}$ Hence $(a - b)^2 = (a + b)^2 - 4ab = \frac{\mu^2}{\lambda^2} + \frac{4(\lambda + \mu)}{\lambda}$ $=\frac{\mu^2+4\lambda^2+4\lambda\mu}{\lambda^2}=\frac{(\mu+2\lambda)^2}{\lambda^2}$ So, $a - b = \frac{\mu + 2\lambda}{\lambda}$, but $a + b = \frac{-\mu}{\lambda}$ Adding $2a = \frac{2\lambda}{\lambda} = 2 \Rightarrow a = 1$ Then $b = \frac{-\mu}{\lambda} - a = \frac{-\mu}{\lambda} - 1 = \frac{-(\lambda+\mu)}{\lambda}$ Hence $E = L - \frac{(\lambda + \mu)}{\lambda} M$ (assuming $\lambda \neq 0$) So, we have expressed E as a linear combination of two mutually orthogonal projections L and M.

So, we have expressed E as a linear combination of two mutually orthogonal projections L and M. Now we find values of L and M.

(1,...)

$$L = \frac{E^2 - bE}{a(a-b)} = \frac{E^2 + \frac{(\lambda+\mu)}{\lambda}E}{1 + \frac{(\lambda+\mu)}{\lambda}} = \frac{\lambda E^2 + (\lambda+\mu)E}{2\lambda+\mu} \text{ (assuming } 2\lambda + \mu \neq 0 \text{)} \quad -------(5)$$

$$M = \frac{aE - E^2}{b(a-b)} = \frac{E - E^2}{\frac{-(\lambda+\mu)}{\lambda} * (1 + \frac{\lambda+\mu}{\lambda})} = \frac{E^2 - E}{(\frac{\lambda+\mu}{\lambda}) * (\frac{2\lambda+\mu}{\lambda})} = \frac{\lambda^2 (E^2 - E)}{(\lambda+\mu)(2\lambda+\mu)} \text{ (assuming } \lambda + \mu \neq 0 \text{)} \quad ------(6)$$

Theorem 2

We investigate the cases when an expression of form $I+aE+bE^2$ is a (λ,μ) -jection, E being a (λ,μ) -jection, a,b being scalars. We find nine cases out of which four are projections. Proof:-

As we have seen in theorem 1 that E can be put in the form

As we have seen indecodent indecident to that it can be part in the form

$$E = L - \frac{(\mu + \lambda)}{\lambda} \text{ where } \lambda \neq 0$$
Let $t = \frac{(\lambda + \mu)}{\lambda}$ then

$$E = L - tM$$
Also $E^2 = L^2 + t^2M^2 - 2tLM = L + t^2M \text{ (Since } L^2 = L, M^2 = M, LM = 0)$
So, $l + aE + bE^2 = l + a(L - tM) + b(L + t^2M)$

$$= l + (a + b)L + (bt^2 - at)M$$

$$= l + xL + yM$$
Where $x = a + b, y = bt^2 - at$
Hence
 $(l + aE + bE^2)^2 = (l + xL + yM)^2$

$$= l + x^2L + y^2M + 2xL + 2yM$$

$$= l + (x^2 + 2x)L + (y^2 + 2y)M$$
 $(l + aE + bE^2)^3 = (l + xL + yM)^3$

$$= (l + xL + yM)^2(l + xL + yM)$$

$$= [l + (x^2 + 2x)L + (y^2 + 2y)M](l + xL + yM)$$

$$= [l + (x^2 + 2x)L + (y^2 + 2y)M] + xL + (x^2 + 2x)L] + yM + y(y^2 + 2y)M$$

$$= [l + (x^2 + 2x)L + (y^2 + 2y)M + xL + (x^3 + 2x^2)L] + yM + (y^3 + 2y^2)M$$

$$= l + (x^3 + 3x^2 + 3x)L + (y^3 + 3y^2 + 3y)M$$
If $l + aE + bE^2)^3 = \mu(l + aE + bE^2)^2 = (\lambda + \mu)(l + aE + bE^2)$

$$\Rightarrow \lambda[l + (x^3 + 3x^2 + 3x)L + (y^3 + 3y^2 + 3y)M] + \mu[l + (x^2 + 2x)L + (y^2 + 2y)M]$$
We see that co-efficients of I on both sides are same which is $\lambda + \mu$.
Now compare co-efficients of I on both sides. Then
 $\lambda(x^3 + 3x^2 + 3x) + \mu(x^2 + 2x) = (\lambda + \mu)x - (7)$
One obvious solution is $x = 0$ or $a + b = 0$
Otherwise
 $\lambda(x^2 + 3x + 3) + \mu(x^2 + 2) = \lambda + \mu$
 $\Rightarrow \lambda x^2 + x(3\lambda + \mu) + 2\lambda + \mu = 0$
 $\Rightarrow x = -1 \text{ or } x = -2 - \frac{\mu}{\lambda} = \frac{-(2\lambda + \mu)}{\lambda} = \frac{-(\lambda + \mu)}{\lambda} - 1 = -t - 1$
Comparing co-efficient of M on both sides,
 $\lambda(y^3 + 3y^2 + 3y) + \mu(y^2 + 2y) = (\lambda + \mu)y$
Hence as before
 $y = 0, -1, -t - 1$
So consider the case $x = 0, y = 0$. Then

$$a + b = 0 \text{ and } bt^2 - at = 0$$
Since $\lambda \neq 0, \lambda + \mu \neq 0, t = \frac{\lambda + \mu}{\lambda} \neq 0$
So, $bt^2 - at = 0 \Rightarrow bt - a = 0$
 $\Rightarrow t = \frac{a}{b} = -1 \text{ since } a + b = 0$
Thus $\frac{\lambda + \mu}{\lambda} = -1 \Rightarrow 2\lambda + \mu = 0, not permissible$
So take $a = 0, b = 0$. Then $l + aE + bE^2 = l$, the identity operator which is clearly a projection.
ii. Let $x = 0, y = -1$
i.e. $a + b = 0$ and $t(bt - a) = -1$
Since $b = -a, t(bt + b) = -1 \Rightarrow t(t + 1)b = -1$
 $\Rightarrow \frac{\lambda + \mu}{\lambda} * \frac{(2\lambda + \mu)}{(\lambda + \mu)}b = -1$
 $\Rightarrow b = \frac{-\lambda^2}{(\lambda + \mu)(2\lambda + \mu)}$
Hence $a = -b = \frac{\lambda^2}{(\lambda + \mu)(2\lambda + \mu)}$
So, $l + aE + bE^2 = l + \frac{\lambda^2}{(\lambda + \mu)(2\lambda + \mu)}$
 $= l - \frac{\lambda^2(e^{2-E})}{(\lambda + \mu)(2\lambda + \mu)}$
So, $l + aE + bE^2 = l + \frac{\lambda^2}{(\lambda + \mu)(2\lambda + \mu)}$
 $= l - \frac{(\lambda^2(e^{2-E}))}{(\lambda + \mu)(2\lambda + \mu)}$
(using equation 6)
Which is clearly a projection, since M is a projection.
iii. Let $x = 0, y = -t - 1$
Then $l + aE + bE^2 = l + \lambda + yM = l - (t + 1)M$
 $= l - \frac{(2\lambda + \mu)}{\lambda} M = l - \frac{\lambda(E^{E-E})}{\lambda + \mu}$ (using equation 6)
iv. Let $x = -1, y = 0$, then $l + xL + yM = l - L$
Which is a projection, since L is a projection.
v. Let $x = -1, y = -1$ then $l + xL + yM = l - (L + M) = l - N$
Where $N = L + M$. Since L, M are projections such that $LM = 0$, so N is also a projection.
Hence $l - N$ is also a projection.
U. Let $x = -(t + 1), y = 0$
Then $l + xL + yM = l - L - \frac{(2\lambda + \mu)}{\lambda}$
Then $l + xL + yM = l - L - \frac{(2\lambda + \mu)}{\lambda}$
Vii. Let $x = -(t + 1), y = -1$
Then $l + xL + yM = l - (L + M) = l - M$
it. Let $x = -(t + 1), y = -1$
Then $l + xL + yM = l - (t + 1)M$
Thus we have discussed all nine cases in which i, ii, iv, y give projections. Thus four cases give projections.

References:-

- Chandra, P: "Investigation into the theory of operators and linear spaces" (Ph.D. Thesis, Patna University, 1977)
- 2. Dunford, N. and Schwartz, J.:
 - "Linear operators, part I" Interscience publishers, Inc., New York, 1967, P. 37
- 3. Rudin, W.:

"Functional Analysis", McGraw-Hill Book Company, Inc., New York, 1973, p. 126.

 Mishra, R.K., "On A Special Type of Operator, Called λ -Jection of Third Order", International Journal of Scientific Research in Science and Technology (IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 4 Issue 2, pp. 2321-2328, January-February 2018.

Cite This Article :

Dr. Rajiv Kumar Mishra, " Study of a Polynomial I + aE + bE2 in (λ , μ) Jection of Third Order, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 7, Issue 2, pp.706-710, March-April-2020. Journal URL : https://ijsrset.com/IJSRSET2072901

710