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 To support the weak human lungs with supply of continuous airway 

pressure in respiratory system throughout the time when patient is on life-

support is quite a daunting and people-driven job. To reduce the stress on 

few doctors and nurses of saving innumerable lives in the time when the 

world is grappling with Covid-19 and its new deadly variants after every 

six months. In order to save patients life developing automated ventilation 

system is the need of the hour. We collected data from several simulations 

of test lung under different conditions. After preprocessing this dataset 

using NLP, cross-validation of train and test set. A range of different 

Machine Learning and Deep Neural Network Models are tried as they can 

better generalize across lungs with varying characteristics, we scored these 

models against several evaluation metrics such as MAE, MSE, RMSE. 

Lastly, we selected best model to predict the target pressure in the 

respiratory circuit. Through exhaustive clinical tests and accurate medical 

advice, it is practically possible to bring these results into practical 

application in future. 
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I. INTRODUCTION 

 

A patient enters a hospital who has trouble in 

breathing - a patient of COVID 19. The world saw a 

substantial increase in Covid-19 cases which in turn 

calls attention to quickly- deployable and cost-

effective breathing machines to treat such respiratory 

ailments. Consequently, it caused a sudden rise of 

terminally ill patients, who require ventilation support. 

As mechanical ventilation is a clinically intensive 

process, one of the constraints that was faced during 

the early stage of COVID 19. Advancing any new 

methods for the control of mechanical ventilators is 

exorbitantly costly. Top notch simulators could 

diminish this obstruction. Each model of the current 

simulators simulates a sole lung setting. Simulators 

being used are prepared like an ensemble. For 

understanding the differences present in patients’ 
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lungs, an approach with suitable parameters should be 

explored, as the lungs and their characteristics model a 

steady form. Different settings of mechanical 

ventilator are chosen relying upon the patient’s lung 

state, and the determination of those boundaries relies 

upon the noticed patient’s reaction and knowledge of 

the clinicians that are in question. 

 

Essentially, this is not a usual time-series problem. 

Here we use values of different collections to predict 

the values of other series. 

 

Fig. 1. A typical breath cycle 

 

Great prediction models are constantly beneficial in 

additional developing setting exactness, decreasing 

treatment blunders, and fast weaning patients off of 

the ventilator support to help physicians with this 

dynamic interaction. It is important to note that 

positive mechanical breathing gives patients outside 

assistance till their health improves and they can 

reconcile with their devices. Volume and pressure 

control are the most frequent methods of mechanical 

ventilation. This is not the case with isometric tidal 

volume. Because of reduced compliance and aggressive 

exhalation in volume- controlled ventilation, the 

system may amplify the risk related to lung injury by 

adjusting pressure of the inspiratory flow and 

waveform features. Current mechanical ventilators 

enable doctors to modify a broad variety of parameters, 

including the mode and intensity of activity, to fit the 

patient’s needs. It is important to know how many 

obligatory breaths a patient must take and how many 

extra breaths he or she may take if he or she chooses to 

do so. The amount of oxygen that is delivered into the 

body may be regulated from room air (21 percent 

oxygen) to 100%. To set the PCV air pressure that will 

be given to the patient, the SetP parameter may be 

utilized. All airway pressures, namely PEEP and SetP, 

are added together to calculate the peak inspiratory 

pressure (PIP). To avoid alveolar collapse between 

breaths, the ventilator may supply a continuous 

positive end-expiratory pressure (PEEP). It’ll assist 

with conquering the expense barrier and growing new 

techniques for controlling mechanical ventilators. 

 

Objective 

 

The aim of this paper is to forecast the pressure within 

a mechanical lung at any given time step based on how 

much the inspiratory solenoid valve (u in; a number 

between 0 and 100) is opened. The purpose is to imitate 

a ventilator which is connected to a sedated patient’s 

lung while accounting for lung properties such as 

compliance and resistance. 

 

II. RELATED WORK 

 

Over the past few years many traditional mechanical 

venti- lators prediction systems were introduced but 

they missed out on the expensive new developed 

methods and correct pressure as they were manually 

adjusted by a clinician. Previously a machine learning 

model based on ANN and optimization was trained 

with input/output data; it was used to predict 

mechanical ventilation parameters using the inverse 

mapping approach. [2] The unique GPSO approach 

was employed as an optimizer in inverse mapping 

computations. Extensive simulations were done to 

evaluate the GPSO’s behavior in the feedback loop and 

to enhance the model’s performance [3]. 

Mechanical ventilator settings were estimated using a 

ma- chine learning model based on ANN and 

optimization. After the ANN was trained with 
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input/output data, it was used to predict mechanical 

ventilation parameters using the inverse mapping 

approach. [2] The unique GPSO approach was 

employed as an optimizer in inverse mapping 

computations. Extensive simulations were done to 

evaluate the GPSO’s behaviour in the feedback loop 

and to enhance the model’s performance [4]. 

An AI model dependent on ANN and advancement 

was worked to assess mechanical ventilator boundaries. 

The pre- pared organizations were used to appraise 

mechanical ventila- tion boundaries utilizing the 

backwards planning procedure after the ANN was 

prepared with input/yield information. 

[2] In reverse planning calculations, a one of a kind 

GPSO technique was utilized as an enhancer. To 

survey the conduct of the GPSO utilized in the input 

circle and to work on the model’s exhibition, broad 

recreations were run [4]. Prediction for mechanical 

ventilation (MV) in hospitalised patients, including 

those with COVID-19, was done using generally 

accessible data from electronic health records, 

including the VentNet algorithm versus ROX and a 

logistic regression model that incorporated clinical 

factors. The algorithm’s performance was evaluated 

based on its AUC, sensitivity, specificity, and positive 

predictive value (PPV). 

Utilizing regularly accessible information from 

electronic wellbeing records, a straightforward DL 

calculation was utilized to anticipate the future 

requirement for MV in hospital- ized patients, 

incorporating those with COVID-19, utilizing the 

VentNet calculation against the ROX and a strategic 

relapse model dependent on generally utilized clinical 

factors. The region under the beneficiary working 

trademark bend (AUC), affectability, particularity, and 

positive prescient worth were utilized to survey the 

calculation’s exhibition [3]. 

  

Kilkarni et al [5] By employing a well-known 

DenseNet121 deep learning architecture, an advanced 

model was constructed to predict the requirement for 

breathing using X-ray images three days in advance of 

the actual intubation incidence. 

Ming-YenLin et al.[10] used three Machine Learning 

mod- els XGBoost, logistic regression(LR), and random 

forest (RF) to create an explainable weaning prediction 

model for patients requiring prolonged mechanical 

ventilation (PMV). The study established that the 

accuracy of the XGBoost and RF in prediction of 

successful weaning was high. 

Researchers such as Yan Jia et al.[11] introduced 

Convolu- tion Neural Networks (CNN) for the 

prediction model in the coming hour for a given 

patient condition by using historical data from ICU 

which is extracted from MIMIC-III. The accuracy 

achieved was 86% by performing feature importance 

analysis for the CNN and interpreted the features by 

using the DeepLIFT method. Researchers like 

Schalekamp et al.[20] used multivariable logistic 

regression to build a risk model that took into account 

clinical, computed tomography (CT) scan, and 

laboratory data to predict severe illness (including 

invasive ventilation). 

DBNet[21], a unique deep learning system that 

employs a relational database as input with multiple 

tables. There is no information loss or transformation 

due to the model’s use of many tables from an EHR 

database. One layer of information that combines 

cross-sectional and longitudinal data utilising an 

integrated CNN-RNN encoder-decoder architecture 

that can handle varying durations of observations and 

several data modalities at the same time. 

 

III. PROPOSED METHODOLOGY 

 

Working to solve time-series forecasting problem by 

applying common machine learning methods and deep 

learning algorithms is not uncommon. As can be seen 

from the experimental results, generally deep learning 

approaches work better than traditional machine 

learning methods. Our project methodology revolves 

around some competent forecasting approaches such as 

LSTM and Bi-LSTM. All these sequential deep learning 
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models are nothing but subtypes of Recurrent Neural 

Networks (RNN). In case of sequential data like time- 

series data used here, data at time (t) depends on data 

at time (t-1). RNN being a feed forward neural network 

can easily remember what happened previously in 

sequential data which helps them in deriving 

correlations and patterns in the domain of predictive 

analytics. 

4.1 Machine Learning 

Linear Regression (LR): It is a renown supervised 

learning algorithm to perform regression tasks. It can 

also be defined as a statistical model which shows the 

relationship between two variables and forecasting 

with the linear equation. 

 

Random Forest (RF): It is a versatile algorithm as it can 

perform regression and classification tasks both. It is an 

ensemble of decision trees on varying samples. It has 

an important feature of handling continuous dataset 

variables in case of regression. 

  

K-Nearest Neighbour (kNN): It can also perform 

regression and classification tasks both. It calculates 

distance between two points in the dataset using 

similarity between attributes. 

Light Gradient Boosting Machine (LGBM): It is a 

variant of the gradient boosting frameworks. It is 

supposed to be distributed, fast and also high-

performance. It is based on the decision tree algorithm. 

 

4.2 Deep Neural Networks 

 

Multi-Layer Perceptron (MLP): This is a completely 

connected, feed forward neural network. This is a 

perceptron that attaches itself with several layers of 

additional perceptrons to solve numerous complex 

problems including time series data forecasting, 

recognition of gestures and prediction. 

LSTM: For a variety of learning issues involving 

sequential input, recurrent neural networks (RNN) 

with long short-term memory (LSTM) have emerged 

as an efficient and robust technique. Because they are 

broad and effective, they are excellent for capturing 

long-term temporal dependencies. 

Bi-directional LSTM: Bi-LSTM is known to train a 

network using both past and future data sequences as 

inputs. Two linked layers are used to process the input 

data. Bi-LSTM uses a finite sequence to forecast or tag 

the sequence of each element depending on the 

context of components in the past and future. 

 

4.3 Optimization of hyperparameter 

Adam Optimizer, a highly effective optimization 

algorithm, employed as an alternative to traditional 

gradient descent procedures for updation of weights in 

a neural network on the basis of training data. 

Parameters such as learning rate controls shifting of 

the rate of decays. 

 

IV. EXPERIMENTAL SETUP 

 

5.1 System Overview 

To obtain medical data and test experiments a IOT-

enabled system is developed by researchers and tech-

professionals in the laboratory conditions. A lot of data 

was generated from a modified open-source 

mechanical ventilator (PVP-The People’s Ventilator 

Project) [1] connected to an artificial test lung (Quick 

Test Lung) in a respiratory circuit. Artificial test lungs 

are more effective than the bladder-style test lung as 

they provide linear and predictable respiratory 

simulation. Pressure sensor records the amount of air 

absorbed and released by the test lung. This model 

helps in generation of dataset. A portion of this 

generated data for the use of medical and patient’s 

treatment, including mechanical breathing. 

The System software for the project is written in high- 

level Python (3.7) and even the hardware components 

are not medical-related devices but readily available 

components for instance specialized respiratory 

circuits and HEPA filters. In a real experimental set-up, 

an artificial bellow-style Lung along with a pressure 

analyzer is used for accurately testing the performance 

of mechanical ventilation in the presence of an open-
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source, low-cost pressure control ventilation system 

developed in Princeton Lab intended for research 

purpose only in response to shortage of trained-

professionals during Covid- 19 pandemic, to provide 

ventilation to patients mechanically who face trouble 

in regular breathing. In order to automate the 

ventilator, a control has been applied on air pressure in 

the ventilator in the Fig.2 mechanically so that it can 

respond accurately in different lung settings during the 

inspiratory phase in the human respiration. 

 

 
Fig. 2. Block Diagram of Mechanical Ventilator 

performing Simulation 

5.2 Dataset 

We performed our analysis on the research dataset 

launched by Google Brain in September 2021 on the 

kaggle platform. Ventilator Prediction dataset provides 

numerous time series of breaths and time series of 

control inputs of the mechanical ventilator data for 

training our time series models. It is a large- scale 

dataset with ventilator characteristics of multiple 

training samples where each sample is a time step in 

breath, giving two control signals, lung attributes and 

target airway pressure. Specifically, it is a time series 

data collected over a period as pressure data. Each time 

series represents approximately three seconds of a 

breath. The training set consists of 8 attributes of 

Ventilator, shown in the table I. In this ventilator-lung 

system, lung attributes are R and C and two control 

inputs each during inspiratory and expiratory phase in 

the given respiratory circuit. Here, our ‘Target’ is the 

dependent variable, which is nothing but a continuous 

variable, airway ‘Pressure’ during the inspiratory phase 

of the respiratory circuit. We are provided with csv file 

consisting of 7 attributes (except the ’Target’) as a test 

data. 

5.3 Exploratory Data Analysis 

This step helped us to derive extra meaningful 

information from this huge ventilator dataset for our 

analysis besides what is already given. A set of python 

libraries is utilized to interpret the dataset in a better 

manner using statistical, graphics and other data 

visualization methods. Fig. 3 shows the visualization of 

a sample breath for a particular breath id (Breath id: 1, 

R: 20, C:50) we can observe that first the target 

pressure is uprising and then, after it when the u out 

becomes equal to 1, pressure drops abruptly. 

A fairly balanced distribution of combinations of R and 

C data points is helpful in predicting each example in 

unknown 

  

TABLE I. DESCRIPTION OF THE DATASET 

 
Attributes Accepted 

Value 
Nature of 
Variable 

Description 

id 1 onwards Continuous Globally-unique    time    step 
identifier across an entire file 

breath id 0 to 2245 Continuous Globally-unique time step for 
breaths 

R [5,20,50] Categorical Represents   the    percentage 
of inspiratory solenoid valve 
open to let air into the 
lung(i.e., 0 is completely 
closed and no air is let in and 
100 is completely open). 

C [10,20,50] Categorical Represents       when        the 
exploratory valve is open(1) 
or closed(0) to let the air out 
of the respiratory circuit. 

time step Actual 
time 

stamps 

Continuous It represents amount of time 
the breath took. 

u in 0 to 100 Continuous The control input for the in- 
spiratory solenoid valve. 

u out 0 or 1 Categorical The control input for the ex- 
ploratory solenoid valve. 

pressure measured 
in cmH20 

Continuous The airway   pressure   mea- 
sured in the respiratory cir- 
cuit. 

 

 
Fig. 3. Sample breath for a particular breath id in the 

train set 
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Fig. 4. Distribution of R and C values in the train and 

test set 

 

Test data with equal probability. Fig. 4 shown above 

represents categorical variables such as R and C have 

identical distribution in train and test set. From the 

correlation matrix of features in Fig. 5, it is quite 

evident that, a moderately negative correlation exists 

between the target class ‘pressure’ and control input of 

exploratory solenoid valve ’u_out’, also ’u out shows 

high positive correlation with time. Comparatively, ’u 

in’ has a good positive correlation with ’pressure’ than 

with other attributes. 

 

 
Fig. 5. Pearson correlation of Features for the 

ventilator dataset 

 

 

5.4 Preprocessing and Feature Engineering 

We checked for any null or duplicate values in both 

test and train set and removed these examples when 

found. Before feeding this complex real-time data to 

the neural network, it is important to remove certain 

unexpected observations by normalization on rare 

instances of both test and train set using the transform 

method of robust scaler class in scikit-learn library. 

Compared to other normalizers, it removes median and 

scales of data using the range between quantiles. 

This was followed by feature engineering in which we 

selected few important features and and transformed 

them to generate additional attributes which could 

help in training the model. Here, for instance by 

grouping u in of a particular breath id. In that 

particular breath we can find the maximum amount of 

air inhaled (‘breath id u in max’), mean amount of air 

inhaled for a breath (‘breath id u in mean’) and also 

find out how much u in in each sample for a particular 

breath deviate from max u in value (‘breath id u in 

diffmax’) and from mean u in value (‘breath id u in 

diffmean’). 

 

5.5 Experimental Configuration of ML Models 

After feature engineering, we split the training and test 

set in the 7:3 ratio. We scaled the dataset by 

performing 5-fold cross- validation on this train set and 

test set. We used a collection of machine learning 

regressors here, such as Linear Regression, kNN, 

XGBoost, Light Gradient Boosted Machine and 

Random Forest. 

 

TABLE II. SCORING SUPERVISED MACHINE 

LEARNING MODELS 
Supervised ML 

Algorithms 
R-squared MAPE 

Linear Regression 0.380519 37.56524
5 

LightGBM Regression 0.443025 34.11582
0 

K-Nearest Neighbors 0.702278 22.11979
4 

XGBoost 0.434124 34.24519
0 

Random Forest 0.295020 36.80846
3 

 

5.6 Experimental Configuration of Neural Networks 

We constructed a bunch of DNN models based on 

MLP, LSTM with two hidden layers and Bi-LSTM with 

eight hidden layers. After this, these neural network 

models were trained for updation of weights to learn 
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the behavior of data, here, we tried to minimize the 

time taken to perform update using adam optimization 

algorithm where the parametric value for the learning 

rate equals to (1 x 10−3 for Bidirectional LSTM) and 

(0.5 x 10−3 for LSTM) models. 

 
Fig. 6. Network Architecture for our implemented Bi-

LSTM Model. For the architecture of our 

implemented LSTM Model just remove the Stacked 

LSTM layer. 

 

V.  Evaluation and Comparison of Results 

 

During the evaluation, we calculated training error loss 

to compare performance of the models based on 

different algorithms. Score of mean absolute error i.e 

MAE, (also called as L1 loss) , mean square error (MSE) 

and root mean square error (RMSE) between the 

predicted and actual pressures during the inspiratory 

phase of each breath was recorded for each trained 

model. We can clearly see the expiratory phase is not 

scored here. Probably, the scores are only calculated 

during the inspiratory phase because u in profiles in 

the expiratory phase didn’t change much across 

different simulations and would not be much valuable 

to study. Score of evaluation metrics used are given by: 

 

MAE(X, Y ) = |X − Y |                         (1) 

MSE(X, Y ) = (X − Y )2                                (2) 

RMSE(X, Y ) = (X − Y )2                           (3) 

 

where X is the vector of predicted pressure and Y is the 

vector of actual pressures across all breaths in the test 

set. At the end of each iteration, loss is recorded while 

training our models with training set. Similarly, loss 

for the validation set is calculated after recording the 

error after each epoch. We observed that loss during 

each epoch dropped, this decreasing loss with respect 

to epochs is the learning curve for LSTM (as shown in 

Fig. 7) and Bi-LSTM (as shown in Fig. 8) models 

implemented here. 

 

 
Fig. 7. Variation of the training loss and validation 

loss over time for LSTM Model 

 
Fig. 8. Variation of the training loss and validation 

loss over time for Bi-LSTM Model 

 

We have mentioned Overall L1 Loss,MSE and RMSE 

of all the algorithms we used in the Table III. From the 

column of mean absolute error loss (0.161112) in Table 

III, we can observe that Bi-LTSM model gives 

minimum loss (4.029514) among all, whereas the 

performance of supervised machine learning algorithm 

i.e. Linear Regression is worst among them all. From 

the mean square error loss in Table III, we can observe 

that Bi-LTSM model gives minimum loss (1.05818) 

among all, whereas the Linear Regression Model gives 

maximum mean square error (20.26328) in the 

computation of predictions. Based on the results, root 

mean square error for Linear Regression is 4.50148 

whereas LSTM model with 1.65735 and Bi-LSTM 

model with 1.02868 loss impressively, outperforms rest 

of the techniques used. 
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TABLE III. COMPARISON OF RESULTS 

 

 

 

 

 

 

 

 

 

 

VI. LIMITATIONS OF THIS WORK 

 

On the basis of our results of our proposed work, post 

the training and evaluation of our models on the 

dataset. We can draw some observations on the 

possible drawbacks of our study, a few of which are 

listed below: 

1) Given the dataset we have, the solution might not 

be able to generalize to real word scenarios. 

2) Simulated data is not considered real environment 

data even though the neural network model was 

learning the pattern existed in data. But since it was 

driven by a PID Controller we ended up learning the 

behavior of PID Controller while training our model. 

3) Though we could fit in the data, but the way data 

was generated could have improved a bit. 

4) Values of pulmonary parameters such as R and C, 

didn’t have any considerable effect on our results. 

From the experimental observations we observed that 

even after changing R and C values and training the 

model deep enough didn’t have much impact. We 

assume this could be because the pressure is only 

dependent on immediate previous u in values. 

 

VII. CONCLUSION 

 

In this paper we have used ventilator pressure 

prediction dataset published by Google Brain on the 

Kaggle platform using the data generated by the open-

source ventilation system developed by Princeton Lab 

researchers for our analysis. We performed 

exploratory data analysis on the large dataset followed 

by data pre-processing. We considered this as a 

regression problem and split the dataset into train and 

test data. After this various machine learning 

algorithms and a bunch of deep learning algorithms 

were used for training our model separately. Out of 

which the deep learning approaches such as LSTM and 

Bi-LSTM outperformed outperformed the machine 

learning-based and other deep learning-based 

regression models in terms of prediction. Further, the 

results revealed that BiLSTM-based modelling, which 

incorporates additional data training, provides better 

forecasts than normal LSTM-based models. Thus, 

providing the model with additional training data can 

be useful for future predictions.The proposed study 

utilizes data analysis, deep learning architectures and 

machine algorithms to optimize the control of 

ventilator, showed what can be accomplished by 

learning the whole pressure-control system from the 

ground up. Practically, in the wake of the unforeseen 

outbreak of Covid- 19 pandemic, the deep neural 

network models developed in this work may be useful 

in forecasting mechanical ventilation settings for the 

survival of patients inflicted with respiratory diseases. 

Using a neural network, it is possible to replicate the 

lung-ventilator system’s nonlinear dynamical system 

more precisely than with earlier physics-based models. 

But as the dataset was taken from a simulator-based 

lung setting which is not clinically validated results in 

uncertainty for the real-world scenarios, to test its 

efficacy on living organisms correct medical 

recommendations are required. To initiate its regular 

operation few changes in design of the device are 

essential to make it portable and convenient for 

everyday use in homes and hospitals by any individual. 

 

VIII. FUTURE SCOPE 

 

In our future work, we would like to use a transformer- 

based framework for multivariate time series analysis. 

Instead of using mean as done in our technique, in 

future, median can be used as a statistical measure to 

Algorithm Used Overall L1 
Loss 

MSE RMSE 

Linear Regression 
K-Nearest 
Neighbors 
Multi-Layer 
Perceptron 
LightGBM 
Random Forest 

LSTM 
Bi-LSTM 

4.029514 
2.211979 
2.557977 
2.125771 
1.308497 
0.418213 
0.161112 

20.26328 
19.576831 
12.86334 
10.68989 
6.58006 
2.74681 
1.05818 

4.50148 
4.42457 
3.58655 
3.26954 
2.56516 
1.65735 
1.02868 
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ensemble fold predictions of the model in 

consideration. To increase the accuracy of predictions, 

rounding of the actual pressure in the training data can 

also be done to closely match with the discrete target 

predictions. To reduce training error in future 

notebooks, we have to avoid over-fitting the training 

set with several features. We can fix this by adding 

regularization and also through early stopping to avoid 

overt-raining neural networks. Since, we also have 

multiple attributes in the dataset some of which have 

categorical values too, we can consider this problem as 

a classification problem instead of regression as done 

here to predict the pressure for each training example. 

Further, we could also try experimenting with other 

neural networks like multilayer perceptrons, 

convolution neural network ensemble of LSTM or 

BILSTM-CNN. Additionally, we can aim to use a 

powerful GPU to speed up the training process. 
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