
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Science, Engineering and Technology

Print ISSN: 2395-1990 | Online ISSN : 2394-4099 (www.ijsrset.com)

doi : https://doi.org/10.32628/IJSRSET

726

 Buffer Overflow Detection and Avoidance Technique
 P. B. Niranjane

Department of Computer Science & Engineering, Babasahe Naik College of Engineering , Pusad, Maharastra,

India

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted: 10 April 2023

Published: 29 April 2023

 Today’s world totally work through important asset i.e. information and

there should protective shield to protect such asset with good

performance. Therefore Security issue is the important and elicited topic

among IT professionals. The Buffer Overflow which is one of the most

frequently occurring security vulnerabilities on network. Buffer Overflow

occurs while writing data to a buffer and it overruns the buffer's threshold

and overwrites it to neighboring memory. This paper focused on finding

and detection of buffer overflow occurs during transmission of jpg and gif

file format over network. The signature and signature free detection

mechanism is implemented for detection of buffer overflow during

transmission. First the signature based detection finds a particular

signature after the signature free technology is implanted for testing the

buffer overflow. The discussion is concluded with some thoughts on buffer

overflow detection in general, and directions for the analysis and

remediation of buffer overflow detection for gif and jpg file format.

Keywords: Security, Attacks, Buffer-Overflow, Signature, Signature free,

Malicious code, Intrusion

Publication Issue

Volume 10, Issue 2

March-April-2023

Page Number

726-731

I. INTRODUCTION

Buffer overflow is a problem where a program tries to

store a string of arbitrary length in a fixed size buffer,

without checking for whether the string can fit inside

the buffer. It results in inadvertently overwriting the

memory location that follows the buffer. If the buffer

resides in the data section, it could corrupt other global

variables [06]. If the buffer is heap allocated, it could

corrupt data structure used by memory management

routines. If the buffer resides on the stack the overflow

could overwrite the stack frame, including the return

address, which can alter the program's control flow. In

the context of networked programs, buffer overflow

allows the execution of arbitrary code injected by a

remote client or peer. This could result in compromise

of sensitive data. If the buffer overflow happens in an

operating system kernel, it could lead to privilege

escalation. When remote code injection is combined

with privilege escalation, it could result in the

compromise of the whole system.

http://www.ijsrset.com/

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 10 | Issue 2

P. B. Niranjane Int J Sci Res Sci Eng Technol, March-April-2023, 10 (2) : 726-731

727

Any C program that manipulates strings may be prone

to buffer overflow problem if care is not taken. In fact,

we can argue that buffer overflow is almost a C

language feature, inherent in the design of the C

language [6]. It has to do with the way strings are

represented: a character array of indefinite length,

until it is terminated by a NUL character (which has

the numeric byte value of 0). C does not distinguish an

array from a pointer, so string arguments to function

typically bear the type char * or const char *. However,

memory resources in C all have definite length. The

programmer has to be careful when juggling possibly

infinite sequence of characters in a finite amount of

space.

Buffer overflow attack is an attack in which a malicious

user exploits an unchecked buffer in a program and

overwrites the program code with own data inject gif

and jpg file. If the program code is overwritten with

new executable malicious code, the effect is to change

the program's operation as dictated by the hacker. If

overwrite with other data, the likely effect is to direct

the program to crash [1]. Today‘s software has been

widely targeted by buffer overflows. Detecting and

eliminating buffer overflows would thus make server

far more secure.

A buffer temporarily stores data waiting to be

processed by a program. A buffer overflow occurs

when more data is inserted into the buffer than the

buffer was intended to hold. Buffer overflows occur

because languages or programmers do not have or

perform adequate bounds checking. Since detection is

based on pattern matching, a signature modelling the

attack must exist for the IDS to detect it, and therefore

it is capable of detecting known attacks. This paper

defines a method to detect buffer overflow attacks by

parsing the payload of network packets in search of IP

address which is the remotely executable component

of a buffer overflow attack. By analyzing the IP it is

possible to determine which system calls the

unauthorized uses, and hence the operation of the

exploit. Current network-based buffer overflow

detection techniques mainly rely upon specific

signatures for each new attack. Our approach is

capable to detect previously unseen buffer overflow

attacks, in addition to existing ones, with the need for

specific signatures and Signature free for each new

attack related to jpg and gif file format

II. RELATED WORK

Methods for detecting buffer overflow vulnerabilities

can be divided into three groups static or compile time

detection, host based detection, and network based

detection. A compile time solution has been proposed

in [3]. The solution given by authors was the

development of a static analysis tool that analyses

application source code in search of likely buffer

overflow vulnerabilities.

This solution is capable of improving an application by

eliminating possibilities of successfully executing

buffer overflow attacks, but it requires modification to

the source code and recompilation to work in addition

to the requirement of source availability.

Stack Guard is an extension to the freely available and

very popular gcc compiler that allows detection or

prevention of alterations of the return address of a

stack frame. Detection is executed by inserting a

random word value immediately following the return

address for the process on the stack. This value is

confirmed when the process returns. Since it is

difficult to alter the return address without altering the

following bytes, this method is capable of detecting

buffer overflow attacks. Some study suggests that the

protection mechanism may still be circumvented by

exploiting function pointers or “long jumps” [7].

III. METHODOLOGY

The proposed technique is Signature and signature

free for detecting buffer overflow with jpg and gif file

formats. Firstly check the signature based detection.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 10 | Issue 2

P. B. Niranjane Int J Sci Res Sci Eng Technol, March-April-2023, 10 (2) : 726-731

728

This technique capable of detecting malicious code by

applying Pattern matching scheme on Signature, here

IP address is chosen as a signature in our study. If the

signature is found block that request remaining request

are send to the signature free detection techniques.

In signature free detection techniques the log file

from server contains the all information about the

requests along with necessary metadata. Original

image is separated out from malicious image by

detecting the buffer overflow occurred during

transmission over the network with Signature and

Without Signature. Each time during receiving end we

check for buffer overflow and if found then we are

blocking that images and forwarding the remaining

images to server for processing. Figure 4.1 shows the

architecture of our purposed work. The request from

client is verified on Signature based detection if the

signature is found block that request remaining request

are send to the Signature free detection techniques.

Figure 1: Architecture for Proposed Methodology

In Signature free detection are block the unwanted

request by using buffer overflow detection techniques

and the valuable request are send to server. In a typical

buffer overflow attack, the attacker injects malicious

code into the victim application and transfers the

control of the application to the injected code. As an

application’s text segment is typically read-only, the

only way to hijack the control of an application is to

dynamically modify the target address of its branch

instructions whose target is not fixed at compilation

time. Such dynamic branch instructions include

function returns, pointer-based function calls, and C-

style switch statements. These branch instructions

typically have their target addresses stored in some

stack or heap.

 The whole implementation is divided into two

main modules i.e. signature based detection module

and signature free detection module for buffer

overflow detection of jpg and gif file format.

 The signature based detection only check

particular signature in the request generated by client

if the signature is found in the request then the request

containing that signature is blocked and remaining

requests are send to signature free detection in that all

focus is given on finding the buffer overflow with

various intermediate steps.

A. Signature Based Detection

The request from the client is first Encoded based on

UTF-8 Scheme the duplicates of the request is blocked

these remaining request does not contain duplicates is

now checked for the IP address defined on server. If

the generated request from client contains the

signature then it is immediately blocked and

remaining request are send to signature free detection

of buffer overflow. Any request depending on IP

address can be block just by modifying the IP address

on server [1]. UTF stands for Unicode Transformation

Format. The '8' means it uses 8-bit blocks to represent

a character. The number of blocks needed to represent

a character varies from 1 to 4. UTF-8 is a compromise

character encoding that can be as compact as ASCII (if

the file is just plain English text) but can also contain

any Unicode characters (with some increase in file

size).

B. Signature Free Detection

The request from signature based detection is input for

signature free detection the various steps involved in

detecting buffer overflow for gif jpg file format is

categorized in to following modules.

1) Data Collection & Pre-processing

2) URL decoder

3) ASCII Filter

4) Instruction distiller

R

eq

 Signature and
Signature free buffer

overflow detection
system

Sign

ature

free

Sign

ature

base

Se

nd

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 10 | Issue 2

P. B. Niranjane Int J Sci Res Sci Eng Technol, March-April-2023, 10 (2) : 726-731

729

5) Instruction Sequence Analysis

1) Data Collection & Pre-processing

 Signature free is going to apply over real traces of

a web server [01]. The requests include manually

typed URLs, clicks through various web sites,

searching’s from search engines such as Google

and Yahoo, secure logins to email servers and

bank servers, and HTTPs requests. In this way, we

believe our data set is diverse enough, not worse

than that we might have got if we install Signature

free in a single web server that provides only

limited Internet services.

2) URL decoder

 The specification for URLs limits the allowed

characters in a Request-URL to only a subset of

the ASCII character set. This means that the query

parameters of a request-URL beyond this subset

should be encoded. Because a malicious payload

may be embedded in the request-URL as a request

parameter, the first step of Signature free is to

decode the request-URL.

3) ASCII Filter

 Malicious executable codes are normally binary

strings. In order to guarantee the throughput and

response time of the protected web system, if a

request is printable ASCII ranging from 20 to 7E

in hex, Signature free allows the request to pass.

Note that ASCII filter does not prevent the service

from receiving non-ASCII strings.

4) Instruction distiller

 To distil an instruction sequence, we first assign

an address (starting from zero) to every byte of a

request, where address is an identifier for each

location in the request. Then, we disassemble the

request from a certain address until the end of the

request is reached or an illegal instruction code is

encountered.

 The recursive traversal algorithm is used, because

it can obtain the control flow information during

the disassembly process. Intuitively, to get all

possible instruction sequences from an N-byte

request, simply execute the disassembly algorithm

N times and each time start from a different

address in the request. This gives a set of

instruction sequences.

5) Instruction Sequence Analysis

 A distilled instruction sequence may be a

sequence of random instructions or a fragment of

a program in machine language. In this section,

three schemes are proposed to differentiate these

two cases. Scheme 1 exploits the operating system

characteristics of a program; Scheme 2 and

Scheme 3 exploit the data flow characteristics of a

program.

A program in machine language is dedicated to a

specific operating system; hence, a program has certain

characteristics implying the operating system on

which it is running, for example calls to operating

system or kernel library. A random instruction

sequence does not carry this kind of characteristics. By

identifying the call pattern in an instruction sequence,

a real program from a random instruction sequence can

effectively differentiated.

The detection of data flow anomaly is used in a

different way called code abstraction. It is observed

that that when there are data flow anomalies in an

execution path of an instruction sequence some

instructions are useless, whereas in a real program at

least one execution path has a certain number of useful

instructions. Therefore, if the number of useful

instructions in an execution path exceeds a threshold,

it concludes the instruction sequence is a segment of a

program.

C. RESULTS

Specifically in the Signature based detection, first the

signature is verified which is defined on server to block

unauthorized request. These verified requests then

filtered on basis signature. And requests then check

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 10 | Issue 2

P. B. Niranjane Int J Sci Res Sci Eng Technol, March-April-2023, 10 (2) : 726-731

730

against the buffer size depending on the buffer size the

requests are then forwarded to server for processing.

In the Signature free technique, split URL and remove

the duplicate of the requests. The encode URL is now

decoded on the basis of UTF-8 Scheme and then these

requests are distilled. The ASCII conversion is done on

the distilled requests and the requests are filtered and

checked against the Buffer size. If the Buffer size

required by request is more than threshold value then

the request is blocked, otherwise it is forwarded to

server

The result is obtained by sending request to buffer

overflow detection based on signature. Here the

request not containing the defined signature is allowed

to pass for signature free detection and all other

requests gets blocked. The signature free detection first

split the request which do not contain jpg and gif file.

Only the request containing jpg and gif file format are

considered for further processing.

Figure 2: Signature detection chart

Figure 3: Signature free graph

Figure 4: Signature free detection chart

Figure 5: Analysis of Signature & Signature free

graph

Figure 6: Analysis of Signature & Signature free chart

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 10 | Issue 2

P. B. Niranjane Int J Sci Res Sci Eng Technol, March-April-2023, 10 (2) : 726-731

731

Figure 2 shows behavior of requests against the Buffer

size for Signature based detection. Figure 4 shows

behavior of requests against the Buffer size for

Signature free based detection and Figure 6 shows

Analysis requests blocked against the Buffer size for

Signature free technique for jpg and gif file format. If

the buffer size required by request is more than the

threshold value the then requests are blocked,

otherwise it is forwarded. Figure 3 and 5 shows the

analysis of buffer overflow detection with Signature

and without Signature for jpg and gif formats.

IV. CONCLUSION

The proposed Signature and signature-free buffer

overflow detection for jpg and gif systems that can

filter code-injection buffer overflow attack, one of the

most serious cyber security paradigms. The Signature

based buffer overflow detection finds the particular

Signature and if that found it blocks it to protect form

malicious attack. Signature free does not require any

signatures, thus it can block new malicious code and

provide security for the systems. With the used

techniques maximum requests can be blocked using

Signature free technique rather than signature based.

Signature and Signature free is less affected from

malicious attack, and easy for deployment, low

performance overhead with less maintenance cost. In

the future expansion the various parameters of image

can be consider for detecting malicious code in image.

Wavelet transformer can be applied for detecting

malicious code accurately.

V. REFERENCES

[1]. Z. Liang and R. Sekar, ―Fast and Automated

Generation of Attack Signatures: A Basis for

Building Self-Protecting Servers, Proc. 12th

ACM Conf. Computer and Comm. Security

(CCS), 2005.

[2]. B.A. Kuperman, C.E. Brodley, H. Ozdoganoglu,

T.N. Vijaykumar, and A. Jalote, “Detecting and

Prevention of Stack Buffer Overflow Attacks,”

Comm. ACM, vol. 48, no. 11, 2005

[3]. D. Evans and D. Larochelle, “Improving Security

Using Extensible Lightweight Static Analysis,”

IEEE Software, vol. 19, no. 1, 2002.

[4]. Xinran Wang, Chi-Chun Pan, Peng Liu, and

Sencun Zhu, “Signature free: A Signature-Free

Buffer Overflow Attack Blocker”, Ieee

Transactions On Dependable And Secure

Computing, Vol. 7, No. 1, January-March 2010.

[5]. J. Pincus and B. Baker, “Beyond Stack Smashing:

Recent Advances in Exploiting Buffer

Overruns,” IEEE Security and Privacy, vol. 2, no.

4, 2004.

[6]. Eric Haugh and Matt Bishop, “Testing C

Programs for Buffer Overflow Vulnerabilities”.

University of Californai Devis. 2004

[7]. O. Ruwase and M. Lam. A practical dynamic

buffer overflow detector. In Proceedings of

Network and Distributed System Security

Symposium, pages 159–169, 2004.

Cite this article as :

P. B. Niranjane, "Buffer Overflow Detection and

Avoidance Technique", International Journal of

Scientific Research in Science, Engineering and

Technology (IJSRSET), Online ISSN : 2394-4099, Print

ISSN : 2395-1990, Volume 10 Issue 2, pp. 726-731,

March-April 2023. Available at doi :

https://doi.org/10.32628/IJSRSET23102126

Journal URL : https://ijsrset.com/IJSRSET23102126

