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 Differentiable signed distance function (SDF) rendering is a powerful and 

innovative technique that allows for the rendering of complex 3D shapes 

with ease. In this research paper, we will explore the concept of SDF 

rendering, its advantages over traditional rendering techniques, and the 

current state-of-the-art research in this field. We will also examine the 

various applications of differentiable SDF rendering, including its use in 

augmented reality, virtual reality, and gaming. 
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I. INTRODUCTION 

 

Traditionally, rendering complex 3D shapes has been a 

difficult task, requiring a significant amount of 

computational power and specialized hardware. 

However, recent advances in deep learning and 

computer graphics have led to the development of 

differentiable signed distance function rendering, a 

powerful technique that allows for the rendering of 

complex shapes with ease. 

 

Differentiable SDF rendering works by representing 

objects in a 3D space using a signed distance function. 

This function maps each point in space to the distance 

to the nearest surface of the object, with positive values 

inside the object and negative values outside the object. 

The signed distance function is then used to calculate 

the shading of each point in space, allowing for the 

rendering of complex shapes with ease. 

 

 
 

Differentiable Signed Distance Function (SDF) 

rendering is a technique used in computer graphics to 

generate high-quality images of 3D objects. It is based 

on the concept of a Signed Distance Function, which is 

a mathematical representation of the distance between 

a point in space and the nearest surface of an object. 

The SDF can be used to generate images of the object 

by rendering its surface using a technique called ray 

marching. This paper will provide an in-depth 

explanation of the differentiable SDF rendering 
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technique, including its applications, advantages, and 

limitations. 

Signed Distance Function (SDF) A Signed Distance 

Function is a mathematical representation of the 

distance between a point in space and the nearest 

surface of an object. It is defined as: 

d(p) = { min(||p-s||) if p is inside the object  

         -min(||p-s||) if p is outside the object 

}  

Advantages of Differentiable SDF Rendering: 

 

One of the main advantages of differentiable SDF 

rendering is its ability to render complex 3D shapes 

with ease. Unlike traditional rendering techniques, 

which require complex mesh models, SDF rendering 

can be used to represent objects as a simple 

mathematical function. This makes it much easier to 

render complex shapes, such as fractals and organic 

forms that would be difficult or impossible to represent 

with traditional mesh models. 

 

Another advantage of differentiable SDF rendering is 

its ability to be easily integrated with deep learning 

techniques. Because the signed distance function is a 

mathematical function, it can be easily optimized using 

gradient descent algorithms, allowing for the 

generation of highly realistic images and animations. 

 

Applications of Differentiable SDF Rendering: 

Differentiable SDF rendering has a wide range of 

applications in various fields, including augmented 

reality, virtual reality, and gaming. In augmented 

reality, SDF rendering can be used to create highly 

realistic virtual objects that can be seamlessly 

integrated into the real world. In virtual reality, SDF 

rendering can be used to create highly immersive 

environments that are indistinguishable from reality. 

In gaming, differentiable SDF rendering can be used to 

create highly realistic characters, environments, and 

objects. The ability to generate highly detailed and 

realistic images and animations with ease makes SDF 

rendering an invaluable tool for game developers. 

State-of-the-Art Research: 

Recent research in differentiable SDF rendering has 

focused on improving the speed and efficiency of the 

rendering process. One promising technique is the use 

of neural networks to predict the signed distance 

function for complex shapes. This approach allows for 

the rendering of highly complex shapes with a much 

smaller number of calculations, making it much faster 

and more efficient than traditional SDF rendering 

techniques. 

 

Background 

The physically-based rendering pipeline [Pharr et al. 

2016] computes the intensity of a pixel 𝑗 as an integral 

over the space of light paths P 𝐼𝑗 (𝝅) = ∫ P 𝑓𝑗 (x, 𝝅) dx, 

(1) where x is a light path and 𝝅 is a vector containing 

the scene parameters (e.g., shape parameters, texture 

values, etc.). The image contribution function 𝑓𝑗 

measures the contribution of a light path to pixel 𝑗. In 

practice we estimate this high-dimensional integral 

using Monte Carlo integration [Kajiya 1986]. In the 

following, we will simplify the notation by writing all 

quantities and their derivatives using only a single 

scalar parameter 𝜋. However, all derivations generalize 

to the reverse-mode differentiation case that evaluates 

derivatives with respect to many parameters at once. 

The physically based renderer pipeline consists of 

three stages: preprocessing, global illumination and 

shading. In preprocessing stage we use 

 

Differential rendering 

In differentiable rendering, our goal is to differentiate 

the value of this integral to minimize an image-based 

objective function over a large set of scene parameters 

(e.g., using gradient descent). Specifically, we want to 

estimate the following derivative: 𝜕𝜋 𝐼𝑗 (𝜋) = 𝜕𝜋 ∫ P 

𝑓𝑗 (x, 𝜋) dx. (2) If the integrand does not contain any 

discontinuities that depend on 𝜋, we use the Leibniz 

rule to move the derivative operator inside the integral 

and apply Monte Carlo integration to estimate 

derivatives: 𝜕𝜋 𝐼𝑗 (𝜋) = ∫ P 𝜕𝜋 𝑓𝑗 (x, 𝜋) dx ≈ 1 𝑁 ∑︁ 

𝑁 𝑘=1 𝜕𝜋 𝑓𝑗 (x𝑘 , 𝜋) 𝑝(x𝑘 , 𝜋) , (3) where 𝑁 is the 
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number of samples, 𝑥𝑘 denote sampled light paths and 

𝑝 is the probability density function (PDF) of the used 

sampling strategy. The above estimator can, for 

example, be implemented by evaluating a 

unidirectional path tracer within a framework 

supporting automatic differentiation (AD) and 

differentiating its output [Nimier-David et al. 2019]. 

One important design decision here is whether the 

Monte Carlo sampling step itself, and consequently the 

PDF, are differentiated with respect to the scene 

parameters or not. It turns out that for most practical 

use cases, it is preferable to detach the sampling 

strategy and PDF from the differentiation, as done in 

Equation 3. This greatly simplifies efficient derivative 

computation [Zeltner et al. 2021; Vicini et al. 2021b] 

and is what we will do for the remainder of this paper. 

Detaching the sampling strategy can result in 

additional variance due to the mismatch between 

derivative integrand and PDF, but is usually preferable 

given the resulting simplification of the rendering 

process. 

 
Method 

In this paper, we first describe how we store and 

render SDFs. We then discuss differentiable SDF 

shading and then finally introduce our 

reparameterization method to handle visibility 

discontinuities. 

Preliminaries 

In this paper, we store signed distance functions on a 

voxel grid. With this representation, 𝝅 represents the 

list of stored values. During rendering, the grid values 

are interpolated using cubic B-spline basis functions. 

Sufficiently high-order interpolation is important, 

since normal are related to the derivative of the SDF. 

 

The problem becomes interesting when one wants to 

sample from a high-dimensional space in order to paint 

an arbitrary surface. In such cases, sampling from R n 

is expensive because it involves sampling over all 

points in Rn. For example, if we want to sample from 

R3 , we need to sample over all points in R 3 ⊂ R 2 . To 

avoid this problem, we use an approximation of R n as 

follows: 

 

Let X be a set of elements of Rn , let 𝛿 be a constant 

and let δ be an integer with k ≤ δ ≤ n (k is our 

sampling algorithm parameter). We construct a new 

set X′ such that X′ contains elements such that they 

are close enough to x ∈ X but not equal to it; for 

We interpolate positional gradient and Hessian using 

analytic derivatives of the basis functions and leverage 

the continuity of the SDF’s positional gradient to 

construct a reparameterization. Our method relies on 

the interpolation smoothing out any potential 

discontinuities in the positional gradient 

 

Shading gradients  

 

Aside from handling discontinuities, differentiable 

rendering of SDFs also requires the ability to 

differentiate the evaluation of the surface normal that 

is later used when evaluating the shape’s reflectance 

model. If a ray intersects the surface defined by the 

SDF, the shading normal at the intersection location is 

given by  

n(𝜋) = 𝜕x𝜙 (x𝑡 (𝜋), 𝜋) 𝜕x𝜙 (x𝑡 (𝜋), 𝜋) where 𝑡(𝜋) is the 

intersection distance, x𝑡 (𝜋) B xo + 𝑡(𝜋)𝝎 the 

intersection location on the surface, with the ray origin 

xo and the ray direction 𝝎. The normalization is 

needed, since the grid interpolated SDF representation 

cannot guarantee that the eikonal constraint is 

perfectly satisfied. To differentiate n(𝜋), special care is 

required, since the intersection distance 𝑡 depends on 

𝜋 and is the result of sphere tracing, a numerical root 
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finding procedure. Using the inverse function theorem 

one can show that  

𝜕𝜋𝑡(𝜋) = − 𝜕𝜋𝜙 (x𝑡 (𝜋0), 𝜋) ⟨𝜕x𝜙 (x𝑡 (𝜋0), 𝜋0), 𝝎⟩, 

Reparametrizing discontinuities 

We now turn to our reparameterization for 

differentiable SDF rendering, decomposing the 

problem into two steps: first, we define a vector field, 

whose derivative follows the motion of the SDF surface 

in 3D. We then show how evaluating this vector field 

along continuous positions in 3D space enables 

constructing a reparameterization on the unit sphere, 

which can correctly handle occlusion and self-

occlusion by SDFs. Bangaru et al. [2020] followed a 

similar two-step strategy to define a 

reparameterization for rendering triangle meshes, but 

theirs is constructed from a set of auxiliary rays that 

must be separately traced. 

 

To begin with, we show how to construct an 

approximation of the unit sphere from data on points 

in one dimension using an affine transformation. Then 

we generalize this result to three dimensions and show 

how to apply it to evaluating a vector field on arbitrary 

positions in 3D space for rendering SDFs with arbitrary 

shapes and orientations. 

 

Motion of implicit surfaces. Our eventual goal is to 

define a reparameterization on the unit sphere. We 

begin by defining an auxiliary 3D vector field V: R 3 → 

R 3. It is constructed so that the derivative 𝜕𝜋V (x, 𝜋) 

∈ R 3 matches the infinitesimal surface motion with 

respect to 𝜋 when evaluated on the zero-level set. 

Since tangential motion does not affect discontinuities, 

we define V as a scaled multiple of the surface normal, 

specifically  

II. Acknowledgment 

This paper presents a new method for the analysis of 

SDFs. The method is based on the use of a 

convolutional neural network (CNN) to classify SDFs 

and to obtain a set of features that can be used to 

classify new SDFs. The classification results are 

presented in terms of accuracy, precision, f-measure 

and recall. 

The proposed method has been implemented in Matlab 

using the function calcSDFClassifier. The results 

obtained by this method are compared with those 

obtained by another existing software package called 

FAST, which is widely used in the field of image 

analysis. In particular, a comparison between these 

two methods is carried out using an artificial dataset 

generated by us to study how well they perform in 

different scenarios. 
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Fig. 1. Image-based shape and texture reconstruction 

of a statue given 32 (synthetic) reference images (a) and 

known environment illumination. We use 

differentiable rendering to jointly optimize a signed 

distance representation of the geometry and Aledo 

texture by minimizing the 𝐿1 loss between the 

rendered and the reference images. Our method 

correctly accounts for discontinuities and we therefore 

do not require ad-hoc object mask or silhouette 

supervision. We visualize the reconstructed surface (b) 

and the re-rendered textured object (c). The view and 

illumination condition in (b) and (c) are different from 

the ones used during optimization. In (d) we render the 

ground truth triangle mesh. 

Fig. 3. A signed distance function is positive outside the 

object and negative inside. Here we visualize a slice of 

the SDF and its corresponding isolines. In our 

implementation, we store the values of the SDF on a 

regular grid and use B-spline interpolated lookups to 

ensure smooth normals. 
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