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 This review paper aims to analyze the theoretical foundations of smart 

manufacturing and its impact on production processes, particularly in the 

domains of robotics and additive manufacturing, across past, present, and 

future time horizons. It also explores the potential of smart manufacturing 

to improve the precision of manufacturing processes, as well as the 

challenges it poses to the manufacturing sector. This overview will deepen 

our understanding of modern manufacturing practices. It's worth noting 

that some scientific developments and technological tools discussed here 

can be applied to a wider range of automated systems beyond the 

manufacturing sector. As such, this paper offers valuable insights for those 

involved in automated system design and implementation. 
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I. INTRODUCTION 

 

1.1 Definition of smart manufacturing  

Smart manufacturing is a term that encompasses a 

broad range of research domains, each with its own 

unique interpretation of the word smart [1]. However, 

at its core, Smart manufacturing is an advanced 

manufacturing paradigm that profoundly integrates 

the new generation of information technology such as 

Internet-of-Things, cloud computing and artificial 

intelligence, and cutting-edge manufacturing 

technology into the production process [2]. In the 

context of this review paper, we will define smart 

manufacturing as a multifaceted approach that 

involves three key elements. 

Firstly, it involves maximizing physical resources in 

production to achieve more sustainable and cost-

effective outcomes. Secondly, it is using data-driven 

decision-making essential for optimizing 

manufacturing processes and achieving greater 

efficiency. Thirdly, it entails the ability to adapt 
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resources to dynamic and uncertain environments by 

changing system configuration [3].  

 

1.2 Importance of Smart Manufacturing 

Smart Manufacturing is a future growth engine that 

aims for sustainable growth by managing and 

improving existing major manufacturing factors such 

as productivity, quality, delivery, and flexibility based 

on technological convergence and various elements 

spanning societies, humans, and the environment. It 

enables effective and optimal  

decision-making through faster and more accurate 

decision-making procedures [4]. 

A critical aspect of additive manufacturing is 3D 

printing, as it leverages computer-aided design (CAD), 

computer-aided manufacturing (CAM), machine 

vision, virtual reality (VR), and augmented reality (AR) 

techniques to revolutionize and recreate 3D models. 

By integrating these technologies, the design process is 

simplified and errors can be identified earlier in the 

development stage, leading to a reduction in the 

number of early-stage prototypes and ultimately 

cutting costs. AR can be immensely helpful in product 

inspection, maintenance, assembly, and repair tasks, as 

it provides technicians with a faster means of 

identifying and conducting repairs using AR 

applications, such as audio tracks for instructions and 

animated 3D models with task overlays. Additionally, 

the utilization of sensors, AR software, and displays 

enables the tracking of the task's orientation and 

position for the user, allowing for a comprehensive 

view of machinery without the need to physically 

open systems [5] [6] [7]. 

 

Over the years, carrying out maintenance activities has 

become increasingly challenging. To address this 

challenge while simultaneously reducing costs, the 

implementation of predictive maintenance utilizing 

Artificial Intelligence (AI) and various Information 

and Operational Technologies has become increasingly 

significant. This has enabled smart factories to predict 

and preempt issues, rather than solely reactive 

maintenance when failures occur. In the past, this was 

primarily referred to as e-maintenance. However, with 

the emergence of intelligent tools such as the 

Industrial Internet of Things (IIoT), intelligent sensors, 

and AI-based systems, it is now commonly referred to 

as maintenance engineering [6]. 

 

2.1 Intelligent Additive Manufacturing (IAM) 

Additive manufacturing (AM), commonly known as 

3D printing, is a manufacturing process helpful in 

product inspection, maintenance, assembly, and repair 

tasks, as it provides technicians with a faster means of 

identifying and conducting repairs using AR 

applications, such as audio tracks for instructions and 

animated 3D models with task overlays. Additionally, 

the utilization of sensors, AR software, and displays 

enables the tracking of the task's orientation and 

position for the user, allowing for a comprehensive 

view of machinery without the need to physically 

open systems [5] [6] [7]. 

 

Over the years, carrying out maintenance activities has 

become increasingly challenging. To address this 

challenge while simultaneously reducing costs, the 

implementation of predictive maintenance utilizing 

Artificial Intelligence (AI) and various Information 

and Operational Technologies has become increasingly 

significant. This has enabled smart factories to predict 

and preempt issues, rather than solely reactive 

maintenance when failures occur. In the past, this was 

primarily referred to as e-maintenance. However, with 

the emergence of intelligent tools such as the 

Industrial Internet of Things (IIoT), intelligent sensors, 

and AI-based systems, it is now commonly referred to 

as maintenance engineering [6]. 

 

2.1 Intelligent Additive Manufacturing (IAM) 

Additive manufacturing (AM), commonly known as 

3D printing, is a manufacturing process that involves 

creating a product by adding material layer by layer 

based on a digital design. This stands in contrast to 

subtractive manufacturing (SM), which involves 
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removing material from a larger piece to create the 

desired shape. With additive manufacturing, feedstock 

in the form of wire or powder can be fused, melted, or 

bonded layer by layer directly from a 3D computer-

aided design (CAD) file with minimal human 

intervention [6]. 

 

Intelligent additive manufacturing and design can be 

broadly defined as a concept of manufacturing with the 

aim to maximize the value of AM by fully utilizing its 

design freedom in terms of materials, structures, and 

processes through interactions with cyber-physical 

systems based on both human and machine 

intelligence [7]. 

It's important to note that the different types of 

additive manufacturing technologies, such as fused 

deposition modeling, stereolithography, and selective 

laser sintering, each have their own unique processing 

mechanisms. This allows them to print different 

materials as feedstock, as detailed in Table 1 with 

varying degrees of geometrical accuracy. In general, 

additive manufacturing has the potential to 

revolutionize the way we produce goods, as it enables 

us to create complex shapes and structures that would 

be difficult or impossible to achieve with traditional 

manufacturing techniques [8]. 

 

Table 1.0.  AM technologies 

 

2.2 Intelligent Robotics (IR) 

An intelligent robot refers to a robot that can interact 

with its environment and perform tasks that require 

problem-solving skills, adaptability, and learning 

capabilities [27]. The development of human-robot 

interaction (HRI) technologies in the industrial 

environment has significantly improve the cognitive 

and intelligent level of robotic manufacturing systems.  

 

Industrial robots have evolved from being simply 

capable of performing repetitive and simple tasks with 

minimal interaction with humans to working 

collaboratively with humans in the same workspace,  

 

with a certain perception function, adaptability of 

offline programming, and the application of artificial 

intelligence [9]. 
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The Hannover Messe of 2013 witnessed the Working 

Group of Industry 4.0 presenting their report, which 

served as the starting point for the Fourth Industrial 

Revolution in 2014. This revolution introduced the use 

of information technology in manufacturing, and its 

six intelligent technologies areas (as shown in Figure 

1.0).  

 

The first set of industrial robots manufactured at the 

General Motors factory in Ohio, marks the beginning 

of the modern industrial robotics revolution. Today, a 

broad variety of robots are utilized in manufacturing 

such as the industrial robotic manipulators offered by 

reputable vendors like ABB, KUKA, UR, FANUC, and 

YASKAWA, and as well as other types which includes 

AGVs and UAVs [28-31].  

 

The introduction of robots in the manufacturing 

industry has proven to be beneficial, as it has liberated 

human workers from repetitive and overburdening 

tasks in the factory and led to a new generation of 

automation. However, this has not been without 

challenges, as the robots have not been able to exceed 

the original boundaries of robotics, which involve 

manipulating the physical world with computer-

controlled movements. Issues such as dynamics, 

uncertainties, and flexibility have arisen. Thus, the 

desire for enhanced robotics has given birth to the 

concept of smart robotic manufacturing, where robots 

are designed to handle more complex tasks with a 

higher degree of intelligence [32-35]. 

 

In terms of their physical makeup, robots are driven by 

motors, which are then powered by electric energy. 

These motors generate force and operate the 

mechanical body of the robot in accordance with 

robotic dynamics. By rotating the motors within the 

robot, the end effector or tool central point (TCP) can 

be moved to a position with a gesture in the Cartesian 

space, in accordance with the rules of robotics 

kinematics. Ultimately, these motions can be 

programmed for multiple manufacturing tasks, 

utilizing various tools attached to the TCP. 

In manufacturing world, force control is a frequently 

employed technique for a range of applications, such as 

grasping, levering, and haptic human-robot 

collaboration [36]. This is accomplished through the 

utilization of torque sensors [37] or sensorless 

estimation [38]. Furthermore, in the context of 

customized robotic devices, it is commonplace for end-

users to program the power of motors through the 

utilization of motor drivers and microcontrollers, 

typically achieved by employing pulse-width 

modulation. 

 

Researchers have made significant progress in 

industrialization efforts, with ongoing research 

endeavors in this direction which will be discussed in 

other sections of this paper. 

 

 
Fig 1. Six intelligence areas (CMIDAN) plus robotics 

 

3.1 Key methods used in smart manufacturing, such as 

machine learning and computer vision 

In a context of intense market competition, firms are 

adopting new strategies to differentiate themselves 

from their rivals. By leveraging cutting-edge 

technologies such as machine learning, computer 

vision, cloud computing, big data analytics, blockchain, 

the internet of things, and cyber-physical systems, 

companies aim to gain a competitive edge in the 

marketplace. These technological tools provide firms 

with the means to optimize their operations, increase 

efficiency, and enhance their offerings, all of which are 

essential for success in today's dynamic business 

environment. [10] 
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According to Choudhary et al., manual analysis of 

accumulated manufacturing data is not practical due to 

the vast amount of raw data involved. Thus, data 

mining techniques such as machine learning have been 

proposed as an effective means to obtain high-quality 

information. In a review conducted by Pham et al., five 

types of machine learning techniques were evaluated 

for their application in manufacturing, including 

quality control and scheduling problems. Wuest et al. 

classified machine learning into three types 

(supervised, unsupervised, reinforced) and focused on 

the usefulness of supervised machine learning 

algorithms for monitoring, fault diagnosis, and image 

recognition, among others. As a result, the integration 

of machine learning techniques into manufacturing 

can provide better insight into manufacturing 

processes and improve overall productivity [11].  

 

It is worth noting that machine learning methods are 

not only limited to basic numeric or nominal data that 

are commonly generated by manufacturing systems. 

These techniques can also be effectively applied in the 

field of image processing, particularly in the context of 

industrial visual inspection systems. By employing 

sophisticated algorithms, machine learning can enable 

the extraction of essential rules and templates to 

facilitate more accurate image recognition and 

classification, thereby contributing to enhanced 

precision and reliability in industrial inspection 

processes. This highlights the potential of machine 

learning to enable advanced automation and 

optimization in manufacturing operations, ultimately 

driving improvements in productivity and quality 

control [12].  

 

In the field of machine learning, the function that is 

fitted takes in raw data or handcrafted features as input 

and generates output by processing the information 

through itself. Prior to the advent of deep learning, 

feature engineering was the discipline used to 

manually extract features from data or to apply pre-

defined rules to achieve this task. However, this 

process has been replaced by more complex models, 

such as deep neural networks, which possess a stronger 

representation. In addition to neural networks, linear 

models, quadratic models, probability distributions 

(such as Gaussian estimation or Gaussian mixture 

models), and even discrete tables are commonly 

employed as functions for machine learning. For deep 

learning, convolutional neural networks (CNN) [38], 

recurrent neural networks (RNN) [39], graph neural 

networks (GNN) [40], and dense neural networks 

(DNN) [41] are all viable alternatives. The choice of 

model is typically dependent on the complexity of the 

problem at hand. Neural networks are particularly 

well-suited for tackling difficult problems, as they are 

theoretically capable of representing any non-linear 

function [42]. However, the accessibility of a given 

model is often dependent on the dimensionality of the 

data, with larger datasets typically requiring more 

sophisticated models. During the learning phase of 

machine learning, the goal is to estimate the 

parameters of the chosen model based on the available 

data. These parameters include hyper-parameters, 

which are the inner settings of the model (such as the 

number of layers in a neural network or the 

combination of several Gaussian distributions). The 

input data can take many forms, including numerical 

arrays, paragraphs of text, audio recordings, or images. 

Similarly, the output can have a variety of dimensions, 

depending on the user's requirements and sometimes 

even the same input such as variational auto-encoder 

(VAE) [43] and generative adversarial network (GAN) 

[44].  

 

Machine learning can be used for a variety of tasks, 

including recognition, machine translation, machine 

generation (such as generating art or poetry), and 

dimension reduction. The method by which a machine 

learns is by finding the optimal values of its function's 

parameters. This process varies depending on the type 

of machine learning technology employed, including 

unsupervised learning, supervised learning, and 

reinforcement learning. The latter approach is 
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particularly important for robotic learning, where 

agents can learn by maximizing rewards or minimizing 

costs. In summary, the field of artificial intelligence 

engineering encompasses a broad range of machine 

learning techniques that are used to train models to 

process data and generate useful outputs. The choice of 

model is typically driven by the complexity of the 

problem at hand, and the learning phase involves 

estimating the optimal values of the model's 

parameters [45-46].  

  

3.2 Overview of the advantages and limitations of these 

methods 

Understanding a material's structure, composition, 

process history, and characteristics is crucial for 

determining how and what parts are being 

manufactured. This is where microstructural 

characterization and analysis come into play. In the 

past, humans were in charge of choosing what to 

measure and how to measure it. However, further 

possibilities for information extraction from 

microstructural images have emerged as a result of 

recent developments in computer vision and machine 

learning. This entails encoding the visual data in 

microstructural images using computer methods, and 

then utilizing with machine learning approaches to 

find relationships and trends in the resulting high-

dimensional image representation. With the aid of this 

technique, a variety of image analysis tasks can be 

completed, including picture classification, semantic 

segmentation, object detection, and instance 

segmentation. These tasks can produce new, rich visual 

metrics and reveal correlations between processing, 

microstructure, and property. Therefore, these 

technologies can be used in the aerospace, automotive, 

and part-producing industries to make decisions while 

developing mechanical components for manufacture 

[13]. 

 

In order to optimize the printing process and raise the 

caliber of printed parts, Jianyu Liang and his research 

group looked into the application of machine learning 

in additive manufacturing processes. The research 

team used robocasting, an AM technique that is 

frequently used to produce ceramic materials. In order 

to develop a closed-loop control with adaptive 

feedback in the robocasting process, they created an 

artificial neural network model employing a database 

of processing load, print width, and extrusion length. 

The research showed how machine learning can be 

used in additive manufacturing (AM) to create 

complex geometries and desirable features that are 

challenging to obtain with conventional production 

techniques [14].  

 

Manufacturing productivity has increased significantly 

as a result of the application of computer vision and 

other machine learning techniques, benefiting both 

decision-makers and workers. This technology does 

have certain drawbacks, though. The requirement for 

specialized technical expertise to successfully setup a 

standard solution for optimal use is one of the main 

obstacles to its implementation. Furthermore, another 

problem with using sophisticated algorithms is that, 

despite their impressive efficiency, even specialists 

find it difficult to explain how these sophisticated 

algorithms work precisely. This difficulty brings about 

the significance of creating methods to interpret and 

explain these algorithms in a more understandable way, 

in other to improve our knowledge of and confidence 

in these systems. In fact, overcoming these obstacles is 

essential to the continued development and success of 

machine learning in the manufacturing sector. 

 

4.1 Brief discussion of the practical applications of 

additive manufacturing: 

 

AM has been promoted as a zero-waste manufacturing 

method as opposed to conventional SM which generate 

waste. It is particularly suitable for customized 

manufacturing of low volume products [15].  

 

AM has emerged as a promising technology for various 

applications in recent years. Its flexibility for 
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customization, rapid prototyping, and on-site 

manufacturing has made it a preferred choice for 

producing spare parts in a quick and cost-effective 

manner. Its capacity to facilitate reverse engineering of 

parts and products via 3D scanning has enabled the 

reconfiguration of designs for rapid reproduction, 

testing, and validation. One such industry where AM 

has already made significant strides is the medical 

sciences. Its use to produce implants in dentistry and 

orthopedics has revolutionized the replacement of 

injured body parts [16].  

 

4.2 Brief discussion of the practical applications in 

Robotics: 

In contemporary smart factories, the integration of 

robots and sensors facilitates human-robot 

collaboration within a secure workspace. These 

collaborative robots, commonly referred to as cobots, 

offer several advantages over traditional industrial 

robots. Primarily, they are designed to operate safely 

alongside humans and can function in the space 

typically required by traditional robots that mandate 

the use of guarding fences. Various safety mechanisms 

can be employed, such as proximity sensors that detect 

when humans approach and slow down the robot's 

movements accordingly, force limitations that 

minimize risks to humans and the environment, and 

the ability to sense human intent and adjust 

movements accordingly. Additionally, cobots allow for 

different levels of human-robot collaboration, where 

humans perform tasks requiring high levels of 

dexterity, while robots handle repetitive, heavy, and 

monotonous tasks. Essentially, the goal is to ensure the 

robot does not harm humans, and to achieve this, 

controlled force and speed, separation monitoring, 

hand-guiding, and safety-rated monitored stop 

mechanisms are employed. 

 

Apart from safety, other aspects also distinguish how 

robots are utilized in smart factories. For instance, 

vision and computer-aided design (CAD) technologies 

can assist in robot planning and control, thereby 

eliminating the need for time-consuming manual 

programming. Moreover, learning by demonstration 

techniques can eliminate the need for manual 

programming by using dynamic motion primitives to 

parameterize robotic motions. This results in efficient 

production adjustments, particularly in the case of 

small batches of products with minor variations in 

shape and size [17]. 

 

4.3 Overview of real-world manufacturing scenarios 

where smart manufacturing has been successfully 

implemented 

Deloitte has collaborated with several renowned 

solution providers and technology innovators to 

establish The Smart Factory at Wichita experience, 

which aims to assist organizations in realizing the 

future of manufacturing. This immersive experience 

merges the digital, physical, and experimental domains, 

providing manufacturers with the opportunity to 

closely examine advanced manufacturing methods and 

technologies. The facility, which spans 60,000 square 

feet and is powered by a renewable energy smart grid, 

features a complete smart production line, as well as 

space for smart ecosystem sponsors and experiential 

labs. Additionally, the experience includes workshops 

that showcase the potential of smart factory 

applications, helping manufacturers create a tailored 

road map that aligns with their digital transformation 

goals [18]. 

 

The use of automated guided vehicles (AGVs) to move 

automobile bodies to the appropriate assembly 

facilities has been gradually adopted by the automotive 

industry. In this instance, 50 AGVs are put into service 

on the first factory level and moved via elevator to the 

assembly line on the second floor. The AGVs are 

wirelessly linked to a central control system that 

determines the AGVs' paths depending on a number of 

variables, including the car model, the model's unique 

configuration, and the use of various assembly stations. 

By using this strategy, the factory floor is successfully 

utilized without being bound to a particular car model.  
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IEEE 802.11 (also known as Wi-Fi) in the unlicensed 

2.4-GHz frequency band is used to facilitate 

communication between the central control system 

and the AGVs. After more than a year of fruitful 

operation, unpredictably occurring communication 

problems began happening more regularly, leading to 

unscheduled stoppage of the AGVs. The issue was 

brought on by an increase in the number of Wi-Fi and 

Bluetooth-based applications using the 2.4-GHz 

frequency band, which temporarily produced 

coexistence problems. Unfortunately, due to high 

operating costs, the inability to operate the network 

themselves, lengthy service deployment times, and the 

inability to meet reliability, latency, and real-time 

requirements, switching to a licensed frequency band, 

such as a 4G/LTE or 5G cellular network, is not a 

practical option for many applications. Additionally, 

sensitive data is not sufficiently protected by current 

security procedures. Technology hasn't been able to 

totally solve the cohabitation issue yet, thus the only 

workable solution is containment. 

 

A codesign of control and communication is the most 

promising approach to ensure the availability of the 

system [19].  

 

4.3 Comparison of the benefits and drawbacks of 

different smart manufacturing application 

 

 

 

Table 2. Benefits and drawbacks of different smart manufacturing application 

Scenarios Benefits Drawbacks 

Smart 3D scanning for 

automated quality 

inspection 

1.       Quality inspection can be 

automatically executed. 

2.       Quality data can be visualized 

in real time for decision making 

1. Data storage and processing may be 

an issue if the volume of real-time 

information is large. 

Cloud-based 

numerical control 

1.       Highly sophisticated 

algorithms can be applied. 

2.       Service is flexible and can be 

updated and upgraded easily. 

3.       The process know-hows can 

be well protected 

1.   Concerns on cyber security and 

service availability may exist 

 

 

 

 

 

CPS-based smart 

machine tools 

1.        Users can control the 

machine tool in real time by using 

cloud-based services. 

2.       Real-time status can be 

reflected in the user interface. 

1.    Information confidentiality is an 

issue on the part of end users. 

5.1 Discussion of the challenges that arise when 

implementing smart manufacturing, such as 

cybersecurity and data management 

Although smart manufacturing systems have the 

potential to address various challenges and 

complexities faced by modern industries, there remain 
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several obstacles during their implementation. These 

challenges may arise from different response variables, 

including security concerns, difficulties with system 

integration, insufficient return on investment in new 

technology, and financial issues encountered during 

the installation and upgrading of  

smart manufacturing systems within existing 

industries [20]. 

The emergence of smart manufacturing and 

interconnected companies has resulted in the 

availability of extensive manufacturing data for 

advanced analytics. However, this situation poses a 

significant threat to the core competencies of 

specialized manufacturers. By acquiring valuable data, 

competitors can potentially "reverse engineer" 

products and extract underlying knowledge and 

capabilities, which is an even greater concern. 

Conversely, companies that operate in different 

market segments but are competitors may collaborate 

within supply networks. For instance, the airline's 

service provider stores video data from aircraft 

surveillance, and sharing such information is 

advantageous for several reasons, including quality 

enhancements [21]. 

Essential features of a robust interoperability solution 

encompass a universal or open system that allows for 

the seamless integration of various types and brands of 

robots, a standardized interface for multiple 

functionalities like traffic control and navigation, an 

accessible task allocation management system, and 

data analytics for optimization purposes. Additionally, 

a leveled control of third-party robots is required to 

ensure efficient coordination within the fleet. 

Thankfully, the recent years have witnessed the 

development of interoperability standards in various 

countries such as the VDA 5050 in Germany and the 

MassRobotics Interoperability Standard Version 1.0 in 

the US. The VDA 5050 focuses mainly on AGV 

standards, whereas the MassRobotics Interoperability 

Standard concentrates on the transmission of basic 

robot-to-robot information [22]. 

Undoubtedly, these standards hold significant promise 

in advancing the course of robotics interoperability. 

However, the need for a comprehensive common 

interface that enables users to manage and regulate 

their entire fleet, regardless of robot type or brand, 

persists. It remains to be seen how this aspect will 

unfold in the future, and it is an exciting development 

to observe [22]. 

As we delve into the complexities of automation 

project decisions, it is crucial to consider a multitude of 

factors. Deployment risk, operational risk, ongoing 

maintenance requirements, and worker anxiety all 

play a significant role in the decision-making process. 

At the same time, one must balance these concerns 

with the potential benefits of automation, such as 

increased flexibility, scalability, cost avoidance, and 

occupational health improvements. While traditional 

return on investment (ROI) tools are a valuable 

resource, they may fall short in capturing the full scope 

of such complex decisions. Such tools typically 

measure expected outcomes based on static, long-term 

assumptions about labor cost savings. However, in 

today's ever-evolving business landscape, relying 

solely on these metrics may lead decision-makers to an 

outcome that does not align with their strategic 

objectives or is predicated on unrealistic expectations 

of business stability [23] 

 

5.2 Addressing Smart Manufacturing Security 

Concerns: Strategies for Resolution 

Achieving the goal of limiting data usage solely to its 

intended purpose necessitates interdisciplinary 

research involving a diverse range of experts including 

policy makers, legal scholars, business leaders, 

computer scientists, and engineers.  [21]. 

The ever-evolving robotics technology has profoundly 

influenced the functioning of warehouses, factories, 

and logistic centers. With the emergence of numerous 

technological innovations in the industry, the demand 

for interoperability has surged yet again. To this end, 

new technologies must exhibit the ability to connect 

effortlessly with any device or system, commonly 
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known as universal connectivity. The Robot Operating 

Software (ROS) stands out as a remarkable instance of 

such technology, as it has facilitated the rapid 

development of mobile robots [22]. 

Business world is   filled with much unprecedented   

evolution considering the advent of AI. However, with 

the aid of trends, business investors can be certain of 

long-term reward by investing in all these technologies.  

 

6.1. Overview of how these emerging smart 

technologies will impact the future of manufacturing 

The process of reengineering in the context of CPS and 

digitalization may be fueled by developments in 

artificial intelligence technology as well as business 

and human intelligence. Through physics-based 

analytics, prediction algorithms, automation, and in-

depth subject knowledge, the strategic objective is to 

advance analytics. While augmented reality in 

maintenance will be implemented with an Industry4.0 

management system, the personnel may be trained to 

achieve improved quality [24].   

The evolution of machine learning algorithms will 

play a big role in the process of improving and 

advancing smart manufacturing and industry 4.0.  

 

6.2. Suggestions for future research and development 

in smart manufacturing 

Augmented Reality technology (and respective 

hardware) still needs to evolve, but as pace of 

innovation picks up, more and more promising use 

cases are implemented and evaluated for industry. 

Augmented Reality (AR) describes a technology that 

superimposes a computer-generated image on a user’s 

view of the real world [25]. Understanding of the 

requirements and needs of the manufacturing in 

regards to AR-supported remote assistance still needs a 

deeper understanding [24].  We can see that current 

hardware still cannot completely fulfill industry 

requirements, especially when factors like rough 

weather conditions, noise, dirt and safety regulations 

(such as mandatory hard hats, work gloves and safety 

glasses) come into play. 

 Laser Metal Deposition (LMD) is an additive 

manufacturing method, which boasts of high 

flexibility and extensive performance. We think there 

are a lot of possible LMD applications which will lead 

to a further spread of the processing the next years. 

Nevertheless, we see the need for continuing process 

parameter of related material investigations to increase 

the variety of available metal powders for the LMD 

process that help to set up new use cases [24].  

As regards Predictive Maintenance (PdM), it is evident 

that while machine learning algorithms have proven 

to be quite successful in data stream analysis, their 

implementation in real-world scenarios remains 

infrequent. Factors that are specific to each domain, 

such as the availability of labeled data and the tradeoff 

between breakdown prediction and reaction speed 

with confidence, are among the primary hindrances to 

the successful application of theoretical approaches in 

practical settings. Despite these challenges, the 

potential benefits of predictive maintenance in terms 

of time and material savings make it an area of 

continued interest for both researchers and 

practitioners. With the increasing digitization of 

industry, we can expect to see a growing number of 

real-world implementations soon [24]. Stochastic 

conditions are inevitable in unstructured 

environments, like complex industrial scenarios. How 

to estimate uncertainties and identify unknowns is still 

challenging [26]. 
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