

Available Online at : www.ijsrset.com doi : https://doi.org/10.32628/IJSRSET23103142

A Survey on Various Approaches for Edge Detection

Saja Hikmat Dawood

Department of Computer, Collage of Basic Education, University of AL-Mustansiriyah, Baghdad, Iraq

ARTICLEINFO ABSTRACT

Article History :	Edge detection is a fundamental image processing technique used to spot		
	sudden shifts in color or intensity in image. It is utilized to detect and		
Accepted: 10 June 2023	highlight boundaries between various items or regions in image, as well as		
Published: 04 July 2023	to detect features such as corners, circles and lines. Edge detection		
	approaches typically work by applying a filter to an image to detect areas		
	where the image undergoes an immediate shift in magnitude. Applications		
Publication Issue :	for edge detection techniques include recognizing objects, healthcare		
Volume 10, Issue 4	images, and background segmentation. Many techniques have been		
July-August-2023	presented based on the classical approaches (such as Sobel, Prewitt, and		
	Roberts, Canny, Laplacian of Gaussian (LOG), etc.) and soft computing		
Page Number :	approaches (SCA), which are the two main approaches for detection of		
27-41	edge. This paper provides an overview of studies carried out on edge		
	detection using various approaches. That will assist brand-new researchers		
	in learning about these techniques and selecting one from among them to		
	evolve or improve according to their field of study.		
	Keywords : Edge detection, Sobel, Prewitt, Roberts, Canny, LOG, DoG,		
	Soft computing, ANN, FL, GA.		

I. INTRODUCTION

Digital computers are used to manipulate images during digital image processing. A matrix, of square pixels arranged in rows and columns makes up the image. The process of converting tangible image into a digital format and running different operations on it to improve the image and extract useful information from it is known as image processing. It requires a number of stages, including image analysis (noise reduction, image enhancement), segmentation, edge extraction, and compression, among others [1].

An image's basic characteristic is its edge. the change from one region to another's visual characteristics, such as color, brightness, or texture, are indicative of changes in scene content and are referred to as edges. the edges provide rich information that is highly important. Edge detection is a method for finding and identifying abruptions in visual data. Machine vision and image processing need the use of edge detection.

Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

Numerous tasks, such as object recognition, scene segmentation, motion detection, medical imaging, road detection, and image compression, depend on accurate edge detection [2].

Its use has skyrocketed during the last few decades. Everyone is apprehensive and anticipates the development of a system that does computations more efficiently, correctly, affordably, and completely [1]. the main aim of this paper is to survey a variety of approaches in edge detection.

The structure of this essay is as follows. Under Section 2 (**Types of Edge**), I'll show different types of edges. In Section 3 (**Main Steps in Edge Detection**), I'll explain the fundamental steps in edge detection. in Section 4 (**Edge Detection Approaches**), I'll give a review of different approaches in Edge Detection. Section 5 (**Conclusion**) illustrated the conclusion from the audit work.

II. TYPES OF EDGE

III. MAIN STEPS IN EDGE DETECTION

1- Filtering

Edge detectors can't work fine enough in noise. In order to lower noise and improve the efficiency of the edge detector, the image is filtered.

2- Enhancement

Enhancement techniques aim to raise the digital images overall quality. The fundamental objective of image enhancement techniques is to produce an image that is better than the original and more suitable for a certain use. There are many image enhancement techniques that have been suggested over the history such as linear and Nonlinear filters to solve the image sharpening issue.

3- Detection

Determine whether a point is an edge point or not.

4- Localization

locate the precise location of an edge [3] [4].

IV. Edge Detection Approaches

The current edge detection techniques are introduced and outlined in this section. According to our research, the edge detection techniques now in use may be classified into two groups: Traditional and Soft computing approaches.

A. Traditional Approaches

Traditional approaches divided into many types, but we can talk specifically about four types:

- 1) Classical edge detection
- 2) Difference-of-Gaussian (DoG)
- 3) Multi-scale feature\ (Multi-Resolution)
- 4) Structured learning

1) Classical edge detection

The many types of classical edge detection operators include: -

Figure 2: Classical approaches for Edge detection [5]

a) 1st Derivative (Gradient Change-Based)

The earliest well-known works in this category are the algorithms created by Roberts, Sobel, Prewitt, Kirsch, and Robinson, Frei-Chen [6].

1- Roberts Cross Operator

Roberts operator proposed by Lawrence Roberts in 1963, Figure (3) illustrates how it uses 2x2 convolution masks. One kernel is just another kernel turned 90 degrees. the Roberts operator are extremely similar to Sobel and Prewitt Operator in achieving quick calculation and simplicity. However, it is prone to noise interference, making it unsuitable for producing edges from images with high levels of noise.

Figure 3: The masks of Robert operator [7]

2- Prewitt Operator

Prewitt filter was proposed in 1970, which is a quick edge detection technique. As seen in Figure (4), it is similar to the Sobel but uses different mask coefficient axes. The spectral response is where the Sobel filter and this filter vary. Only images with strong contrast and zero noise are appropriate. This operator outperforms Robert's operator.

Figure 4: The masks of Prewitt operator [7]

3- Sobel Operator

The Sobel filter proposed in 1983. as seen in Figure (5), it uses 3 x 3 convolution mask to detect gradients in both of the axes X and Y. One kernel is just other kernel turned 90°. The horizontal and vertical edges are searched for by the Sobel edge detection masks, which then integrate this data into a single metric.

-1	0	+1	+1	+2	+1
-2	0	+2	0	0	0
-1	0	+1	-1	-2	-1
	Gx			Gy	

Figure 5: The masks of Sobel operator [5]

b) 2nd Derivative (Zero Cross/ Laplacian-Based)

1- Laplacian of Gaussian (LOG)

Since LOG is noise-sensitive, therefore it applied to the image after it has been smoothed by using Gaussian filter. The degree of image smoothing depends on the Gaussian filter's standard deviation. LOG use the 2nd derivative of zero for edges detection. Some of frequently employed discrete Laplacian filter approximations is shown in Figure (6).

-1	+2	-1				
+2	-4	+2				
-1	+2	-1				
Gx						

Figure 6: The masks of Laplacian of Gaussian(LOG)
[7]

2- Canny Operator

canny edge detector is one of the most often used tools for image processing. It has very robust edge detection. The canny operation is less sensitive to noise than Roberts Cross and Sobel, so it firstly smooths the image using a Gaussian filter. Therefore this method can work in a variety of circumstance and can identify the strong and weak edges of the image [5] [7].

2) Difference-of-Gaussian(DoG)

DoG is used to improve blurry images by removing all other frequency information except for the frequencies that are preserved in the original image.

DoG based on q-Gaussian and extended-based (XDoG) methods are based on the concept of Gaussian difference with some enhancement.

3) Multi-scale feature-based

The scale variance of the object presents edge detection with its most difficult issue. objects are constantly varied sizes and forms, and there may even be some highly oddly shaped, small, or enormous objects. This makes it very challenging to identify and locate object edges accurately.

Wavelet method are based on the concept of multi-scale feature.

4) Structured learning-based

The real problem of edge detection methods is the representation ability, which assumed that input and output were always in the shape of a vector. The highdimensional data may be more effectively represented using structured learning approaches, which can also capture comprehensive information.

Sketch Tokens, SE methods are based on the concept of structured learning [8].

A survey of different methodologies based on traditional approaches for edge detection are shown in Table 1 and 2.

B. Soft Computing Approaches

In previous years of image processing, soft computing has showed a stronger ability to handle ambiguity and uncertainty than traditional methods. When soft computing is utilized for edge detection, the results are better than using the traditional method. The traditional methods, such as Roberts, Prewitt, Sobel and Canny edge detector, have drawbacks when utilizing thresholds or parameters with fixed values. Few edges remain by being recognized since the nature of edges is not constant [9]. Soft Computing includes different techniques are explained below: -

1) Fuzzy Logic (FL)

The concept of fuzzy logic has been widely applied to describe the behaviour of nonlinear systems. The nonlinear behaviour of the system was effectively captured and expressed by a set of fuzzy rules [10].

Fuzzy logic enabling the values to exist without any limitations, so it gives us the flexibility. Fuzzy logic provides straightforward implementation and IF-THEN principles. The outcome may be modified simply by adding or removing a few additional fuzzy rules, and other strategies are knowledge-based and call for training. A logical system called fuzzy logic is an extension of multi-valued logic. There are several truth values in this propositional calculus. It is also possible to identify edges with varying thickness using fuzzy approaches.

Fuzzy logic is flexible, easy to conceptualize, and accepting of imperfect facts. Fuzzy logic maps an input space to an output space by evaluating a number of ifthen expressions known as rules concurrently. Because they employ variables and adverbs that explain those variables, these Rules are helpful [9]. type-1 FL system (T1FLS), an interval type-2 FL system (IT2FLS) and generalized type-2 FL system (GT2FLS) methods are all types of FL [11].

2) Genetic algorithm (GA)

A search technique called a GA is used to locate the precise or approximative answers to optimization issues depending on the biological principles of evolution.

Basically, it consists of three primary processes: selection, cross-over, and mutation are involved. The most suitable pixels are chosen during selection. Cross over combines them to create a much superior pixel. Finally, a little modification is included in mutation in order to preserve the population. These population clusters are believed to be able to identify the Edge and are utilized mostly with huge search areas and minimal prior knowledge [10] [12].

3) Artificial Neural Network (ANN)

ANN and Deep learning and can learn to detect edges in images and providing valuable information, in another meaning" processing information while analyzing images ". ANN works is Similar to how the human nervous system in process of handling information. Low-level Neural networks are computational components excellent with performance. It is Flexible soft computing frameworks that are used to model a variety of nonlinear issues. The processing components of the neural network model are referred to as "neurons". The network model is mostly determined by the characteristics of the data. One of the conventional models is the single hidden layer feed forward network (FFNN), which consists of three layers of fundamental processing units coupled by non-cyclic connections.

Neural networks utilization in a system depends critically on training the networks. A training pattern with a specified set of inputs and predicted outputs is used to train the neural networks. Depending on the input values, the user is then provided the outputs in the prediction cycle. In order for the network to learn or absorb knowledge, the weights—also known as connectivity between the layers—are changed. When the network has learned the material completely or has undergone training, it can determine the proper solution or output for the given set of input data [10] [13].

Tables 3 through 5 provide a survey of several soft computing-based edge detection approaches.

TABLE 1. A survey of different methodologies based on classical edge detection methods

	1					-	
Ref	year	TECHNIQUE\	P (Parameters)\ PL	Domain\ Data	Recognition rate/ Result	Cons	Future
		Methodology	(Programing	set			work
			language)\ MT				
			(Performance				
			Measurement tools)				
[14]	2011	Roberts, Sobel,	P \ -	Bharathiar	Canny result is	Difficult of	-
		Prewitt, Kirsch,	PL\ MATLAB	University	significantly better than	detection in	
		Robinson, Marr-	R2009a	image	the other results.	noisy image	
		Hildreth, LoG,	MT \-				
		Canny					
[15]	2013	Canny and Sobel	P \ -	Facial images	Canny works better than	Canny has less	-
			PL\ -	_	Sobel. Canny provide	rapid execution	
			MT\confusion matrix		high accuracy		
[16]	2014	Canny, Sobel, LoG,	P\ -	(Lena, Pirate	In terms accuracy, canny	Canny	-
		Robert's and	PL ∖ Matlab 8.1 and	Cameraman,	was discovered to be the	consuming more	
		Prewitt	Java used as MT	Living room)	best.	processing time	
			MT ∖ PSNR, MSE	images in TIFF			

				format and size			
[17]	2015	Sobel	P\ - PL\ Matlab 7.8.0(R2009a) MT\	Facial image	It is simple to construct and only requires one stage to identify edges.	-	-
[3]	2016	Roberts, Sobel, Prewitt, Canny, Laplacian, LOG	P\ - PL\ - MT\SSIM +Execution time	Document images (Handwritten and Printed)	Laplacian has higher accuracy. and shorter execution times than other methods for printed text image. While Roberts perform better for handwritten image.	_	_
[18]	2017	Prewitt, Sobel, Canny, Roberts and LOG	P\ - PL\ Matlab R2015a MT\ PSNR, MSE	Sunflower and Face image (with and without Salt and Pepper, Gaussian noise)	Canny and LOG provide good results than others methods. But canny superior than LOG in presence of noise	Robert, Prewitt, Log are not reliable in the presence of noise. Canny is Complex, time consuming, and misleading zero crossing	Create a new filter that overcom es the restrictio n to obtain greater image quality, allowing noise to be reduced and the image to be improve d.
[19]	2018	Sobel, Prewitt And Canny	P\ - PL\ C# MT\ MSE, PSNR, Time (in sec)	5 different image	Canny produces better results in PSNR and MSE than Prewitt and Sobel. Also canny works with noisy image. Prewitt consuming less time than other methods. Sobel has higher sensitivity to the diagonal edge	-	-
[20]	2018	Sobel, Homogeneity and Prewitt algorithms	P\ - PL\ C# MT\ subjective evaluation no.(1-5) and objective using equation P(I. l. µ)	Real images in Jordan and 2D gray-scale synthesis	Prewitt and Homogeneity have better performance than Sobel.	-	-
[21]	2019	improved gradient operator of canny based on distance	P\noise variance is 0.01 PL\ Visual C++ MT\ -	Image for Yangtze River field with the ship and Lena image	The suggested method operate or performs better than other operators under any noise level.	The suggested operator falls short of satisfying the gradient amplitude's	Trying to fix the cons

						rotation invariance in its entirety.	
[22]	2020	dilating the standard filters (Sobel, Prewitt and Scharr Canny) from 3 × 3 to 5×5, 7×7	P\ - PL\ Python MT\ formulas for (Precision (P), Recall (R) and F-measure) runtime	Dataset of 500 natural images (BSDS500)	Better results can be obtained using dilated filters.	Images with plenty of details, dilated filters might not be very effective that result in features being lost.	Applyin g dilated filters to operator s with second order derivativ es or other sophistic ated filters
[23]	2020	Robert, Sobel, Prewitt, LOG, Canny	P\ - PL\ Matlab and python MT\ MSE, PSNR	Different images	 2nd derivative yields superior results than 1st derivative. Canny approach appears to be more suited than the LOG in that it can identify both strong and weak edges. 	In comparison to the canny, all other methods have some blur and noisy labels. Canny is time consuming, and misleading zero crossing	
[24]	2023	Improved Canny Algorithm on an FPGA	P\ - PL\ MATLAB MT\ Used Slice and Memory, Max Freq, Time, Norm.	real-time applications\ 512 × 512 Gray scale image	Adaptive threshold technology outperforms traditional Canny in various lighting situations. The System detects edges in 1.231 ms, consumes few logical resources, suitable for hardware platforms	-	Candidat es the system for applicati ons requirin g real- time edge detectio n

TABLE 2. A survey of different methodologies based on (DoG, Multi-scale feature, Structured learning) methods

Ref	year	TECHNIQUE\	P (Parameters)\ PL	Domain\ Data set	Recognition rate\ Result	Cons\
		Methodology	(Programing language)			Future
			MT (Performance			work
			Measurement tools)			
[25]	2013	DoG based on q-	P1\ standard deviations	Lena image	The suggested technique can	-
		Gaussian	σ_1 , σ_2 where σ_2 =		extract edges with more precise	
			$0.1 < \sigma_1 = 0.2$		information.	
			P2 \ variable entropic			
			index q			
			PL\-			
			MT\ -			
[26]	2014	Structured learning	P \ discrete labels: $k =$	BSDS500	It is faster than the majority	-
		decision trees	2.radius = 2.m =	Segmentation	techniques. And it also provide	
			256.T = 4.	dataset and NYU	high-quality edge detection and	
			32×32 image patches,	Depth dataset.	efficiency (accurate)	
			16×16 label patches	1		
			PL\ -			
			MT\ODS, OIS, AP, R50			

[07]	2016		2	m · · ·	FF1 : 0 1 1	
[27]	2016	Multi-scale based on	P\-	Texture image and	The impact of proposed edge	-
		I wo-B-spline wavelet	PL\ -	heartbeat	detection on the quality of	
		transform.	M1\-	(Gatlin image)	image is good.	
[28]	2016	Multi-scale adaptive wavelet transform and cubic B-spline curve.	P\k = 4. adjacent 25 pixel points. m. n = 4 PL\ - MT\ std, MSE	Road image	The new technique achieves high positioning accuracy, noise resistance, and outperforms other well-known methods. It has a std of 0.0043 mm and an MSE of less than 0.02 pixels.	-
[29]	2018	Improved multi-scale Harris corner detection algorithm and improved Canny	P\ Mean - shift filter : $h_s = 4.h_r = 8.$ multi - scale: s < 1.D = 1.2.2 - N $CRF: \varepsilon = 10^{-6}.$ radius of 3.4.5 thresuld : ρ between 0.02 and 0.06 PL\- MT\-	Ship and aircraft carrier images	The proposed algorithm can extract the corner point in Accurate and fast manner. morphology filter smooths image, eliminates noise, while automatic threshold value obtain by adaptive Otsu method .	Cons\ The algorithm increases false detection rate with increased sea light and clouds. Future work\ Additional developme nt and improveme nt
[30]	2019	Extended Difference of Gaussian (XDOG)	P\ PL\ MATLAB R2017a MT\ PSNR, MSE, NAE, Time.	Different sizes for 160 image	XDOG most effective approach than (Roberts, zerocross, canny, log, sobel, prewitt), and provide good results in term of PSNR, MSE, NAE	Cobs\ The time values for XDOG are approximat ely large.
[31]	2019	Crack Token detector	P \ Gaussian blur $\sigma = 0.1.5 and 5$ pixels , patch size of 35 * 35, channel features 21350, δ is $[0.4 - 0.8]$ PL \- MT \ ODS, OIS, PR-Curve	Real world application\BSDS 500 Dataset of 118 (noisy + noise free) real world crack images	Crack Token achieves the most accurate results than other methods	Future work\ creation of alternative appropriate degeneratio n methods and an area generation strategy.
[32]	2022	Multi-scalebasedonhybridwavelettransform.(by usingB-spline,Gaussianfilter,adaptivethreshold)operations	P\ scales 2 ^j j=1,2,3 PL\ - MT\-	Underwater image (mine)	The suggested approach is straightforward and doable, and it performs better than (Robert, sobel, CNN, mult-scale with B- spline or Gaussian wavelet) methods. Also it has best noise resistance and edge continuity.	-

		IA	BLE 5. A survey of different metho	dologies base	u oli Fuzzy Logic	
Ref	year	TECHNIQUE\ Methodology	P (Parameters)\ PL (Programing language)\ MT (Performance Measurement tools)	Domain\ Data set	Recognition rate\ Result	Cons\ Future work
[33]	2014	Sobel + IT2FLS Optimization using Cuckoo behaviour (CU) and GA	P\inputs: DH and DV membership functions (mf):(LOW, MIDDLE, HIGH) output: (BACKGROUND and EDGES) and a lot of parameters using in CU and GA PL\ - MT\ Pratt's figure of merit (FOM)	Synthetic images	Detection results show that suggested method is an effective than (T1FLS (with and without optimization) and T2FLS, and Sobel methodology).	FutureworkUsingrealimagesandusingthisapproachinrealtimeapplication
[11]	2014	Sobel operator based GT2FLS	P\ - PL\ - MT\ FOM	Synthetic and reference images	The Sobel + GT2FLS method obtains better performance than Sobel + IT2FLS; while, Sobel + IT2FLS can improve the performance better than Sobel+ T1FLS.	-
[9]	2015	Fuzzy logic (FL)	P\ Shape of membership functions characterize using constants <i>a</i> , <i>b</i> and <i>c</i> PL\ - MT\ -	Medical MR images with 5% noisy density	The suggested method is more effective than (Sobel, Canny, and morphological) approaches for denoising and edge identification in medical images.	-
[34]	2016	Fuzzy Logic using (Sliding Window and Prepossessing Kernels) methods for feeding	P\sliding window of 2x2 or 3x3 Pre-processing kernel of 3x3 types. PL\ Matlab MT\-	640x480 image	Sliding Window Fuzzy System and Prepossessing Kernels Fuzzy System improve image edge detection, but Sliding Window reducing hardware performance.	-
[35]	2017	Fuzzy rule-based method with using of (Sobel mask and four-directional mask)	P\ - PL\ Matlab MT\-	Nine 720 × 540 LC images	Results show that the suggested fuzzy rule-based approach outperforms traditional approaches (Canny, HPF, Sobel). And edges found were clearly visible and many edge pixels were found.	_
[36]	2018	Fuzzy logic	P \ $3x3$ convolution mask, 16 fuzzy templates template characterize of pixels edge:- a = 0.3, $b = 0.8$ and 0 Hesitation constant $c = 1$ or c=0.2 Thresholding (T)=45 PL \ MATLAB MT \ Observation	Medical images (cell) Rice, Umaralm ukthar images	suggested method has a good visual look and makes it simpler to identify the image's edge. It has the ability to adaptive by changing (c) or (T)	Cons\ If there are more than 16 templates, the edge findings do not much improve, and if there are less templates, many edges will be missed.
[37]	2019	Type-1 Fuzzy Logic (T1FLS) + guided smoothening(shar pening + Gaussian filtering)	P \ input = M1, sharpening = M2, sharpening+ Gaussian filter= M3. Sharpening parameter= $r. \varepsilon. \gamma$ r = 16.32.64.128 $\varepsilon = 0.01$ or 0.001	Lena, tulip, animal alphabet images, Berkley	Compared to approach M1, the suggested methods M2 and M3 perform better. And the detected edges can be significantly improved by	-

TABLE 3. A survey of different methodologies based on Fuzzy Logic

	$(\gamma) = 5.10.20.30.$	Segmentat	carefully choosing	the	
	50.75.100	ion	smoothening values.		
	PL\ MATLAB	Database	C		
	MT \ FOM, SSIM, HoD, E_D ,	(BSD),			
	BDM, D_K , ρ	USC-SIPI			
		Database			

TABLE 4. A survey of different methodologies based on Genetic Algorithm

Ref	year	TECHNIQUE\	P (Parameters)\ PL	Domain\ Data	Recognition rate\ Result	Future
		Methodology	(Programing language)\ MT	set		work
			(Performance Measurement			
			tools)			
[38]	2015	Genetic Algorithm (GA)	 P\ 3 x 3 mask, population size is 20, Binary coding, 8 chromosomes, Population size: 20 bit, Selection: Stochastic uniform, Crossover: Scattered, Mutation: Gaussian PL\ MATLAB, Genetic Programming toolbox MT\ std 	One image	convergence in edge detection when chromosomes and generations are >= 8. GAs offer intelligent edge detection, utilizing local texture features and maximizing edge regions.	-
[39]	2017	Fractional edge detection enhancement using GA	P\ v=0.2, noise density=0.02 PL\ MATLAB MT\PSNR, BER,	MRI brain images	GA-based fractional edge detection outperforms classical approaches, GA Fractional Mask1 showing the highest PSNR and less BER .	Using hybrid soft computin g strategies to improve medical imaging performa nce for early diagnosis
[40]	2018	Threshold optimization based on GA for fractional masks edge detection algorithms	 P\ two table for each algorithm illustrate the parameters, noise density=0.02 PL\ MATLAB MT\PSNR, BER, execution time 	Different types of MRI and x-ray Images	Optimization technique based on fractional edge detection outperforms fractional edge detection due to ideal threshold values for various image types.	 a- using soft computin g for calculati ng crack, radiograp hic images depth and intensity. b- Using hybrid techniqu es for getting optimal threshold performa nce.

[41]	2020	Developing	P \ 3x3 window, Survivor pool:	Various	Proposed strategy produced	-
		Cellular Automata	20% best survivor, 80%	images in	positive outcomes by utilizing	
		Develop by GA	random survivor, Population	various	2-point crossover and	
			JSON: 9 bit Binary window	dimensions	mutation type 1, with	
			rule, Parent pool: 20% Elite,		execution time varying based	
			20% random, Crossover: 1		on image array dimensions,	
			point and 2- point, Mutation =		and average fitness improving	
			type 1 and 2		with each generation.	
			PL\ -		5	
			MT\			
[42]	2020	improving edge	P \ k1 = 0.01 and k2 = 0.03	Lena image,	The proposed method	-
		detection based on	PL \ -	MR scan	achieves 99.09% accuracy in	
		GA	MT\FOM, SSIM, MSE, PSNR,	image	detecting brain tumours,	
			Correlation, Mean, STD,	_	outperforming classical	
			Variance, and Entropy		methods, fractional, and	
					threshold-optimized	
					methods.	
[43]	2023	adaptive threshold	P $k1.k2.k3$ and $f4.f5.f6$	Person image	Modified algorithm produced	-
		Sobel based on GA	are between 0 and 1, adaptive		stronger edge continuity and	
			threshold is 118, 143, 88 for		improves detection and	
			each example		applicability compared to	
			PL \ -		conventional Sobel.	
			MT\-			

TABLE 5. A survey of different methodologies based on Artificial Neural Network

Ref	year	TECHNI	P (Parameters)\ PL (Programing language)\ MT	Domain\ Data set	Recognition rate\ Result\ Cons
		QUE\	(Performance Measurement tools)		
		Methodol			
		ogy			
[44]	2015	HED	P\ size of mini-batch =10, learning rate (1e)= 6,	Berkeley	The proposed approach has
			loss-weight =1, momentum=0.9, nested filters= 0,	Segmentation	score (ODS= 0.782) for BSD500
			fusion layer weights= 1/5, weight decay= 0.0002,	Dataset and	dataset and score (ODS= 0.746)
			no. of training iterations = (10,000; divide le by 10	Benchmark	for the NYU Depth dataset at a
			after 5,000).	(BSDS500) and the	speed (0.4s per image) that is
			PL \ -	NYU Depth dataset	quicker than other recent CNN
			MT\ ODS,OIS, AP, FPS	-	techniques.
[45]	2016	LVQNN	P\ no. of layers: 3 layers.	RGB image with	LVQNN improves classification
			input and competition layer relationship: fully	size 400×300.	speed, accuracy, and robustness,
			connected.		enhancing clear edge images
			Competition and output layer relationship:		with clear denoising effects
			partially connected, weight value: 1.		compared to traditional
			Training: 300 edge and 300 non-edge points		methods.
			selected randomly, max training step: 300, min		
			training error :0.001		
			le $\alpha = 0.01 \sim 0.9$		
			Others: $C: 3 \times 3. \theta: 0. \pi/4. \pi/2. 3\pi/4$, noise		
			density: 0.05.		
			PL\ MATLAB		
			MT\-		
[46]	2019	RCF-	P\ stage 1-5 weights conv layers of 1 × 1: 0.01std,	Berkeley	the RCF version has achieved
		ResNet10	biases:0, fusion stage weights conv layer of the 1 ×	Segmentation	an ODS=0.806 while
		1-MS	1: 0.2, mini-batch =10 random images in each	Dataset and	maintaining a quick frame rate=
			iteration, le= 6; divided by 10 after every 10k	Benchmark	30 FPS. Additionally, so it
			iteration, momentum =0.9, weight decay = 0.0002,	(BSDS500)	faster than other state-of-the-
			SGD run: 40k iterations		art performance.
			PL \ Caffe framework		
			MT\ ODS,OIS, FPS		

[47]	2021	New	P\ no. of conv layers= 19 MaxPooling layers= 4,	Berkeley	proposed technique
		VGG16-	ConvTransposed layer= 6, feature Map Pooling= 2,	Segmentation	outperforms other VGG16-
		based	loss function= 6, blocks= 11.	Dataset and	based edge detection techniques
		DCNN	mini-batch size=10. weight decay =0.0002. le =	Benchmark	and offer superior performance
		and using	0.0001 . size of the training images = 320×480 ,	(BSDS500), NYU	while maintaining low
		RHN	480×480, and 500×500	Depth (NYUD), and	complexity.
			PL\ -	Multicue datasets.	
			MT\ODS,OIS, FPS, PFOM		
[48]	2022	DF-CNN	P\ ResNet101:- conv kernel size is 7 × 7, 1 × 1, 3×3.	BSDS500, PASCAL,	The proposed edge detector
		Based on	MaxPooling layers: 1 size 3×3	and NYUD. datasets	outperforms earlier methods.
		(RCF and	DF:-		This model generates superior
		HED) and	kernel size of conv1,2 layers: 3×3 and 128 come		edge images and a
		by using	next ReLU. conv3 layer is 3×3 and 1 come next		corresponding distance field
		ResNet10	sigmoid. probability threshold= 0.25,		map
		1	$\gamma = 0.5$, le =2, weight decay =0.9 and 0.0005,		Cons \ the speed is little slower
			train :30 epochs, $\lambda = 1.2$		than RCF
			PL\ -		
			MT\ ODS,OIS, FPS		

V. CONCLUSION

Edge detection is the initial step in the process of recognizing an image. The edge detection approaches in this study have been organized into traditional and soft computing approaches. Some types that fall under each approach have been reviewed. the accuracy of detection the right edge even under noise and minimization the time consuming in this process in efficient way is the main problem for all these methods. From all of these reviews in tables from 1 to 5, we can say that each approaches can apply to specific domain and under specific design and parameters. But we can say that from the classical approaches, only canny and improved canny detectors produce good accuracy even in the presence of noise than other classical operators but its main problem is in the execution time. the other approaches like (DoG, Multi-scale feature, Structured learning) also proved good results compared to classical approaches, but some of them have cons in time or false detection. While soft computing approaches like (Fuzzy, GA, Neural network), especially ANN shows superior results than all traditional approaches.

VI. REFERENCES

 I. K. Ajlan, A. A. Daleh Al-magsoos and H. G. Murad, "A Comparative Study of Edge Detection Techniques in Digital," Journal of Mechanical Engineering Research and Developments, vol. 44, pp. 109-119, 2021.

- J. Jing, S. Liu, G. Wang, W. Zhang and C. Sun, "Recent advances on image edge detection: A comprehensive review," Neurocomputing, vol. 503, pp. 259-271, 7 September 2022.
- [3]. A. Dr. S.Vijayarani, "A Performance Comparison of Edge Detection Techniques for Printed and Handwritten," International Journal of Innovative Research in Computer, vol. 4, no. 5, pp. 8327-8337, May 2016.
- [4]. D. S.Lakshmi, "A study of Edge Detection Techniques for Segmentation," International Journal of Computer Applications (IJCA), Special Issue on CASCT, pp. 35-41, 20 August 2010.
- [5]. S. Kaur and I. Singh, "Comparison between Edge Detection Techniques," International Journal of Computer Applications, vol. 145, no. 15, pp. 15-18, July 2016.
- [6]. S.Lakshmi and Dr.V.Sankaranarayanan, "A study of Edge Detection Techniques for Segmentation Computing Approaches," International Journal of Computer Applications. CASCT., pp. 35-41, 08 2010.
- [7]. G. M. H. Amer and A. M. Abushaala, "Edge Detection Methods," in 2015 2nd World

Symposium on Web Applications and Networking (WSWAN), 2015.

- [8]. S. Rui, L. Tao, C. Qi, W. Zexuan, D. Xiaogang, Z. Weiqiang and N. A. K, "Survey of Image Edge Detection," Frontiers in Signal Processing, vol. 2, pp. 1-13, 09 March 2022.
- [9]. J.Mehena and M. C. Adhikary, "Medical Image Edge Detection Based on Soft Computing Approach," International Journal of Innovative Research in Computer and Communication Engineering, vol. 3, no. 7, pp. 6801- 6807, July 2015.
- [10]. N. S. Dagar and P. K. Dahiya, "Soft Computing Techniques for Edge Detection Problem: A stateof-the-art Review," International Journal of Computer Applications, vol. 136, no. 12, pp. 28-34, February 2016.
- [11]. C. I. Gonzalez, P. Melin, J. R. Castro, O. Mendoza and O. Castillo, "An improved sobel edge detection method based on generalized type-2 fuzzy logic," Soft Computing, vol. 20, pp. 1-12, 2014.
- [12]. M. A. Albadr , S. Tiun, M. Ayob and F. AL-Dhief , "Genetic Algorithm Based on Natural Selection Theory for Optimization Problems," Symmetry, vol. 12, pp. 1-31, 10 2020.
- [13]. N. S. Dagar and P. K. Dahiya, "Edge Detection of Different Images using Soft Computing Techniques," International Journal of Recent Technology and Engineering (IJRTE), vol. 8, no. 2, pp. 222-226, July 2019.
- [14]. Muthukrishnan.R and M.Radha, "EDGE DETECTION TECHNIQUES FOR IMAGE SEGMENTATION," International Journal of Computer Science & Information Technology (IJCSIT), vol. 3, no. 6, pp. 259-267, December 2011.
- [15]. Dr.S.Vijayarani and Mrs.M.Vinupriya,
 "Performance Analysis of Canny and Sobel Edge Detection Algorithms in Image Mining," International Journal of Innovative Research in

Computer and Communication Engineering, vol. 1, no. 8, pp. 1760-1767, October 2013.

- [16]. D. Poobathy and R. M. Chezian, "Edge Detection Operators: Peak Signal to Noise Ratio Based Comparison," International Journal of Image, Graphics and Signal Processing, vol. 6, no. 10, pp. 55-61, September 2014.
- [17]. A. Sharma and S. Jaswal, "Analysis of Sobel Edge Detection Technique for Face Recognition," International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), vol. 4, no. 5, pp. 2450-2453, May 2015.
- [18]. M. A. Ansari, D. Kurchaniya and M. Dixit, "A Comprehensive Analysis of Image Edge Detection Techniques," International Journal of Multimedia and Ubiquitous Engineering, vol. 12, no. 11, pp. 1-12, 2017.
- [19]. A. S. AHMED, "COMPARATIVE STUDY AMONG SOBEL, PREWITT AND CANNY EDGE DETECTION OPERATORS USED IN IMAGE PROCESSING," Journal of Theoretical and Applied Information Technology, vol. 96, no. 19, pp. 6517-6525, 2018.
- [20]. A. K. M. Baareh, A. Al-Jarrah, A. M. Smadi and G. H. Shakah, "Performance Evaluation of Edge Detection Using Sobel, Homogeneity and Prewitt Algorithms," Journal of Software Engineering and Applications, vol. 11, no. 11, pp. 537-551, 30 Nov 2018.
- [21]. Y. Changhong, Z. Xiong and X. Jiali, "A Novel Edge Detection Algorithm Based on Distance," Journal of Physics: Conference Series, vol. 1237, no. 2, pp. 1-7, 2019.
- [22]. V. BOGDAN, C. Bonchiş and C. ORHEI, "Custom Dilated Edge Detection Filters," Journal of WSCG, vol. 28, pp. 161-168, 01 2020.
- [23]. B. K. Shah, V. Kedia, R. Raut, S. Ansari and A. Shroff, "Evaluation and Comparative Study of Edge Detection Techniques," IOSR Journal of Computer Engineering (IOSR-JCE), vol. 22, no. 5, pp. 6-15, 2020.

- [24]. L. Guo and S. Wu, "FPGA Implementation of a Real-Time Edge Detection System Based on an Improved Canny Algorithm," Applied Sciences, vol. 13, pp. 1-17, 2023.
- [25]. L. Assirati, N. Rosa, L. Berton, A. Lopes and O. Bruno, "Performing edge detection by Difference of Gaussians using q-Gaussian kernels. Journal of Physics Conference Series," Journal of Physics Conference Series, vol. 490, 11 2013.
- [26]. P. Dollar and C. L. Zitnic, "Fast Edge Detection Using Structured Forests," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 8, pp. 1558-1570, 2014.
- [27]. Y. Wu and X. Meng, "An Algorithm of Image Edge Detection Based on Wavelet Transform," in 6th International Conference on Machinery, Materials, Environment, Biotechnology and Computer (MMEBC 2016), 2016.
- [28]. Y. Chen, Y. Li and Y. Zhao, "Sub-pixel detection algorithm based on cubic B-spline curve and multi-scale adaptive wavelet transform," Optik -International Journal for Light and Electron Optics, vol. 127, no. 1, pp. 11-14, 2016.
- [29]. S. Guiming and S. Jidong, "Multi-scale Harris Corner Detection Algorithm Based on Canny Edge-Detection," in 2018 IEEE International Conference on Computer and Communication Engineering Technology (CCET), Beijing, China, 2018.
- [30]. H. A. E.-F. El-Sennary, M. E. Hussien and A. E.-M. A. Ali, "Edge Detection of an Image Based on Extended Difference of Gaussian," American Journal of Computer Science and Technology, vol. 2, no. 3, pp. 35-47, 20 December 2019.
- [31]. F. Meng, Z. Qi, Z. Chen, B. Wang and Y. Shi, "Token based crack detection," Journal of Intelligent & Fuzzy Systems, vol. 38, pp. 1-13, 2019.
- [32]. S. Xia and M. Li, "A novel image edge detection algorithm based on Multi-scale Hybrid Wavelet Transform," in International Conference on Neural Networks, Information, and

Communication Engineering (NNICE 2022), Qingdao, China, 2022.

- [33]. C. I. Gonzalez, P. Melin, J. R. Castro, O. Castillo and O. Mendoza, "Optimization of interval type-2 fuzzy systems for image edge detection," Applied Soft Computing, vol. 47, pp. 1-13, 2014.
- [34]. E. Anas, "Edge Detection Techniques Using Fuzzy Logic," in 2016 3rd International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 2016.
- [35]. B. Choi, S. Kang, K. Jun and J. Cho, "Rule-based soft computing for edge detection," Multimedia Tools and Applications, vol. 76, p. 24819–24831, 2017.
- [36]. A. M. Alawad, F. D. Abdul Rahman, O. O. Khalifa and N. Abdul Malek, "Fuzzy Logic based Edge Detection Method for Image Processing," International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 3, pp. 1863-1869, June 2018.
- [37]. S. Raheja and A. Kumar, "Edge detection based on type 1 fuzzy logic and guided smoothening," Evolving Systems, vol. 12, p. 447–462, 09 October 2019.
- [38]. R. M. Naife and H. H. Abass, "OPTIMAL EDGE DETECTION FILTER USING GENETIC," Journal of Kerbala University, vol. 13, no. 1, pp. 149-160, 2015.
- [39]. W. S. ElAraby, A. H. Madian, M. A. Ashour, I. Farag and M. Nassef, "Fractional Edge Detection based on Genetic Algorithm," in 2017 29th International Conference on Microelectronics (ICM), Beirut, 2017.
- [40]. W. S. E. Araby, A. H. Madian and M. A. Ashour, "Radiographic Images Fractional Edge Detection Based on Genetic Algorithm," International Journal of Intelligent Engineering and Systems, vol. 11, no. 4, pp. 158-166, 2018.
- [41]. K. Nayak, "Using Genetic Algorithm To Evolve Cellular Automata In Performing Edge Detection," arXiv preprint arXiv:2005.06142, pp. 1-5, 2020.

- [42]. A. H. ABDEL-GAWAD, L. A. SAID and A. G. RADWAN, "Optimized Edge Detection Technique for Brain Tumor Detection in MR Images," in IEEE Access, vol. 8, pp. 136243-136259, 2020.
- [43]. W. Kong, J. Chen, Y. Song, Z. Fang, X. Yang and H. Zhang, "Sobel Edge Detection Algorithm with Adaptive Threshold based on Improved Genetic Algorithm for Image Processing," (IJACSA) International Journal of Advanced Computer Science and Applications, vol. 14, no. 2, pp. 557-562, 2023.
- [44]. S. Xie and Z. Tu, "Holistically-Nested Edge Detection," in 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015.
- [45]. X. Li and Y. Zhang, "Digital image edge detection based on LVQ neural network," in 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, China, 2016.
- [46]. Y. Liu, M.-M. Cheng, X. Hu, J.-W. Bian, L. Zhang, X. Bai and J. Tang, "Richer Convolutional Features for Edge Detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 8, pp. 1939-1946, 1 Aug 2019.
- [47]. A. AL-AMAREN, M. O. AHMAD and M. N. S. SWAMY, "RHN: A Residual Holistic Neural Network for Edge Detection," IEEE Access, vol. 9, pp. 74646-74658, 2021.
- [48]. D. Hu, H. Yang and X. Hou, "Distance Field-Based Convolutional Neural Network for Edge Detection," Hindawi, vol. 2022, pp. 1-10, 3 March 2022.

Cite this article as :

Saja Hikmat Dawood, "A Survey on Various Approaches for Edge Detection", International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Online ISSN : 2394-4099, Print ISSN : 2395-1990, Volume 10 Issue 4, pp. 27-41, July-August 2023. Available at doi : https://doi.org/10.32628/IJSRSET23103142 Journal URL : https://ijsrset.com/IJSRSET23103142

