Study of a Polynomial I+aE+bE ${ }^{2}$ in (λ, μ) Jection of Third Order

Dr. Rajiv Kumar Mishra
Associate Professor, Department of Mathematics, Rajendra College Chapra
(J. P. University, Chapra, Bihar, PIN - 841301)
E-mail - dr.rkm65@gmail.com

Abstract

In this paper, I study a polynomial of form $\mathrm{I}+\mathrm{aE}+\mathrm{bE} \mathrm{E}^{2}$, where E is a $(\boldsymbol{\lambda}, \boldsymbol{\mu})$-jection; a, b being scalars. I investigate when $\mathrm{I}+\mathrm{aE}+\mathrm{bE}^{2}$ is a $(\boldsymbol{\lambda}, \boldsymbol{\mu})$-jection.

Keywords:- $(\boldsymbol{\lambda}, \boldsymbol{\mu})$-jection, projection

Introduction

In his Ph.D. thesis titled "Investigation into the theory of operators and linear spaces" [1], Dr. P. Chandra had defined a trijection operator by $E^{3}=E$ where E is an operator. An operator E has been defined to be a projection if $E^{2}=E$ as given in Dunford and Schwartz [2], p. 37 or Rudin [3], p.126. I had defined previously E to be a $\boldsymbol{\lambda}$-jection (or $\boldsymbol{\lambda}$-jection of third order) [4], if
$E^{3}+\lambda E^{2}=(1+\lambda) E, \lambda$ being a scalar
For further generalisation I define E to be a $(\boldsymbol{\lambda}, \boldsymbol{\mu})$-jection if
$\lambda E^{3}+\mu E^{2}=(\lambda+\mu) E, \lambda, \mu$ being scalars
Let us consider different values of $\boldsymbol{\lambda}, \boldsymbol{\mu}$ and corresponding operators.
When $\lambda=1, \mu=0$ then $E^{3}=E$, a trijection
When $\lambda=0, \mu=1$ then $E^{2}=E$, a projection
When $\lambda=1, \mu=\lambda$ then E is a λ-jection

Main Result

Theorem 1 Let E be a (λ, μ)-jection, then E can be expressed as a linear combination of two mutually orthogonal projections. (assuming $\lambda \neq 0, \lambda+\mu \neq 0,2 \lambda+\mu \neq 0$)
Proof:- Let us assume that E can be expressed as a linear combination $\mathrm{aL}+\mathrm{bM}$ of two mutually orthogonal projections L and M .
Thus $E=a L+b M$ where $L^{2}=L, M^{2}=M$ and $L M=0$
So, $a E=a^{2} L+a b M$

Also, $E^{2}=a^{2} L+b^{2} M$
Subtracting (2) from (1),
$a E-E^{2}=\left(a b-b^{2}\right) M=b(a-b) M$
Hence $M=\frac{a E-E^{2}}{b(a-b)} \quad$ assuming $(a \neq 0, b \neq 0, a \neq b)$
So, $b M=\frac{a E-E^{2}}{a-b}$
Hence $a L=E-b M=E-\frac{\left(a E-E^{2}\right)}{a-b}=\frac{E^{2}-b E}{a-b}$
$\Rightarrow L=\frac{E^{2}-b E}{a(a-b)}$
But $L M=0$
Hence $\frac{E^{2}-b E}{a(a-b)} * \frac{a E-E^{2}}{b(a-b)}=0$
$\Rightarrow\left(E^{2}-b E\right)\left(a E-E^{2}\right)=0$
$\Rightarrow a E^{3}-E^{4}-a b E^{2}+b E^{3}=0$
$\Rightarrow E^{4}=(a+b) E^{3}-a b E^{2}$
Since E is a $(\boldsymbol{\lambda}, \boldsymbol{\mu})$-jection,
$\lambda E^{3}+\mu E^{2}=(\lambda+\mu) E$
$\Rightarrow \lambda E^{3}=(\lambda+\mu) E-\mu E^{2}$
$\Rightarrow \lambda E^{4}=(\lambda+\mu) E^{2}-\mu E^{3}$
$\Rightarrow E^{4}=\frac{(\lambda+\mu)}{\lambda} E^{2}-\frac{\mu}{\lambda} E^{3} \quad$ (assuming $\lambda \neq 0$)
Comparing (3) and (4),
$a+b=\frac{-\mu}{\lambda}$ and $a b=\frac{-(\lambda+\mu)}{\lambda}$
Hence $(a-b)^{2}=(a+b)^{2}-4 a b=\frac{\mu^{2}}{\lambda^{2}}+\frac{4(\lambda+\mu)}{\lambda}$
$=\frac{\mu^{2}+4 \lambda^{2}+4 \lambda \mu}{\lambda^{2}}=\frac{(\mu+2 \lambda)^{2}}{\lambda^{2}}$
So, $a-b=\frac{\mu+2 \lambda}{\lambda}$, but $a+b=\frac{-\mu}{\lambda}$
Adding
$2 a=\frac{2 \lambda}{\lambda}=2 \Rightarrow a=1$
Then $b=\frac{-\mu}{\lambda}-a=\frac{-\mu}{\lambda}-1=\frac{-(\lambda+\mu)}{\lambda}$
Hence $E=L-\frac{(\lambda+\mu)}{\lambda} M \quad$ (assuming $\lambda \neq 0$)
So, we have expressed E as a linear combination of two mutually orthogonal projections L and M .
Now we find values of L and M.
We have
$L=\frac{E^{2}-b E}{a(a-b)}=\frac{E^{2}+\frac{(\lambda+\mu)}{\lambda} E}{1+\frac{\lambda+\mu)}{\lambda}}=\frac{\lambda E^{2}+(\lambda+\mu) E}{2 \lambda+\mu}$ (assuming $2 \lambda+\mu \neq 0$)
$M=\frac{a E-E^{2}}{b(a-b)}=\frac{E-E^{2}}{\frac{-(\lambda+\mu)_{*}}{\lambda} *\left(1+\frac{\lambda+\mu}{\lambda}\right)}=\frac{E^{2}-E}{\left(\frac{\lambda+\mu}{\lambda}\right) *\left(\frac{2 \lambda+\mu}{\lambda}\right)}=\frac{\lambda^{2}\left(E^{2}-E\right)}{(\lambda+\mu)(2 \lambda+\mu)}($ assuming $\lambda+\mu \neq 0)$

Theorem 2

We investigate the cases when an expression of form $I+a E+b E^{2}$ is a (λ, μ)-jection, E being a (λ, μ) jection, a,b being scalars. We find nine cases out of which four are projections.
Proof:-
As we have seen in theorem 1 that E can be put in the form
$E=L-\frac{(\mu+\lambda)}{\lambda} M$ where $\lambda \neq 0$
Let $t=\frac{(\lambda+\mu)}{\lambda}$ then
$E=L-t M$
Also $E^{2}=L^{2}+t^{2} M^{2}-2 t L M=L+t^{2} M\left(\right.$ Since $\left.L^{2}=L, M^{2}=M, L M=0\right)$
So, $I+a E+b E^{2}=I+a(L-t M)+b\left(L+t^{2} M\right)$
$=I+(a+b) L+\left(b t^{2}-a t\right) M$
$=I+x L+y M$
Where $x=a+b, y=b t^{2}-a t$
Hence
$\left(I+a E+b E^{2}\right)^{2}=(I+x L+y M)^{2}$
$=I+x^{2} L+y^{2} M+2 x L+2 y M$
$=I+\left(x^{2}+2 x\right) L+\left(y^{2}+2 y\right) M$
$\left(I+a E+b E^{2}\right)^{3}=(I+x L+y M)^{3}$
$=(I+x L+y M)^{2}(I+x L+y M)$
$=\left[I+\left(x^{2}+2 x\right) L+\left(y^{2}+2 y\right) M\right](I+x L+y M)$
$=\left[I+\left(x^{2}+2 x\right) L+\left(y^{2}+2 y\right) M+x L+x\left(x^{2}+2 x\right) L\right]+y M+y\left(y^{2}+2 y\right) M$
$=\left[I+\left(x^{2}+2 x\right) L+\left(y^{2}+2 y\right) M+x L+\left(x^{3}+2 x^{2}\right) L\right]+y M+\left(y^{3}+2 y^{2}\right) M$
$=I+\left(x^{3}+3 x^{2}+3 x\right) L+\left(y^{3}+3 y^{2}+3 y\right) M$
If $\mathrm{I}+\mathrm{aE}+\mathrm{bE}{ }^{2}$ is a $(\boldsymbol{\lambda}, \boldsymbol{\mu})$-jection, then
$\lambda\left(I+a E+b E^{2}\right)^{3}+\mu\left(I+a E+b E^{2}\right)^{2}=(\lambda+\mu)\left(I+a E+b E^{2}\right)$
$\Rightarrow \lambda\left[I+\left(x^{3}+3 x^{2}+3 x\right) L+\left(y^{3}+3 y^{2}+3 y\right) M\right]+\mu\left[I+\left(x^{2}+2 x\right) L+\left(y^{2}+2 y\right) M\right]$
$=(\lambda+\mu)(I+x L+y M)$
We see that co-efficients of I on both sides are same which is $\boldsymbol{\lambda}+\boldsymbol{\mu}$.
Now compare co-efficients of L on both sides. Then
$\lambda\left(x^{3}+3 x^{2}+3 x\right)+\mu\left(x^{2}+2 x\right)=(\lambda+\mu) x$
One obvious solution is $x=0$ or $a+b=0$
Otherwise
$\lambda\left(x^{2}+3 x+3\right)+\mu(x+2)=\lambda+\mu$
$\Rightarrow \lambda x^{2}+x(3 \lambda+\mu)+2 \lambda+\mu=0$
$\Rightarrow(x+1)(\lambda x+2 \lambda+\mu)=0$
$\Rightarrow x=-1$ or $x=-2-\frac{\mu}{\lambda}=\frac{-(2 \lambda+\mu)}{\lambda}=\frac{-(\lambda+\mu)}{\lambda}-1=-t-1$
Comparing co-efficient of M on both sides,
$\lambda\left(y^{3}+3 y^{2}+3 y\right)+\mu\left(y^{2}+2 y\right)=(\lambda+\mu) y$
Hence as before
$y=0,-1,-t-1$
So considering these values of x and y , we get 9 solutions. Now we discuss these solutions.
i. Consider the case $x=0, y=0$. Then
$a+b=0$ and $b t^{2}-a t=0$
Since $\lambda \neq 0, \lambda+\mu \neq 0, t=\frac{\lambda+\mu}{\lambda} \neq 0$
So, $b t^{2}-a t=0 \Rightarrow b t-a=0$
$\Rightarrow t=\frac{a}{b}=-1$ since $a+b=0$
Thus $\frac{\lambda+\mu}{\lambda}=-1 \Rightarrow 2 \lambda+\mu=0$, not permissible
So take $a=0, b=0$. Then $I+a E+b E^{2}=I$, the identity operator which is clearly a projection.
ii. \quad Let $x=0, y=-1$
i.e. $a+b=0$ and $t(b t-a)=-1$

Since $b=-a, t(b t+b)=-1 \Rightarrow t(t+1) b=-1$
$\Rightarrow \frac{\lambda+\mu}{\lambda} * \frac{(2 \lambda+\mu)}{\lambda} b=-1$
$\Rightarrow b=\frac{-\lambda^{2}}{(\lambda+\mu)(2 \lambda+\mu)}$
Hence $a=-b=\frac{\lambda^{2}}{(\lambda+\mu)(2 \lambda+\mu)}$
So, $I+a E+b E^{2}=I+\frac{\lambda^{2}\left(E-E^{2}\right)}{(\lambda+\mu)(2 \lambda+\mu)}$
$=I-\frac{\lambda^{2}\left(E^{2}-E\right)}{(\lambda+\mu)(2 \lambda+\mu)}=I-M \quad$ (using equation 6)
Which is clearly a projection, since M is a projection.
iii. Let $x=0, y=-t-1$

Then $I+a E+b E^{2}=I+x L+y M=I-(t+1) M$
$=I-\frac{(2 \lambda+\mu)}{\lambda} M=I-\frac{\lambda\left(E^{2}-E\right)}{\lambda+\mu} \quad$ (using equation 6)
iv. Let $x=-1, y=0$, then
$I+x L+y M=I-L$
Which is a projection, since L is a projection.
v. Let $x=-1, y=-1$ then
$I+x L+y M=I-(L+M)=I-N$
Where $N=L+M$. Since L, M are projections such that $L M=0$, so N is also a projection.
Hence $I-N$ is also a projection.
vi. Let $x=-1, y=-t-1=\frac{-(2 \lambda+\mu)}{\lambda}$

Then $I+x L+y M=I-L-\frac{(2 \lambda+\mu)}{\lambda} M$
vii. Let $x=-(t+1), y=0$

Then $I+x L+y M=I-\frac{(2 \lambda+\mu)}{\lambda} L$
viii. Let $x=-(t+1), y=-1$

Then $I+x L+y M=I-\frac{(2 \lambda+\mu)}{\lambda} L-M$
ix. \quad Let $x=-(t+1), y=-(t+1)$

Then $I+x L+y M=I-(t+1)(L+M)=I-(t+1) N$
Thus we have discussed all nine cases in which i , ii, iv, v give projections. Thus four cases give projections.

References:-

1. Chandra, P:
"Investigation into the theory of operators and linear spaces" (Ph.D. Thesis, Patna University, 1977)
2. Dunford, N. and Schwartz, J.:
"Linear operators, part I" Interscience publishers, Inc., New York, 1967, P. 37
3. Rudin, W.:
"Functional Analysis", McGraw- Hill Book Company, Inc., New York, 1973, p. 126.
4. Mishra, R.K., "On A Special Type of Operator, Called $\boldsymbol{\lambda}$-Jection of Third Order", International Journal of Scientific Research in Science and Technology (IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 4 Issue 2, pp. 2321-2328, January-February 2018.

Cite This Article :

Dr. Rajiv Kumar Mishra, " Study of a Polynomial I + aE + bE2 in (λ, μ) Jection of Third Order, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 7, Issue 2, pp.706-710, March-April-2020.
Journal URL : https://ijsrset.com/IJSRSET2072901

