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 Statistical Downscaling (SD) is a technique in climatology to analyze the 

relationship between large-scale (global) data and small-scale (local) data 

using statistical modeling. The SD technique is used to overcome the 

inability of global scale data in the form of the General Circulation Model 

(GCM) as a low resolution predictor to predict local scale climatic 

conditions in the form of high resolution rainfall as a direct response. 

Rainfall consists of two components, namely continuous and discrete. The 

continuous component describes the intensity of rainfall while the discrete 

component describes the occurrence of rain. both components have an 

important role in predicting rainfall so it is necessary to choose the right 

distribution. One distribution that is able to handle both rain components 

is the mixed Tweedie distribution, namely the Gamma and Poisson 

distribution, hereinafter referred to as the Tweedie compound. GCM 

generally has multicollinearity problems in SD modeling. This can be 

handled using the Lasso penalty. This study aims to predict rainfall and 

rainfall events by taking into account the multicollinearity problem in the 

model for locations on different plains. Based on the research results, it 

was found that Cigugur Station from the highland gets the smallest RMSEP 

value and the biggest r-correlation. This model is not good enough to use 

for moderate plains rainfall data. 
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I. INTRODUCTION 

 

Statistical Downscaling (SD) aims to link global scale 

variables (predictors) and local scale variables 

(responses) [1]. The SD technique helps overcome low-

resolution GCMs that are unable to directly predict 

high-scale local climate conditions. the predictor 

variable used is the GCM outcome in the form of 

precipitation and the response variable used is rainfall. 

The role of GCM output is very important for 

predicting rainfall in SD modeling. Rainfall actually 

consists of two components, namely continuous and 

http://www.ijsrset.com/
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discrete. The continuous component describes the 

intensity of rainfall whose value is greater than 0, 

while the discrete component describes the occurrence 

of rain and no rain. The occurrence of rain indicates 

that there is recorded rainfall and there is no rain event, 

meaning the intensity is 0 because there is no recorded 

rainfall.[2][3] 

Rainfall predictions generally only model one of the 

components. Several studies regarding the prediction 

of rainfall in SD were carried out by [4] using normal 

distribution with Fused Lasso penalty. [5] uses normal 

distribution with a generalized linear mixed model and 

Lasso penalty. [6] use the normal distribution and Lasso 

penalty. The three studies only modeled the 

continuous component. The most basic model for 

predicting rainfall for the continuous component is 

using the normal distribution in a linear model. This 

will cause a violation of the assumption because the 

rainfall data is generally skewed to the right which is 

identical to the Gamma distribution. Rain events can 

be modeled using Poisson distribution [7][8]. The 

general linear model is used as a solution. However, 

some rain events will be intensity 0 (no rain). This 

causes the Gamma distribution to be less precise for 

modeling. The Tweedie compound was proposed by 

Dunn in 2004 for rainfall modeling which represents 

the sum of continuous rainfall events. Because of its 

ability to accommodate both components of rainfall 

simultaneously. This is necessary because both 

components have important information for 

predicting future rainfall [3]. 

 

GCM outputs in SD often violate the assumption of 

multicollinearity. This needs to be addressed in order 

to obtain meaningful predictions. This study deals with 

multicollinearity problems using Lasso. Several studies 

regarding the prediction of rainfall using the Tweedie 

compound distribution have been carried out [9] 

modeling rainfall using the tweedio compound poisson 

gamma distribution with Lasso regularization 

compared to the tweedie GLM model and tweedie 

principle component analysis (PCA) and [10] carried 

out modeling using the Generalized linear mixed 

model of the tweedie compound poisson gamma 

response and the PCA reduction method. Based on this 

background, this study aims to compare rainfall 

predictions using Tweedie compound responses with 

Lasso ropes at three different locations, namely 

locations for high, medium and low altitudes. 

 

II.  METHODS AND MATERIAL  

 

This sub-chapter will explain some of the supporting 

materials in the research including: 

 

A. General Circulation Models (GCM) and Statistical 

Downscaling (SD) 

 

The General Circulation Model is an important tool in 

the study of diversity and climate change [11]. This 

model describes the subsystems of the earth's climate, 

such as processes in the atmosphere, sea, land, and 

simulates climate conditions on a global scale. GCM 

simulates global climate variables on each grid with a 

size of ±2.50 or ±300 km2 in each layer of the 

atmosphere. However, GCM does not provide 

important information at higher resolution, such as 

temperature and precipitation on a local scale. GCM is 

still possible to use to obtain local scale information 

using the downscaling method. The downscaling 

method is the process of transforming data from a grid 

with large scale units into data on a grid with smaller 

scale units. One of the downscaling methods is 

statistical downscaling, in which data on a large scale 

grid in a certain period is used as a basis for 

determining data on a smaller scale grid. The equation 

for this method is: 

𝑦𝑛×1 = 𝑓(𝑋𝑛×𝑘) 
 

Where 𝑦𝑛×1 is rainfall, 𝑋𝑛×𝑘  is precipitation of GCM 

output data, n is the number of observations, k is the 

number of explanatory variables. Figure 1 is 

framework of statistical downscaling process [14] 
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Figure 1 : Framework of Statistical Downscaling Process 

 

B. Exponential Dispertion Model and Tweedie 

Compound 

Tweedie is a special case of the Exponential Dispersion 

Model (EDM). The density function of the EDM is 

defined as a function of 2 parameters, namely: 

𝑓𝑦 (𝑦|𝜃, 𝜙) = 𝑎 (𝑦, 𝜙) exp (
1

𝜙
[𝑦𝜃 − 𝑘(𝜃)])      (1) 

θ is the canonical parameter in R , ϕ>0 is the dispersion 

parameter in (0, +∞)  [12], k(θ) is a cumulative function 

of the exponential dispersion model,  𝑎 (𝑦, 𝜙) is  basis 

of normalized quantity that is independent of the 

parameter θ [13]. EDM has the property that the mean 

μ and variance Var(y) can be calculated from the first 

and second derivatives of k(θ) w.r.t θ. Due to the one-

to-one mapping between θ and μ. k''(θ) can be denoted 

as a function of the mean 𝜇 , 𝑘′′(𝜃) = 𝑐  which is 

known as a function of the variance. 

𝜃𝑖 = 𝜃(𝜇𝑖) = {
𝜇𝑖
1−𝑝

1−𝑝
, 𝑝 ≠ 1

𝑙𝑜𝑔𝜇𝑖  , 𝑝 = 1

′

 𝑏(𝜃𝑖) = {
𝜇(𝜃𝑖)

2−𝑝

2−𝑝
, 𝑝 ≠ 2

𝑙𝑜𝑔𝜇𝑖  , 𝑝 = 2
 

 

The normalized quantity 𝑎 (𝑦, 𝜙)can be obtained as 

follows: 

𝑎 (𝑦, 𝜙) =

{
 
 

 
 𝜇𝑖

1−𝑝

1 − 𝑝
                        𝑗𝑖𝑘𝑎 𝑦 = 0

1

𝑦
 ∑ 𝑎𝑛(

∞

𝑛=1

𝑦, 𝜙, 𝑝)    𝑗𝑖𝑘𝑎 𝑦 > 0

 

 

∑ 𝑎𝑛(
∞
𝑛=1 𝑦, 𝜙, 𝑝)    is Wright's generalized Bessel 

function. Note that a (y,ϕ) in the tweedie model is also 

a function of p. The p parameter value is used as a 

determinant of the Tweedie distribution. Some of the 

general distributions that enter the tweedie family are 

known to have an analytic form including, 𝜌 = 0  is 

normal distribution, 𝜌 = 1, 𝜙 = 1 is Poisson 

distribution 𝑇𝑤1(𝜇, 1) = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜇), 𝜌 = 2is Gamma 

distribution 𝑇𝑤2(𝜇, 𝜙) = 𝐺𝑎𝑚𝑚𝑎 (𝜇, 𝜙) , 𝜌 = 3 is the 

inverse Gaussian distribution 𝑇𝑤3(𝜇, 𝜙) = 𝐼𝑛𝑣𝑒𝑟𝑠 − 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (𝜇, 𝜙), 1 < 𝜌 < 2  is a Tweedie compound 

which can model discrete and continuous components 

simultaneously, so the stretch can model both events 

and the amount of rainfall simultaneously, 𝜌 ≥ 2  can 

model positive data, the data is skewed to the right [14]. 

In the field of meteorology, Tweedie assumes Y as the 

total monthly rainfall, 𝑁𝑡  is the total number of rain 

events per month and 𝑦𝑖 is the precipitation from the 

i-th event [8] mathematically written as: 

 

𝑃(𝑁 = 𝑛) = 𝑒−𝜆
𝜆𝑛

𝑛!
, ∀𝑛 ∈ 𝑁𝑡 

𝑁 =∑1[𝑡,∞)(𝑡)

𝑡≥1

 

The amount of rainfall is represented as the total 

amount of rain from each rain event, say (𝑦𝑖)𝑖≥1 , 

assumed to have an independent and identical Gamma 

distribution of the time of the rain events:  

 

𝑌 = {
∑𝑦𝑖                𝑁 = 1,2,3,…

𝑁

𝑖=1

0            𝑁 = 0,

 

 

So 𝑦𝑖   ~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛾) is a probability density function 

with mean αγ and variance 𝛼𝛾2. If N=0 then Y=0, if 
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N>0 maka  𝑌 = ∑ 𝑦𝑖
𝑁𝑡
𝑖   [12]. The probability density 

function for Y for N>0 is: 

 

𝑓(𝑦) = {

𝛾𝛼

Γ(𝛼)
𝑦𝛼−1𝑒−𝛾𝑦 ,    𝑦 > 0

0                               𝑦 ≤ 0

 

 

Rainfall contains zero value and a continuous positive 

value. Thus, Y is the total amount of monthly rainfall, 

which is represented by the Poisson's sum of the 

Gamma random variables. N is the number of rain 

events and 𝑦𝑖 rainfall intensity for the ith rain event or 

the amount of rain per day. When Y is the total amount 

of monthly rainfall. So that Y has a Tweedie 

Compound distribution with the following parameter:  

𝜆 is average number of rainfall events per month,  𝛾  is 

shape of the precipitation event, 𝛼𝛾 is average amount 

of precipitation per event.  The relationship between 

parameters { 𝜆, 𝛼, 𝛾}  from Tweedie Compound and 

parameters { 𝜇, 𝜙, 𝑝}   from the tweedie model is as 

follows: 

{
 

 
𝜇 = 𝜆𝛼𝛾

𝑝 =
𝛼+2

𝛼+1

𝜙 =
𝜆1−𝑝(𝛼𝛾)2−𝑝

2−𝑝

 parameterized with 

{
 
 

 
 𝜆 =

𝜇2−𝑝

𝜙(2−𝑝)

𝛼 =
2−𝑝

𝑝−1

𝛾 = 𝜙(𝑝 − 1)𝜇𝑝−1

                                                  (2) 

According to (Dunn & Smyth, 2005) the probability 

that no rain will occur is: 

𝜋 = Pr(𝑌 = 0) =  𝑒−𝜆=exp(-
𝜇2−𝑝

𝜙(2−𝑝)
)          (3) 

Equivalent to equation 

𝑃(𝑌,𝑁 = 𝑛|𝜆, 𝛼, 𝛾} = 𝑑0(𝑦)𝑒
−𝜆 ∥𝑛=0+

𝑦𝑛𝛼−1𝑒−𝑦/𝛽

𝛽𝑛𝛼Γ(𝑛𝛼)

𝜆𝑛𝑒−𝜆

𝑛!
 ∥𝑛>0                                              (4) 

 

where 𝑑0(𝑦) Delta dirac function at zero. The joint 

distribution 𝑃(𝑌,𝑁 = 𝑛|𝜆, 𝛼, 𝛾} according to [13] has a 

close form expression by substituting equation (2) into 

equation (4) so that the joint density function is 

represented by { 𝜇, 𝜙, 𝑝} as: 

 

𝑃(𝑌, 𝑁 = 𝑛| 𝜇, 𝜙, 𝑝} = [exp (−
𝜇2−𝑝

𝜙(2 − 𝑝)
]

∥𝑛=0

 

∗  

[
 
 
 
 exp (𝑛 (−

log(𝜙)

𝑝 − 1
+
2 − 𝑝

𝑝 − 1
log (

𝑦

𝑝 − 1
) − log(2 − 𝑝)) − 𝑙𝑜𝑔Γ(𝑛 + 1)

−
1

𝜙
(
𝜇1−𝑝𝑦

𝑝 − 1
+
𝜇2−𝑝

2 − 𝑝
) − 𝑙𝑜𝑔Γ(

2 − 𝑝

𝑝 − 1
𝑛) − log(𝑦))

]
 
 
 
 
∥𝑛>0

 

 

C. LASSO (Least Absolute Shringkage and Selection 

Variable) 

 

The Least Absolute Shringkage and selection operator 

(LASSO) method was introduced by Thibsirani in 1996. 

This method is used for variable selection by shrinking 

the linear regression parameter coefficients of 

predictors that are highly correlated with error, to 

almost 0 or exactly zero, by adding a penalty called 

with L1 regulation. The L1 regulation is by giving 

constraints ∑ |𝛽𝑘|  ≤ 𝑡
𝑝
𝑗=1  , 𝑡 ≥ 0 in the modeling 

objective function. This provides two advantages, 

namely variable selection and stable parameter 

estimation. Parameter estimation in linear modeling 

with L1 regulation has the following solution: 

arg𝑚𝑖𝑛
𝛽𝑘

{−
log {𝐿(𝑦, 𝛽𝑘)

𝑛
+ 𝜆∑|𝛽𝑘| 

𝑝

𝑗=1

} 

 

with 𝐿(𝑦, 𝛽𝑘)  is response probability function., n is 

umber of observations, 𝜆  is tuning parameters 

(parameters controlling the LASSO coefficient 

shrinkage) with λ ≥0, 𝛽𝑘  is parameter regression 

coefficient. [9] 

 

D.  Data Analysis Framework and Data Description 

 

The application of the Tweedie Compound model with 

Lasso penalty is carried out in the field of climatology, 

especially rainfall with statistical downscaling 

techniques. This study uses R software assisted by the 

statmod and tweedie packages to determine index 

parameters, and dispersion. The Hdtweedie package is 

used for Tweedie Compound modeling with Lasso 
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penalty, determination of regression parameters, and 

predictions. The model used in this study is as follows: 

 

log(𝜇) = 𝛽0 + 𝛽
𝑇𝑥                      (4) 

 

By maximizing the penalty model equation (5) 

using a 2 layer loop algorithm which incorporates the 

blockwise majorization descent method into 

iteratively re-weighted least squares (IRLS-BMD) 

proposed by [12]. 

 

(𝛽̂0, 𝛽̂) = 𝑎𝑟𝑔𝑚𝑖𝑛(𝛽̂0,𝛽̂)𝑙(𝛽0, 𝛽) + 𝜆1‖𝛽𝑗‖          (5) 

 

This study uses rainfall data as a predictor variable 

and the outcome of the General Circulation Model 

(GCM) in the form of monthly precipitation as a 

response variable with a time period from January 1981 

to December 2009 of 348 months. Rainfall data is 

located between -7.780 to -6.280 South Latitude and 

108.400 to 107.870 East Longitude in West Java 

province. The data unit used is mm/day. This was 

obtained from the Center for Meteorology, 

Climatology and Geophysics. GCM data as an 

explanatory variable was obtained from The National 

Centers for Environmental Prediction (NCEP) in the 

form of a Climate Forcast System Reanalysis (CSFR) 

model which can be downloaded on the website 

https:|//rda.ncar.edu/ (Saha et al. 2010) . The locations 

used are 3 rain stations representing each plain. This is 

considered to see the ability of the model used in 

modeling and predicting each plain which has 

different characteristics. 

TABLE I. INFORMATION OF RESEARCH VARIABLE 

Variable Information 

𝒀𝒏  𝒙 𝟏 3 rainfall data are used to represent 3 

stations for each land, namely: 

1. Highlands: Cigugur 

2. Moderate plain: Lekong 

3. Lowland: Pusakanegara 

𝑿𝒏 𝒙𝒑 GCM ( General Circulation Model)  

n=348 observation, p=40 Predictors 

The research steps are as follows: 

1) Exploration of data through plots and histograms 

to see the characteristics of rainfall. 

2) Determining the parameters of the p index and 

phi parameter (𝜙)  

3) Tweedie Compound Modeling with Lasso Penalty 

4) Rainfall prediction 

5) Evaluate the model by looking at the RMSEP and 

Rsquare values of each station 

 

Determination of parameters α, γ, the number of daily 

rainfall events λ, Average daily rainfall intensity per 

month αγ, probability of no monthly rainfall (π), 

prediction of monthly rainfall μ 

 

III.RESULTS AND DISCUSSION 

 

The first step of this research is data exploration to see 

the characteristics of rainfall data at each rain station 

can be seen in Figure 2. The histogram in Figure 2 

shows that the rainfall data at each rain station has a 

data frequency dominated by zero and positive values . 

Thus, the rainfall data appears to be in accordance with 

the distribution characteristics of the Tweedie 

compound, namely the data is positive and contains 

exact zero. The box plots of the three rain stations have 

a monsoon pattern where the lowest rainfall is 

between June and September.  

The Tweedie compound distribution index parameter 

is in the range of values 1 < 𝜌 < 2. Thus, the next step 

is to determine the index parameter value for each rain 

station, as well as the 𝜙 parameter which will also be 

obtained simultaneously when searching for the index 

parameter value which can be obtained with the R 

package tweedie software, the tweedie.profile() 

function. The index parameter is selected from several 

candidate index values that have the smallest profile 

likelihood value accompanied by the dispersion 

parameter output. 
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Figure 2: histogram and rainfall plot of each rain 

station 

 

The profile likelihood plot for determining the best 

index parameter for each rain station can be seen in 

Figure 3. The candidate index parameter values 

entered into the tweedie.profile function are between 

1.2 to 2. 

 

 
Figure 3: Likelihood parameter index plot for 

Cigugur, Lekong and Pusakanegara stations 

 

The parameters obtained besides the index parameter 

include index value, dispersion, furthermore the 

minimum α and lambda values from the penalty lasso 

can be obtained by modeling the Tweedie compound 

with the penalty Lasso. The estimated results can be 

seen in Table 2. 

 

 

TABLE 2. PARAMETER ESTIMATE FOR 𝑝, DISPERSION  𝜙, 

𝛼 , AND LASSO PENALTY 𝜆1 

Value 

parameter 

estimate  

Cigugur Lekong Pusakanegara 

profile 

likelihood 

of p 

1.48 1.86 1.47 

CI 95 % (1.43,1.54) (1.79 , 1.95) (1.42, 1.53) 

Phi. Value 15.49 2.36 19.75 

Alpha  1.06 0.15 1.12 

Lamda.min 

(𝝀𝟏) 

3.606624e-

05 

4.024771e-

06 

4.638868e-05 

 

The predicted index parameter p from the profile 

likelihood plot is between the values 1 < 𝜌 < 2 for the 

three rain stations. So, it is true that the rainfall data 

for each rain station has a Tweedie compound 

distribution. Therefore, further Tweedie compound 

modeling can be carried out with the Lasso Penalty 

assisted by the R package Hdtweedie software.  

 
Figure 4: The selected Lambda plot with the smallest 

crossed validate error value and plot of 

coefficients based on the lambda values 𝜆1 
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The analysis process using the HDtweedie function 

requires the response y, the variable x in the form of a 

matrix, and the parameter index values obtained 

previously. The results of the analysis obtained a non-

zero regression coefficient and several penalty values 

𝜆1. The plot of the analysis results can be seen in Figure 

4. The value of 𝜆1  with the minimum and best 

evaluation is used for modeling based on n-fold cross 

validation with the cv.Hdtweedie function. The 

evaluation results can be seen in Figure 4 in the form 

of a curve (red dotted line) and an upper and lower 

standard deviation curve for all rows 𝜆1  (error bar). 

The vertical black line indicates the selected lambda 

value. 

 

 
Figure 5:  Regression coefficients for Cigugur, Lekong 

and Pusakanegara rain stations 

 

The regression coefficient in Figure 4 was obtained 

based on lambda 𝜆1  with a minimum mean cross-

validate error and was then used for variable selection. 

The selected explanatory variable will have a 

regression coefficient of zero, while the unselected 

explanatory variable will have a value of more than 

zero. This can be seen in Figure 5. Based on Figure 5, 

the explanatory variables that were not selected for 

each rain station are 

TABLE 3. EXPLANATORY VARIABLES THAT ARE NOT 

SELECTED FOR EACH RAIN STATION 

Rain 

station 

Predictor variable tot

al 

Cigugur X2,X6,X9,X19,X21,X23,X26,

X28 

8 

Lekong X2,X6,X9,X10,X12,X13,X15,X16,

X18,X28,X40 

11 

Pusakane

gara 

X2,X5,X6,X9,X19,X20,X23,X26,X

28,X30 

9 

 

The three rain stations obtained the explanatory 

variables that were not much different in number and 

the same explanatory variables were selected for the 

three rain stations. This shows that the Tweedie 

compound model with Lasso penalty has almost the 

same ability for each rain station. Although the 

selection of rain stations has different characteristics 

for the highlands, medium and low. Predictive models 

can be created based on the cv.Hdtweedie() function. 

The minimal lambda is used in the prediction model 

using the predict() function. This function requires the 

cv.Hdtweedie() function, a new x matrix for the 

desired observations, and a minimum lambda value. 

Furthermore, the predicted and actual data are 

visualized through plots to compare the two rainfall 

data which can be seen in Figures 6 to 8 for the three 

rain stations. Predictions are made for 2009 from 

January to December. 

 
Figure 6: Cigugur station rainfall prediction 
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Plot of actual and predicted rainfall for the Cigugur 

station can be seen on Figure 6. The plot shows that the 

actual and predicted rainfall is not much different 

because the pattern of data in the plot is not much 

different. This shows that the model is quite good at 

predicting. Thus, the model can be considered for 

predicting rainfall over a period of several years, 

especially for data from upland rain stations. 

 
Figure 7: Lekong station rainfall prediction 

 
Figure 8: Pusakanegara station rainfall prediction 

 

The rainfall plot for the Lekong rain station can be seen 

in Figure 7. It can be seen that the actual and predicted 

rainfall data differ quite a lot, especially in February 

and June, but the overall pattern is not much different. 

Thus, the model can still be considered to model 

rainfall data from temperate plains. The rainfall plot 

for the Pusakanegara rain station can be seen in Figure 

8. It can be seen that the actual and predicted rainfall 

data differ in January, February, November and 

December, but the overall pattern is not much 

different or even similar. Thus, the model is good 

enough to model rainfall data from the lowlands. 

The goodness of the model is seen through the Root 

Mean Square Error Prediction and r-correlation 

between actual data and predictiom values shown in 

Table 4. The smallest RMSEP was obtained by the 

Cigugur rain station and the highest was Lekong. The 

largest r-correlation is obtained by Cigugur and the 

smallest is obtained by Lekong. When looking at 

Figure 1 again, the rainfall plots for the Cigugur and 

Pusakanegara rain stations have a monsoon pattern. 

the two rain stations come from the highlands and 

lowlands and have a p index parameter value of around 

1.4-1.5 . Meanwhile, Lekong does not perfectly form 

the pattern and the index parameter value of 1.8 is 

close to 2, which tends to approach the gamma 

distribution. Thus, the Tweedie compound model with 

the penalty lasso is very good for rainfall data that has 

a Monsoon rain pattern with an index parameter of 

1.4-1.5 and is not good for rainfall data originating 

from the lowlands. 

TABLE 4 

FONT SIZES FOR PAPERS 

 

 

 

 

 

 

Prediction of some parameters of rainfall characteristic 

Tweedie compound model was chosen only for 

Cigugur station because it has the largest RMSEP value 

and correlation. The rainfall characteristics from Table 

5 can be interpreted that the average monthly daily 

rainfall (λ) in January is twice, the shape parameter γ 

in January is 98, the average daily rainfall per month 

(αγ) in January is 110.63, there is no chance rainfall 

events per month (π) for January is 0.12, and the 

number of events without rain per month (Nπ) for 

January is one. 

 

 

Stasiun RMSEP r-corelation 

Cigugur 23.33  0.93   

Lekong 60.07 0.83 

Pusaka negara 28.04 0.87 
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TABLE 5. PRE PREDICTION OF OTHER RAINFALL 

CHARACTERISTICS FOR 𝜆, 𝛾, 𝛼𝛾, 𝜋 = EXP(−𝜆) , 𝑁𝜋 

 

Month Actual Predic

tion 

(𝜇) 

𝜆 𝛾 𝛼𝛾 𝜋 𝑁𝜋 

1 280 236 2.02 98.67 110.63 0.13 1.58 

2 252 227 2.01 98.04 109.93 0.13 1.60 

3 51 61 1.15 59.94 67.20 0.31 3.76 

4 147 64 1.08 56.41 63.25 0.33 4.06 

5 114 43 0.95 50.57 56.70 0.48 4.60 

6 25 28 0.75 40.68 45.61 0.47 5.66 

7 0 24 0.7 38.68 43.26 0.49 5.91 

8 0 21 0.66 36.41 40.83 0.51 6.18 

9 0 24 0.70 38.68 43.37 0.49 5.90 

10 0 29 0.78 42.21 47.33 0.45 5.49 

11 39 53 1.01 53.01 59.44 0.36 4.37 

12 153 111 1.35 68.81 77.15 0.25 3.10 

 

IV. CONCLUSION 

 

This sub-chapter answers the research objectives that 

have been presented previously. The results of the data 

analysis above can be concluded that: 

1) The Tweedie compound model with a Lasso 

penalty is quite good and needs to be considered for 

rainfall modeling, especially for rainfall data from the 

highlands and lowlands. 

2) This model is very well used for rainfall data with 

monsoon patterns with index parameters between 1.4-

1.5 

This model is not only able to predict rainfall intensity 

but also able to predict other parameters such as 

monthly average daily rainfall events (λ), shape 

parameter γ months, average daily rainfall per month 

(αγ), probability of no rain events per month (π) and 

the number of events without rain per month (Nπ). 
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