

Synthesis, Characterization and Biological Activity of Sulphadiazine Schiff Bases of Isatin and their N-Mannich bases

Mukesh

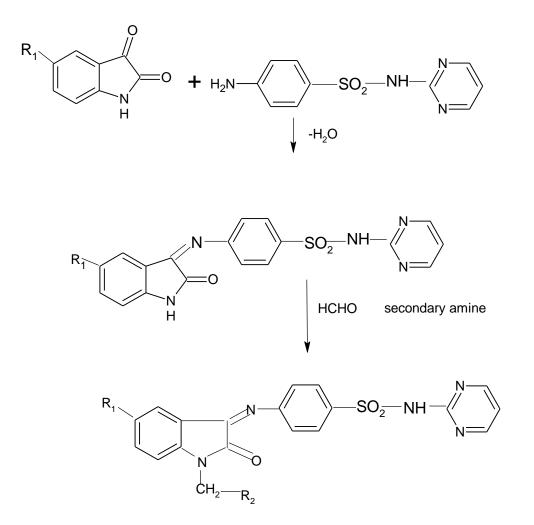
Research Scholar, Abhilashi University Chail Chowk Mandi, H.P Dr. Anushree Gupta

Assistant Professor, Department of Chemistry, Abhilashi University Chail Chowk Mandi, H.P

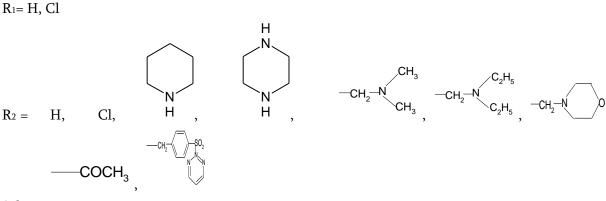
Article Info	ABSTRACT
Volume 7 Issue 5	Isatin is an endogeneous compounds identified in humans that possesses a wide
Page Number : 395-400	range og biological activities. It has long range of activities in CNS-MAO
	inhibition, anticonvulsant and axxiogenie. It effects as a Mao inhibitior is the
Publication Issue :	protent in vitro action.
September-October-2020	A series of p-substituted isatin semicarbazones have shown anticonvulsant
	activity in MES , scPTZ and scSTY tests. Various isatin N- mannich bases of
Article History	isatin-3-thiosemicarbazenes have shown antiviral and tuberculostatic activity.
Accepted : 01 Oct 2020	Methisazone is an effective compound against variola and vaccinia viruses.
Published : 25 Oct 2020	Synthesized N- Mannich bases and hydrazones (Schiff bases) were tested
	against various bacteria and fungi. Halogen in position -6 and amino moiety in
	position-1 showed better activity than unsubstitued isatin. Pandeya and
	coworkers synthesized Schiff bases of isatin withy trimethoprim and their N-
	Mannich bases. All the synthesized compounds showed good activity against
	V.Cholerae, S.Boydii, E. faecilis and E. trades with MIC in range of 10-30
	μg/ml.
	Keywords : MES , scPTZ and scSTY, CNS-MAO

I. INTRODUCTION

Investigation of antimicrobial activity (against 28 pathogenic baecteria) and anti HIV activity of 3-(4-pyridyl)-4-amino-5-mercapto-4(H)-1,2,4-triazole Schiff base of N-Mannich base of isatin were done. Among the synthesized compound 1-(piperdinomethyl)-5-bromo-3(3-(4-pyridyl)-5-mercapto-4(H)-1, 2, 4triazolyl)iminoisatin showed the most favorable antimicrobial activity. None of the compounds showed the most appreciable anti HIV activity. The synthesized compounds were screened for anticonvulsant activity by MES, scMET-and strychnine induced seizure pattern tests. The synthesized compounds were tested for the sedative and hyphotie activity i. e potentiation or antagonisation by pentobarbitone induced harcosis in rats.


Copyright : **O** the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

II. EXPERIMENTAL WORK


The synthetic work is mainly concerned for the preparation of condensation compounds i e N-metylacetylisatin-3-semicarbazones and 5-substituted N-methyl/acetyl isatin-semicarbazones.

1.Synthesis of 3-(4-Sulphadiazinyl) isatin. Equimolar quantities (.02 mol) of isatin (2.80gm) and sulphadiazine(6 gm) was dissolved in warm alcohol and refluxed on a steam bath for 2 hours. After standing for 24 hours at room temperature the product was collected by suction filtration. Yield 72% M.P 240 ° C compound I Elemental analysis for C₁₈H₃₁N₅O₃S; Found C: 56.60, H: 3.02, N: 12.16; Calcd. C: 56.68, H:3.44, N:18.45. IR(KBr, cm⁻¹): 3500-3300-NHsymmetric stretching, 1650 cm⁻¹ -c=o stretching (amide) 1670-1400 cm⁻¹ - ring skeletal vibration, 1150-C-N stretching (amide), 900-690-aromatic C-H stretching, out of plane. HNMR (DMSO-d₆ ppm ∂8.5-doublet(2 protons), 7.6-doublet (2 protons) 7.0-triplet(1 proton) , 6-7-doublet(2 protons). Similarly, 3-(4-sulphadiazinyl)-5-chloroisatin was prepared using appropriate moles of 5-chloroisatin and sulphadiazine. Charactersation data are given in Table-1

2. Synthesis of N- Mannich Bases. N- Mannich bases were prepared by condensing equimolar properties of the appropriate sulphadiazinyl isatin derivatives with secondary amine and formaldehyde. Scheme-1

396

Scheme-1

3.Synthesis of N-(diethyl aminomethyl)-3-(4-sulphadiazinyl) isatin.(Compound VI). Diethylamine (.004 mol) was added dropwise with cooling shaking to the slurry consisting-3-(4-sulphdiazinyl isatin) (.004 mol, 1.516 g) ethanol (5 ml) and 35% formalin (.34 ml). The reaction mixture was allowed to stand at room temperature for 20 minutes. At the end of this time, the contents were cooled and products thus separated was filtered and recrystallized from ethanol. Yield : 1.5 g (88.7%)

Elemental analysis for $C_{23}H_{25}N_6O_3S$; Found C: 55.36, H:4.9 , N: 19.01 Calcd. C: 55.35, H:4.78, N:19.12. Ultraviolet spectrum: λ max(nm): 266,248,242. IR spectrum showed absorption bands (cm⁻¹)n at 3410-3350(NH symmetric stretching), 1620 (>V=O), 1580-1400(ring skeletal vibration), 1330 (SO₂symmetric stretching)n 1260-1080(amine C-N stretching) 1160(SO₂ symmetric stretching) and 940-860 (aromatic C-H and of the plane). ¹HNMR (DMSO-d₆ ppm) : 7.6-doublet (2 proton) 8.5-doublet (2 protons), 7.0- triplet (2 protons)2.9-singlet(2 protons) due to presence of different moieties in C₂₃H₂₅N₆O₃S. Similarly, other Mannich base were also prepared(Table-1)

Antibacterial Study :

The synthesized compounds were screened for their antibacterial activity against gram positive and gram negative bacteria by cup-plate diffusion techniques. The compounds were tested ar 500 μ g concentrationin DMSO, using nutrient Agar as the medium. The results are presented in Table-2.

Antifungal Study :

The compounds were screened for their antifungal activity against Candida albicans, Aspergillns (A. flavus) and Dermatophyton (Microsporum gypseium) by cup-plate diffusiontechniques. Most of the compounds were found to be inactive, but they showed activity on Candida albicans. The results are given in Table-3

Table-1

S.No.	Compounds/mf	R1	R2	Mp/yield	Rf/Rm
Ι	3-(4-sulphadiazinyl)isatin		Н	240	0.783
	C18H13N5O3S			(93.3)	(-0.5573)
II	N-(1-Morpholinomethyl)-3-(4-	Н		181-183	0.772
	sulphadiazinyl)isatin			(83.6)	(-0.5348)
	C24H24N6O3				
III	N-(1-piperzinomethyl)-3-(4-	Н		130-133	0.772
	sulphadiazinyl)isatin		-CH2-N	(78.5)	(-0.4525)
	C24H24N6O3				

Characterization Data

IV	N-(1-piperzinomethyl)-3-(4-	Н		128	0.738
	sulphadiaznyl)isatin			(88.4)	(-0.8530)
	C23H23N7O3S				
V	N-(Dimethylaminomethyl)-3-(4-	Η		230	0.821
	sulphadiazinyl)isatin		CH ₃	(91.7)	(-0.5867)
	C23H21N6O3S		-CH ₂ -N CH ₃		
VI	N-(Diethylaminomethyl)-3-(4-	Н		248	0.798
	sulphadiazinyl)isatin		C ₂ H ₅	(80.6)	(-0.8179)
	C23H25N6O3S		$-CH_2 - N C_2H_5$		
VII	N-Acetyl-3-(4-sulphadiazinyl)isatin	Н		150-153	0.65
	C20H15N5O4S			(90.8)	(-0.3430)
VIII	N-(4-sulphadiazinylmethyl)-3-(4-	Н		218	0.800
	sulphadiazinyl)isatin			(85.4)	(-0.6021)
	C29H23N9O5S2				
IX	3-(4- sulphadiazinyl)-5-chloro isatin	Cl	Н	213	0.801
	C18H12N5O3SCl			(85.0)	(-0.6260)
Х	N-(1-Morpholinomethyl)-3-(4-	Cl		223	0.780
	sulphadiazinyl)-5-chloroisatin		CH2-N-	(91.7)	(-0.5540)
	C23H22N6O3SC1				
XI	N-(1-piperidinomethyl)-3-(4-	Cl		190	0.830
	sulphadiazinyl)-5-chloro isatin C24H24N6O3SCl			(88.0)	(-0.6848)
	C24H24IN6O35CI				
XII	N-(1-piperinomethyl)-3-(4-	Cl		225	0.820
	sulphadiazinyl)-5chloro isatin			(95.8)	(-0.8290)
	C23H23N7O3SCl				
XIII	N-(Dimethylaminomethyl)-3-4-(4-	Cl		220	0.821
	sulphadiazinyl)-5-chloroisatin		CH ₃	(90.1)	(-0.7467)
	C21H20N6O3SCl		CH ₂ -N CH ₃		
XIV	N-(Diethylaminomethyl)-3-(4-	Cl		208	0.921
	sulphadiazinyl)-5-chloroisatin		/C ₂ H ₅	(90.0)	(-1.2127)
	C23H24N6O3SCl				
XV	N-Acetyl-3-(4-sulphadiazinyl)-5-	Cl		214	0.620
	chloroisatin			(78.2)	(-0.2024)
	C20H15N5O4SCl		5		

Table-2

S.No.	VC	EC	Ps	ST	KI	SP	SF
Isatin	100	100	0	0	120	110	0
5-Chloroisatin	130	140	110	110	170	120	130
Sulphadiazinyl	0	200	120	120	200	200	200
Ι	289	120	0	0	300	-	260
II	290	100	130	130	340	-	300
III	348	220	130	130	320	-	270
IV	310	210	0	0	-	-	250
V	290	160	180	180	300	-	260
VI	350	180	220	220	270	-	240
VII	300	130	170	170	300	-	210
VIII	290	130	120	120	320	-	270
IX	130	120	120	120	160	100	340
Х	150	150	130	130	220	120	290
XI	150	220	130	130	210	120	300
XII	130	210	130	130	180	120	310
XIII	200	150	110	110	200	130	350
XIV	210	200	140	140	180	110	360
XV	180	180	150	150	200	0	240
VC Vibrashelana EC E seli De Demonse							

VC= Vibrocholerae, EC= E. coli,

SP= S.Paratyphoid

Ps=Psendomonas SF=S. faecelis

Table-3

KI=Klebsiella

Antifungal Activity of Sulphadiazine Bases of Isatin

Compounds	Zone of Inhibition at 500µg×10 mm
Isatin	120
Chloroisatin	160
Sulphadiazine	-
Ι	-
II	-
III	150
IV	-
V	100
VI	-
VII	-
VIII	-
IX	180
X	160
XI	200
XII	210

XIII	200
XIV	150
XV	180

Results And Conclusion: All the synthesized compounds were analyzed by spectral techniques IR, UV and NMr spectra.

Almost all the synthesized compounds exhibited antibacterial activity against gram positive and gram negative bacteria at 500 µg concentration. Schiff base of isatin and 5-chloroisatin exhibited very good activity against *Pseudomonas*,the activity of cholroisatin and sulphadiazine being zero. Compound III and VI exhibited maximum activity against *V.cholerae*, compound IX against *S. facelis* and pseudomonas and compounds II against *Klebsiella*.