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 In order to effectively reduce poverty, it is essential to measure and follow 

support initiatives over time in order to focus aid efforts and inform policy 

choices. However, gathering such data requires a lot of time and effort, thus 

coverage of places plagued by poverty is frequently scant or nonexistent. 

Previous studies have demonstrated the viability of using remote sensing 

techniques to measure poverty levels. Particularly, convolutional neural 

network processing of satellite pictures has demonstrated potential in 

forecasting the intensity of nocturnal lights, which may then be used to 

determine the underlying poverty level. By figuring out ways to gauge 

changes in poverty levels over time using the same kind of readily accessible 

data, this initiative aims to build on earlier research. We are able to confirm 

the initial findings of the single-point poverty prediction. To meaningfully 

anticipate temporal poverty, further work is still required. In order to find 

interventions for projects to reduce poverty and equitably allocate resources, 

it is essential to ascertain the levels of poverty in different regions of the 

world. However, it is difficult to find accurate information on global 

economic conditions, particularly for regions in the developing world. This 

hinders efforts to both implement services and monitor/evaluate success. The 

goal of this research is to use satellite imagery to identify economic activity 

and, as a result, gauge the level of poverty in a certain area.  A recurrent neural 

network is trained to understand several development characteristics, such as 

the type of rooftop, the illumination source, the distance from water sources, 

agricultural areas, and industrial areas. 
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I. INTRODUCTION 

 

1.1 What is Machine Learning? 

A system of computer algorithms known as "machine 

learning" is capable of learning from experience and 

improving itself without having explicit programming. 

Artificial intelligence includes machine learning, 

which uses statistical methods and data to predict an 

outcome that can be utilised to generate actionable 

insights. The innovation is based on the notion that a 

machine can create accurate results just by learning 

from the data (i.e., examples). Data mining and 

Bayesian predictive modelling are strongly related to 

machine learning. The computer takes data as input 

and generates answers using an algorithm. Making 

recommendations is a common machine learning 

problem. All Netflix recommendations for users who 

have an account are based on the user's prior viewing 

history. Unsupervised learning is being used by tech 

companies to enhance user experience with 

personalised recommendations. Another use of 

machine learning is to automate operations like fraud 

detection, predictive maintenance, portfolio 

optimisation, and so forth. 

 

1.2 How is machine learning implemented? 

The brain of machine learning is where all learning 

occurs. The way a machine learns is comparable to 

how a person learns. Experience is how people learn. 

The easier it is to forecast, the more we know. By 

analogy, our chances of success are lower than they 

would be in a known situation when we encounter one. 

Machines receive the same training. The computer 

observes an example in order to create a precise 

prediction. The machine is capable of predicting the 

result when we provide a comparable case. However, 

just like a human, the machine has trouble predicting 

if it is given a new example. Learning and inference are 

at the heart of machine learning. The first way the 

machine learns is by identifying patterns. The data 

allowed for this finding to be made. The data scientist's 

ability to carefully select the data to give the computer 

is one of their most important skills. A feature vector 

is a set of attributes that is used to solve an issue. A 

feature vector can be thought of as a subset of data that 

is utilised to solve a problem. The machine simplifies 

reality using some sophisticated algorithms, turning 

this discovery into a model. For instance, the machine 

is attempting to comprehend the connection between 

a person's pay and their likelihood of dining at a posh 

restaurant. It turns out that the computer detects a 

favourable correlation between income and dining at a 

fine restaurant: Here is the example. 

 
Figure 1.1  Working of ML 

 

1.3 Supervised learning 

An algorithm learns the link between given inputs and 

a particular output using training data and feedback 

from humans. For instance, a practitioner can forecast 

can sales using input data such as marketing expenses 

and weather predictions. 

When the output data is known, supervised learning is 

an option. New data will be predicted by the 

programme. 

Two types of supervised learning exist: 

• Classification and regression exercises 

1.4 Classification 

Imagine you need to determine a customer's gender for 

a commercial. You'll begin pulling information from 

your customer database about their height, weight, 

occupation, salary, basket of purchases, etc. You are 

aware of each customer's gender, which can only be 

either male or female. Assigning a likelihood of being 

male or female (i.e., the label) based on the data (i.e., 

the attributes you have gathered) is the classifier's goal. 

You can use fresh data to predict once the model 

learned to distinguish between male and female. 
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1.5 Regression 

The task is a regression when the output is a 

continuous value. For instance, a financial analyst can 

be required to predict the value of a stock based on a 

variety of factors, such as equity, past stock 

performance, and macroeconomics index. The system 

will undergo training to calculate stock prices with the 

least amount of error. 

 

1.6 Artificial intelligence 

AI's branch of machine learning. AI as a subfield of 

Machine Learning, or AI as a subfield of Machine 

Learning Machine learning is a field of study that 

developed from the search for artificial intelligence. 

Some academics were intrigued by the idea of letting 

computers learn from data in the early stages of AI as 

an academic field. They made an effort to approach the 

issue using a variety of symbolic techniques as well as 

what were at the time referred to as "neural networks"; 

these were mostly perceptrons and other models that 

were subsequently discovered to be reimaginings of 

the generalised linear models of statistics. Additionally, 

probabilistic reasoning was used, particularly for 

automated medical diagnosis.   

 

1.7 Data mining 

While machine learning concentrates on making 

predictions based on known properties learned from 

the training data, data mining concentrates on finding 

(previously unknown) properties in the data (this is the 

analysis step of knowledge discovery in databases). 

Machine learning and data mining frequently use the 

same methods and have a lot in common. In contrast, 

machine learning also uses data mining techniques as 

"unsupervised learning" or as a preprocessing step to 

increase learner accuracy. Data mining employs a 

variety of machine learning techniques, albeit with 

distinct purposes. Much of the misunderstanding 

between these two research communities—which 

frequently have separate conferences and journals, 

with ECML PKDD being a notable exception—results 

from the fundamental presumptions they operate 

under. For example, performance in machine learning 

is typically measured in terms of its capacity to 

replicate existing knowledge, whereas in knowledge 

discovery and data mining (KDD), the main objective 

is the discovery of previously undiscovered knowledge. 

 

1.8 Artificial Nueral Networks 

Similar to the extensive network of neurons in the 

brain, an artificial neural network is made up of 

interconnected groups of nodes. Each circular node in 

this diagram represents an artificial neuron, and each 

arrow shows how one artificial neuron's output 

connects to another's input. Computer systems called 

artificial neural networks (ANNs), also known as 

connectionist systems, are loosely modelled after the 

organic neural networks that make up animal brains. 

Such systems "learn" to execute tasks by taking into 

account examples, typically without having any task-

specific rules written into them. A model known as an 

ANN is based on a set of interconnected "artificial 

neurons" that are meant to approximate the neurons in 

a biological brain. A "signal" can be sent from one 

artificial neuron to another through each link, just like 

synapses in a human brain. After processing a signal, 

an artificial neuron can signal other artificial neurons 

that are connected to it. 

 

1.9 Decision trees 

To move from observations about an item (shown in 

the branches) to inferences about the item's target 

value (expressed in the leaves), decision tree learning 

employs a decision tree as a predictive model. It is a 

technique for predictive modelling that is used in data 

mining, statistics, and machine learning. Classification 

trees are tree models where the target variable can take 

a discrete range of values. In these tree structures, the 

leaves correspond to class labels and the branches to 

the attributes that combine to form those class labels. 
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II. SYSTEM ANALYSIS 

2.1 Existing system 

• Currently, a variety of charitable 

organisations, including the World Bank, 

formally quantify poverty.  

• Because on-the-ground surveys are expensive, 

there are a number of factors contributing to 

the lack of statistics on poverty in the 

developing world. 

• The nation only becomes aware of where it 

stands in terms of income levels after this step. 

2.2 Disadvantages of existing system 

• The present issue in this field is the length of 

time it takes for agencies all around the world 

to anticipate income levels.   

• Once completed, this subject is not brought up 

again until the subsequent decennial census.   

• These kinds of undertakings not only need a 

significant amount of time, but also startling 

sums of money.For organisations and 

governments all across the world, this is a 

major headache. 

2.3 Proposed system 

More specifically, daylight and nighttime satellite 

images of regions can be utilised to estimate poverty in 

some places. Recent developments in deep learning 

give an interesting prospect for application to poverty 

prediction. 

• Recent advances in a variety of computer vision 

tasks, including picture classification, 

segmentation, and object recognition, are largely 

due to deep learning.In this study, we investigate 

the claim that deep learning can effectively use 

satellite data to forecast a region's level of poverty.  

• We compile a dataset of 88,386 photos from 

44,193 cities in the Caribbean, Africa, South 

America, Asia, and Europe.  

• We get a daylight and nighttime satellite image as 

well as the city's wealth index for each city. 

• Afterwards, I train recurrent neural networks 

(RNNs) to forecast a city's wealth index using a 

satellite image.  

III. IMPLEMENTATION 

MODULES 

❖ Data Collection  

❖ Dataset  

❖ Data Preparation  

❖ Model Selection  

❖ Analyze and Prediction  

❖ Accuracy on test set 

❖ Saving the Trained Model 

3.1 Data Collection 

This marks the beginning of the actual process of 

building a machine learning model and gathering data. 

This is a crucial phase since how well the model 

performs will be influenced by how much more and 

better data we can collect. Data collection methods 

include web scraping, manual interventions, and 

others. Comparison of Machine Learning Methods for 

Poverty Prediction obtained from kaggle and another 

source, hotspots. 

 

3.2 Dataset 

There are 821 distinct data points in the dataset. The 

dataset contains 27 columns, each of which is detailed 

below. 

STATE: An Indian state 

DISTRICT: A district in the Indian state. 

Year: 2001-2018 

Overall Poverty Total amount of poverty rate 

 

3.3 Data Preparation 

We'll change the data. by eliminating any missing data 

and some columns. The column names that we want to 

keep or retain will first be listed. After that, we drop or 

eliminate all columns save for the ones we wish to keep. 

Finally, we eliminate or remove the rows from the data 

collection that contain missing values. 
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3.4 Model Selection 

Two datasets are required when building a machine 

learning model: one for training and the other for 

testing. But there is only one left now. Let's divide this 

in two according to an 80:20 ratio. The dataframe will 

also be split into a feature column and a label column. 

We imported the sklearn train_test_split function here. 

Use it to divide the dataset after that. Additionally, 

test_size = 0.2 divides the dataset into two parts: 20% 

for the test and 80% for the train. 

 

3.5 Analyze and Prediction 

We only selected 3 features from the actual dataset: 

 STATE: An Indian state 

DISTRICT: A district in the Indian state. 

Year: 2001-2018 

Precision on the test set: 

On the test set, we achieved accuracy of 95.1%, 97.1%, 

98.1%, and 96.5%. 

 
Figure 3.5  Software output 

 

3.6 Saving the trained model 

The first thing to do is store your trained and tested 

model into a.h5 or.pkl file using a library like pickle 

once you're ready to use it in a production-ready 

setting. Verify that Pickle is set up in your 

environment. The model will now be imported into 

the module and dumped as a.pkl file. 

 

 

 

IV. SYSTEM REQUIREMENTS 

 

4.1 Hardware Requirements 

• System   : Pentium IV 2.4 GHz. 

• Hard Disk         : 40 GB. 

• Floppy Drive : 1.44 Mb. 

• Monitor  : 15 VGA Colour. 

• Mouse  : Logitech. 

• Ram   : 512 Mb. 

 

4.2 Software Requirements 

➢ Operating system   :  Windows . 

➢ Coding Language  : Python 

➢ Database   : MYSQL 

 

V. CONCLUSION 

 

• This project's objective was to investigate a novel 

method of predicting poverty using both daytime 

and nighttime satellite photos.  

• Although there is more work to be done, we 

believe that our research can serve as a foundation 

and demonstrate the promise of poverty 

prediction.  

• The first step in reducing poverty is to identify its 

hotspots, and I think my work has helped with 

that. 
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