
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Science, Engineering and Technology

Print ISSN: 2395-1990 | Online ISSN : 2394-4099 (www.ijsrset.com)

doi : https://doi.org/10.32628/IJSRSET

477

Java Program Running Smart Card
Swapnil A. Jamgade

Shree Radhika Tai Pandav College of Engineering and Technology, Nagpur University, Nagpur, Maharashtra,

India

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted: 01 June 2023

Published: 17 June 2023

 I have made this report file on the topic Java Card, I have tried my best to

elucidate all the relevant detail to the topic to be included in the report.

While in the beginning I have tried to give a general view about this topic.

My efforts and wholehearted co-corporation of each and every one has

ended on a successful note. I express my sincere gratitude who assisting

me throughout the preparation of this topic. I thank him for providing me

the reinforcement, confidence and most importantly the track for the topic

whenever I needed it.

Keywords : Java Card, Development Kit, APDU Tool

Publication Issue

Volume 10, Issue 3

May-June-2023

Page Number

477-480

I. INTRODUCTION

Java Card is a smart card that is capable of running

programs written in Java. For this a new Java platform,

Sun's JavaSoft division has made available the Java

Card 2.0 API specification, and several licensees are

now implementing this API on smart cards. In order

to program Java Cards that are 2.0-compliant,

developers need to understand what a Java Card is

architecturally, what its core classes are, and how to

develop applications for the card. This article gets

inside a Java Card, providing you, the developer, with

technical guidance on the system architecture,

application programming interface, and runtime

environment of the Java platform in a smart card.

II. METHODS AND MATERIAL

2.a.1) WHAT IS A JAVA CARD?

A Java Card is a smart card that can run Java programs.

The Java Card 2.0 specification contains detailed

information for building the Java Card virtual machine

and application programming interface (API) in smart

cards. The minimum system requirement is 16

kilobytes of read-only memory (ROM), 8 kilobytes of

EEPROM, and 256 bytes of random-access memory

(RAM).

2.a.2) The lifetime of a Java Card

The Java Card lifetime starts when the native OS, Java

Card VM, API classes libraries and optionally, applets

are burned into ROM. This process of writing the

permanent components into the non-mutable memory

of a chip for carrying out incoming commands is

called masking. Before it lands in your wallet, a Java

Card needs to go through initialization and

personalization. Initialization refers to loading general

data into a card's non-volatile memory. This data is

identical across a large number of cards and is not

http://www.ijsrset.com/

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 10 | Issue 3

Swapnil A. Jamgade Int J Sci Res Sci Eng Technol, May-June-2023, 10 (3) : 477-480

478

specific to an individual; an example might be the

issuer or manufacture's name.

2.a.3) Lifetime of a Java Card virtual machine

Unlike the Java virtual machine (JVM) in a PC or

workstation, the Java Card virtual machine runs

forever. Most of the information stored on the card

must be preserved even when the power is removed -

- that is, when the card is removed from the reader.

The Java Card VM creates objects in EEPROM to hold

the persistent information. The execution lifetime of

the Java Card VM is the lifetime of the card. When the

power is not provided, the VM runs in an infinite clock

cycle.

2.a.4) The lifetime of Java Card applets and objects

An applet's life starts when it is properly installed and

registered with the system's registry table and ends

when it is removed from the table. The space of a

removed applet may or may not be reused, however,

depending on whether garbage collection is

implemented on the card. An applet on a card is in an

inactive stage until it is explicitly selected by the

terminal.

2.B.1) Java Card 2.0 language subset

Java Card programs are, of course, written in Java.

They are compiled using common Java compilers. Due

to limited memory resources and computing power,

not all the language features defined in the Java

Language Specification are supported on the Java Card.

Specifically, the

Java Card does not support:

• Dynamic class loading

• Security manager

• Threads and synchronization

• Object cloning

• Finalization

• Large primitive data types (float, double, long, and

char) It's no surprise that keywords that support those

features are also omitted from the language. VM

implementers may decide to support 32-bit integer

type or native methods for post-issuance applets if they

are working on a more advanced smart card with more

memory. Post-issuance applets are those applets that

are installed on a Java Card after the card is issued to a

card holder

2.B.2The Java Card 2.0 framework

Smart cards have been in the market for 20 years, and

most of them are generally compatible with ISO 7816

Parts 1-7 and/or EMV. We've already looked at ISO

7816. What's EMV? The EMV standard, defined by

Europay, MasterCard, and Visa, is based on the ISO

7816 series of standards with additional proprietary

features to meet the specific needs of the financial

industry. The Java Card Framework is designed to

easily support smart card systems and applications. It

hides the details of the smart card infrastructure and

provides Java Card application developers with a

relatively easy and straightforward programming

interface

III. DEVELOPING A JAVA CARD APPLET

After you write a Java Card applet, you're ready to

prepare it for execution in a Smart Card that

implements the Java Card runtime environment.

Preparing a Java Card applet for execution involves a

number of steps, such as converting it to a runtime

format and testing it in various simulated

environments. Using the Java Card

Development Kit Use the Java Card 2.1.2

Development Kit to develop a Java Card applet. You

can use the Java Card 2.1.2 Development Kit to

develop an applet for masking. Masking means

embedding the applet into the read-only memory of a

smart card when the card is manufactured.

Alternatively, you can use the Java Card 2.1.2

Development Kit to develop an applet for installation

onto a smart card after the card is manufactured. The

Java Card 2.1.2

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 10 | Issue 3

Swapnil A. Jamgade Int J Sci Res Sci Eng Technol, May-June-2023, 10 (3) : 477-480

479

Development Kit provides components and tools that

you need to develop applets for masking or installation.

This includes:

• Java Card Framework classes that are essential for

developing Java Card applets.

• A Java Card Workstation Development Environment

(JCWDE) that simulates the Java Card runtime

environment on a Java[tm] virtual machine.

• An APDUTool utility that sends command APDUs to

the JCWDE or to a Java Card runtime environment.

Command APDUs are the way operational requests are

made to a smart card.

• A Converter tool that converts a Java Card applet into

a format required for masking or for installation. • Off-

card verification tools that check the integrity of files

produced by the Converter.

• A mask generator that generates a mask file for

incorporation into a mask in a Java Card runtime

environment.

• An off-card installer for installing a Java Card applet

onto a smart card.

• Using these classes and tools, you develop a Java Card

applet on your workstation or PC. Specifically, you:

• Compile the applet.

• Optionally, test the applet in the JCWDE, and debug

the applet.

• Convert the applet. If you develop an applet that will

be masked, you convert the applet class and all the

classes in its package to a Java Card Assembly (JCA) file.

If you develop an applet for installation, you convert

the applet and all the classes in its package to a

Converted Applet (CAP) file, and possibly an export

file. An export file is used to convert another package

if that package imports classes from this package. The

next step depends on whether you develop an applet

for masking or for installation. For masking, you run

the mask generator to produce a mask file. For

installation, you run the off-card installer; this

produces a script file that contains command APDUs -

- you then use the file as input to the APDU Tool. The

APDU Tool works in conjunction with the installer on

the smart card to download the CAP file and

instantiate the Java Card applet in the CAP file.

IV. RESULTS AND DISCUSSION

4.a.1) Compiling a Java Card Applet

You write Java Card applets in the Java programming

language. However because applets are designed to run

in the very small memory space of a smart card, they're

coded using an appropriate subset of the Java

programming language. As you do for a Java

application or applet, you compile Java Card applets on

your workstation or PC. You can use any Java compiler

that supports Java 2 Platform, Standard Edition version

1.2.2, 1.3 (or above), such as the javac compiler in Java

2 SDK version 1.3. Remember to include api21.jar in

your class path before you compile ava Card will

require marketing promotion, e applications and tools

development, and At the same time, the number of

Java in existence could easily extend into the ions

within the next few years. Which means may soon be

storing your personal rmation and downloading

applications using card you carry around in your

wallet or purse.

4.a.2Debugging a Java Card Applet

You can debug the applet on your workstation or PC

just as you do for a Java application. More specifically,

you can use the same debugging tools, such as the

debugging facilities of an IDE, or the Java debugger

tool (jdb) in the Java 2 SDK. Converting a Java Card

Applet In Java Card technology, you don't directly

incorporate a Java Card applet into a mask. Similarly,

after a smart card is manufactured, you don't directly

download a Java Card applet for installation onto a

smart card. Instead, for masking, you convert an applet

class and all the classes in its package to a JCA (Java

Card Assembly) file. The JCA file and JCA files for any

other packages to be included in the mask are then

converted into a format compatible with the target

runtime environment. It's this converted output for

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 10 | Issue 3

Swapnil A. Jamgade Int J Sci Res Sci Eng Technol, May-June-2023, 10 (3) : 477-480

480

the target runtime environment that is incorporated

into the mask

V. CONCLUSION

Java Card can be used in all fields where the smart card

is now being used. Java Card can be used as an ID card

which contains personal information, as a medical card

which stores medical information, credit/debit bank

card, as an electronic purse etc. Multi-Application Java

Cards, that is, more than one application in a single

card is also available. The Java Card adds a new

platform to the world of Java. Widespread adoption

and deployment

VI. REFERENCES

[1]. Pascal Urien, "Cloud of secure elements: An

infrastructure for the trust of mobile NFC

services", 2014 IEEE 10th International

Conference on Wireless and Mobile Computing,

Networking and Communications (WiMob),

pp.213-218, 2014.

[2]. Pascal Urien, Selwyn Piramuthu, "Towards a

secure Cloud of Secure Elements concepts and

experiments with NFC mobiles", 2013

International Conference on Collaboration

Technologies and Systems (CTS), pp.166-173,

2013.

[3]. Dawei Zhang, "Design and Implementation of

SMS4 on Java Card", 2009 WRI World Congress

on Software Engineering, vol.1, pp.145-149,

2009.

[4]. Ula M. Qabs, Fawzi M. Al-Naima, "Design and

implementation of a Smart Card Simulator",

2008 International Conference on Computer

and Communication Engineering, pp.217-220,

2008.

[5]. Yoon-sim Yang, Won-ho Choi, Min-sik Jin,

Cheul-jun Hwang, Min-soo Jung, "An Advanced

Java Card System Architecture for Smart Card

Based on Large RAM Memory", 2006

International Conference on Hybrid

Information Technology, vol.2, pp.646-650,

2006.

[6]. R. Thibadeau, "Trusted Computing for Disk

Drives and Other Peripherals", IEEE Security &

Privacy, vol.4, no.5, pp.26-33, 2006.

Cite this article as :

Swapnil A. Jamgade, "Java Program Running Smart

Card", International Journal of Scientific Research in

Science, Engineering and Technology (IJSRSET),

Online ISSN : 2394-4099, Print ISSN : 2395-1990,

Volume 10 Issue 3, pp. 477-480, May-June 2023.

Journal URL : https://ijsrset.com/IJSRSET23103141

