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 In recent years, agricultural producers have faced challenges due to the 
uncertainty of labor force access, growing demand for safe, accessible, and high-
quality agricultural products, high competition with international producers, and 
the need to reduce their carbon footprint. To continue their competitive and 
profitable production, producers must invest in technology and increase 
efficiency. Autonomous agricultural vehicles are crucial for autonomous 
processes in orchards, increasing productivity, collecting data for decision-
making, reducing operating costs, and carbon footprint. This study focuses on the 
design and simulation of an autonomous vehicle for orchards. The autonomous 
vehicle can map the orchards using data from odometry and light detection and 
ranging (LIDAR) sensors by utilizing Simultaneous Localization and Mapping 
(SLAM) algorithm, accurately determine its position using the Adaptive Monte 
Carlo Localization method, and avoid obstacles using the dynamic window 
approach algorithm. The autonomous vehicle is an original design for netted 
orchards where GPS cannot work properly and is fully autonomous, requiring no 
external GPS data. It is expected to provide higher efficiency by reducing 
environmental pollution, operating expenses, and labor force in practice. The 
success of the mapping and localization application depends on the update 
frequency of the position and the number of particles used for localization. A 
path-planning application was developed to reach the desired position from the 
autonomous agricultural vehicle's current position on the map. The Dijkstra 
Algorithm was used for path planning, with the Dynamic Window Approach 
allowing the robot to escape obstacle. The simulation studies achieved the lowest 
position error when the vehicle's position was updated at intervals of 2 cm, and a 
minimum of 500 and a maximum of 2000 particles were used. While the vehicle 
was moving on a straight obstacle row in the simulation environment, an average 
localization error of 2.1 cm was obtained. This error is convenient as it enables 
seamless navigation between tree rows without any collision. 
Keywords: Localization, SLAM, autonomous navigation, agricultural robot, 
autonomous vehicle 
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I. INTRODUCTION 
 
According to projections, it is anticipated that the global 
population would reach 9 billion by the year 2050. In 
order to adequately address the food, nutrition, textile, 

and fuel requirements of this population, it will be 
necessary to double agricultural production and enhance 
productivity in production by 25% [1,2].  
With the expansion of agricultural fields, the need for 
automation in certain repetitive tasks, such as spraying, 
arose. In numerous instances, the utilization of 
agricultural robots may not be suitable for tasks that 
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necessitate substantial power consumption, such as 
tillage, planting, and harvesting, due to their 
comparatively restricted size and engine power when 
compared to conventional agricultural vehicles. 
Nevertheless, agricultural robots exhibit a high level of 
suitability for tasks that necessitate comparatively lower 
power consumption. These tasks encompass monitoring 
and charting the growth of plants, autonomously 
transporting both the harvester and the harvested produce, 
as well as administering variable rate spraying in 
accordance with specific requirements. 
Soil compaction is influenced by various factors, 
including the weight, tire pressure, and size of 
agricultural tools and tractors [3,4]. The primary cause of 
soil compaction in a field is attributed to the irregular 
traffic patterns of tractors, accounting for over 96% of 
such occurrences. Furthermore, a significant proportion 
of energy utilized in the production process, 
approximately 90%, is expended in the endeavour to 
alleviate this congestion. Compression inside the root 
zone induces alterations in the physical and mechanical 
characteristics of the soil. The process of compaction 
leads to a rise in the bulk densities of soils, but it also 
results in a reduction in both total porosity and drainage 
capabilities. The phenomenon of soil compaction has 
been shown to result in a mechanical impediment to the 
growth of plant roots, hindering the essential flow of air 
required by the roots to reach deeper layers of the soil [5]. 
Additionally, this compaction has been found to 
contribute to drainage issues in low-lying areas. The 
reduction in water infiltration into the soil caused by 
compaction in sloping terrain leads to an elevation in 
surface runoff, thereby increasing the risk of erosion. The 
phenomenon of soil compaction has been found to result 
in a reduction in plant growth and denitrification, as 
demonstrated by Nolte and Fausey [6]. Agricultural 
robots, because of their reduced weight in comparison to 
traditional agricultural instruments, result in decreased 
soil compaction [7]. 
In modern orchards, a common practice involves 
utilizing a slow-moving vehicle to facilitate various 
maintenance tasks between rows of trees, with a driver 
operating that vehicle. According to Hamner et al. [8], 
the implementation of a self-driving vehicle capable of 
navigating independently through rows of trees has the 
potential to enhance productivity, decrease production 
expenses, and transition agricultural workers from a 

passive function, such as operating a vehicle, to a more 
creative and effective position. 
In recent years, agricultural producers have encountered 
notable difficulties stemming from uncertainties related 
to access to the agricultural labour force, increasing 
customer expectations for high-quality and sustainable 
agricultural products, competition from international 
producers, and the imperative to mitigate their carbon 
emissions. Manufacturers are able to sustain competitive 
and profitable production by strategically allocating 
resources toward technological advancements, 
minimizing labour expenses, and enhancing operational 
efficiency. The utilization of autonomous vehicles in 
orchards holds significance as it enables the automation 
of many operations and facilitates the collection of 
essential data for informed decision-making [8]. 
While the field of robotics has extensively researched 
autonomous driving systems, the development of such 
systems specifically designed for navigating orchards 
and nurseries remains an unresolved challenge. 
Autonomous tractors and harvesters employed in wheat 
farming exploit their ability to acquire Global Positioning 
System (GPS) data without obstruction in open, and 
unobstructed areas. The navigation of the vehicle is 
facilitated through the utilization of the GPS in earlier 
studies [9,10,11]. Implementing GPS-connected 
navigation systems for orchards presents significant 
challenges due to the high density of tree canopies and 
the presence of protective covers and netting that shield 
the trees from hail damage. Furthermore, the limited 
space for movement at the end of each row and the 
existence of dynamic obstacles that may obstruct the path 
of autonomous vehicles pose significant challenges that 
need to be addressed to enable their effective operation 
inside orchard environments [12,13].  
Several companies, including John Deere, Class, and 
Amazon, have conducted prototype experiments on 
autonomous farm vehicles. In our country, AKINSOFT 
company has developed two prototype robot models that 
operate on electricity. These robots are equipped with 
GPS technology, enabling them to navigate effectively. 
Their primary purpose is to facilitate the process of 
planting [14]. These vehicles rely on GPS technology to 
facilitate driving, so it is not appropriate to classify them 
as completely autonomous. Autonomous driving 
necessitates a connection to satellites in those vehicles. 
This study, aims to use probabilistic robotic methods in 
the design and simulation of an autonomous agricultural 



International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 10 | Issue 5 

Eray Onler et al  Int J Sci Res Sci Eng Technol, September-October-2023, 10 (5) : 104-114 
 

 
 
 

3 

vehicle that can be used in orchards. In orchards with a 
netting system, trees are systematically planted, ensuring 
specific distances both within and between rows. 
Agricultural activities in orchards, including hoeing, 
spraying, harvesting, etc., are conducted by agricultural 
vehicles that move between rows. Hence, it is necessary 
for an autonomous vehicle designed for agricultural 
operations in orchards to possess the capability to 
navigate between specified tree rows while effectively 
avoiding obstacles and also ensuring the avoidance of 
any collisions with trees upon returning to adjacent rows. 
The process of achieving autonomous navigation for 
robots intended for agricultural tasks is challenging due 
to the inherent uncertainty present in the natural world. 
One significant drawback of current systems is their lack 
of resilience in the face of these uncertainties. This study 
presents a developed solution to the problem through the 
utilization of a methodology grounded in LIDAR (laser 
detection and distance measurement sensor) and 
odometry sensors. The objective of navigation is to 
develop software capable of autonomous traversal 
through the corridor situated between two rows of trees 
in a netted orchard while following a predetermined route. 
The fundamental components of the system encompass 
the stages of mapping, localization, and route planning. 
 

II.  METHODS AND MATERIAL  
 
In the study, a robot with an axle spacing of 540 mm, a 
length of 988 mm, a width of 670 mm, and a ground 
clearance of 160 mm was designed for the simulation 
environment using the Unified Robotics Description 
Format (URDF). The vehicle has a differential drive. The 
kinematic model is as in Fig. 1. The driving variables 
calculated in the simulation environment for the 
kinematic model are given in Equations 1,2 and 3.  

 

Figure 1. Kinematic characteristics of the designed 
autonomous vehicle 

𝑣(𝑡) 	= 	 '
(
(𝑣)(𝑡) + 𝑣+(𝑡))   (1) 

𝜔(𝑡) 	= 	 -.(/)0-1(/)
+

    (2) 

𝑅	 = 	 (-.(/)0-1(/))
(3	(-.(/)4-1(/))

    (3) 

vr(t) : Linear velocity of right wheel 
vl(t): Linear velocity of left wheel 
v(t): Linear velocity 
⍵: Angular velocity 
l: The distance between the wheel axes 
R: Turning radius relative to autonomous vehicle 

center axis 
ICC: Instant center of curvature [15] 
 

The vehicle simulation was conducted within the 
GAZEBO environment [16]. Fig. 2 displays the robot 
platform onto which the sensors have been embedded, as 
well as the simulation environment that has been created. 

 

 
Figure 2. Simulation environment 

 
In the context of design and simulation experiments, a 
computer system equipped with the Linux Ubuntu 16.04 
LTS operating system, 8GB of memory, a 2.6 GHz quad-
core processor, and a 2 GB graphics card was utilized. 
The implementation of the software was carried out 
within the ROS (Robot Operating System) environment, 
using the Python 3 programming language. In order to 
conduct simulations, several sensors such as LIDAR, and 
odometry sensors (wheel speed, and inertia sensor) are 
employed. In the GAZEBO simulation environment, the 
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readings obtained from the sensors were subject to a 
random error following a normal distribution with a mean 
of 0 and a standard deviation of 0.03. Therefore, the 
objective is to simulate authentic working environments. 
The environment map was developed via the SLAM 
algorithm, as described by [17]. The fidelity of the 
generated map is intrinsically linked to the precision of 
the measurement resolution and the detection capabilities 
of the sensors employed. The application of an adaptive 
Monte Carlo Localization method, as described by 
Rekleitis [18], has been utilized to determine the precise 
location of the vehicle on the map. 
Following the acquisition of a map of the surrounding 
environment and afterward localization of the vehicle 
within this map, a route planning application has been 
developed to facilitate the move from the current position 
to the desired destination(s) for autonomous driving 
purposes. 
The task of determining an optimal trajectory for an 
autonomous vehicle to travel from a specified origin 
point A to a designated destination point B is often 
referred to as route planning. In the context of route 
planning, it is imperative for autonomous vehicles to 
navigate their path quickly while ensuring avoidance of 
obstacles present on the map, as well as those that may 
unexpectedly appear in their trajectory [19,20]. To 
execute these procedures, the process of route planning 
is divided into two components: global and local, each 
designed separately. The obstacle map, designed for the 
purpose of route planning, was generated by considering 
the computed cell values assigned to each individual cell 
on the map (Fig. 3). The utilization of map layers in the 
creation of the map guarantees that the center of rotation 
of the autonomous vehicle remains at a distance from 
obstacles that are within the predetermined tolerance 
threshold. This ensures that the vehicle is able to navigate 
without colliding with any obstacles. 

 

 
Figure 3. Visualization of the tolerance layer on the 

map 
 

During the phase of global route planning, a route 
planning application has been devised to facilitate the 
navigation of autonomous vehicles from their current 
location on the obstacle map to the designated destination 
point(s). In order to fulfill this objective, the Dijkstra 
Route Planning Algorithm was used in route planning 
[21]. 
The route planning application operates in two distinct 
stages. Firstly, the global route planner computes a 
comprehensive plan, which is subsequently implemented 
by the local planner in order to enable the autonomous 
vehicle to effectively navigate and circumvent obstacles 
inside the LIDAR sensor's field of view. The local route 
planning was conducted using the dynamic window 
approach [22]. In the event that an autonomous vehicle 
encounters an obstacle, it is designed to execute 
predetermined rescue procedures. If the obstruction 
cannot be successfully overcome, the vehicle is 
programmed to halt its operations in order to ensure 
safety (Fig. 4). 
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Figure 4. Autonomous vehicle software flowchart 

 
The mapping and localization techniques employed in 
probabilistic approaches rely on the utilization of the 
particle filter-based algorithms. The study investigated 
the quantity of particles required for ascertaining the 
vehicle's position, as well as the optimal frequency for 
updating these particles. The optimal particle quantity 
and update combinations were determined by evaluating 
the positional errors derived from experimental trials. 
 

III. RESULTS AND DISCUSSION 
 
The developed mapping application automatically 
creates maps with the data received from LIDAR and 
odometry sensors. The created map is saved in PNG or 
JPG format. Along with the created map, an attribute file 
containing map size, map resolution, obstacle and free 
space threshold data is given as input to the map server 
to be provided by ROS, and the map needed by the 
designed navigation system is provided. The map created 
as an image file can be edited as desired with an editor 
such as Microsoft Paint. If there are tree rows or regions 
on the map that we do not want the autonomous vehicle 
to enter, these can be ignored during the route planning 
phase by enclosing them with a black line. The map 
obtained with the robot circulating in the simulation area 
with the developed SLAM algorithm is given in Fig. 5. 
White areas represent unobstructed areas, black areas 
represent barriers, and gray areas represent uncertain 
areas. 

 

 
Figure 5. The map generated by the autonomous 

vehicle 
 

The adjustment of the tolerance layer during the route 
planning phase is a crucial consideration that is 
dependent upon the dimensions of the autonomous 
vehicle's projection. The adjustment of the tolerance 
layer involves modifying the radius of the outer tangent 
circle in relation to the projection of the autonomous 
vehicle [23]. In order to ensure that the autonomous 
vehicle can navigate and maneuver without colliding 
with the trees, a tolerance layer width equivalent to 1.5 
times the outer tangent circle is employed, given the row 
spacing of 1.5 m. 
The development of the localization application involved 
a comparison of data acquired from LIDAR and 
odometry sensors with the map in order to determine the 
position of the autonomous vehicle. Ensuring accurate 
initialization of the beginning position facilitates the fast 
convergence of the estimated position and the actual 
position of the autonomous vehicle. 
The accuracy of the map is enhanced with an increase in 
the number of particles employed in the mapping 
procedure. However, it should be noted that as the 
number of particles is augmented, the computational 
resources necessary for processing also experience 
exponential growth. Quigley et al. [24] have proposed the 
utilization of a minimum of 50 to 200 particle pairs, 
depending on the specific obstacle configuration within 
the outdoor setting, for the purpose of adaptive Monte 
Carlo Localization applications. 
The localization application utilized the particle filter-
based Adaptive Monte Carlo Localization method. This 
approach allows for automatic adjustment of the number 
of particles within predetermined limitations based on 
position precision. Upon analysis of the positioning error 
in the simulation across various particle quantities, it is 
observed that the average error is 15.3 cm for the 
configuration employing 5-20 particles, 10.2 cm for the 
configuration that includes 50-200 particles, 3.5 cm for 
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the application utilizing 500-2000 particles, and 2.3 cm 
for the application employing 5000-20000 particles 
(Table 1). A mean inaccuracy of cm was observed. As 
the quantity of particles employed rises, there is a 
corresponding reduction in the average error; 
nevertheless, there is an exponential increase in the 
computational resources needed. The preferred 
configuration in the created localization application 
involved the utilization of 500-2000 particles. 

Table 1. Localization error for different number of 
particle settings 

 
 

Localization Error (cm) 
Min:5 

Max:20  
particle 

Min:50 
Max:200 
particle 

Min:500 
Max:2000 
particle 

Min:5000 
Max:20000 

particle 
Mean 15.3 10.2 3.5 2.3 
Standard 
Deviation 

17.7 10.5 4.9 3.0 

Minimum 0.0 0.0 0.0 0.0 
Median 14.4 10.8 3.5 2.5 
Maximum 59.1 32.5 18.8 9.7 

 
The success of localization is influenced by an additional 
factor, namely the updating of position information when 
the autonomous vehicle performs movement [25]. When 
the frequency of updates is increased within the 
limitations of sensor measurements, there is a linear rise 
in the necessary computational power, accompanied by 
an improvement in position accuracy. The minimum 
average positional error was 3.5 cm in the configuration 
with a position update every 2 cm. The largest average 
position error was 9.2 cm in the configuration where the 
position update was made every 8 cm (Table 2).  

 
Table 2. Localization error for different position update 

frequencies 
 
 

Localization Error (cm) 
Position 
update 

for  
2 cm 

interval 

Position  
update for  

4 cm 
interval 

Position 
update for  

8 cm 
interval 

Mean 3.5 7.2 9.2 
Standard 
Deviation 

4.9 7.7 12.7 

Minimum 0.0 0.0 0.0 
Median 3.5 7.0 9.0 
Maximum 18.8 33.0 46.0 

The errors seen in Tables 1 and 2 belong to the 
configuration in which the robot makes a U-turn. Since 
the developed system has differential driving, higher 
standard deviation and maximum error were obtained 
compared to going between rows [26]. It was considered 
an outlier because the maximum errors were more than 
2.5 standard deviation [27]. 
The route planning application comprises two 
components, namely the global and local route planner, 
which operate together. The global planner provides the 
overall plan, which is determined based on the presence 
of barriers, the autonomous vehicle's location, and the 
desired destination, to the local planner. The data 
obtained from the sensors is analyzed by the local planner 
to ensure that the autonomous vehicle effectively 
navigates the environment by avoiding any impediments 
within the range of the sensors. The local planner uses the 
dynamic window technique. This approach involves the 
creation of local route options that can be utilized during 
the designated simulation timeframe. These options are 
generated by sampling the speed space of the 
autonomous vehicle. Increasing the duration of the 
simulation necessitates a higher computational capacity 
and enhances the accuracy of the generated routes 
[28,29]. The selection of a simulation timeframe of 4 
seconds has been noted to enhance the maneuverability 
of autonomous vehicles when navigating through 
confined passageways (Fig. 6). 
During real-world implementation, there may arise 
circumstances in which the autonomous vehicle is unable 
to circumvent the obstacle. In the aforementioned 
instances, the software for the autonomous vehicle 
incorporated a two-stage recovery and escape strategy for 
execution. The initial action involves resetting the local 
planner and attempting to generate a new global plan. In 
the event of a failure, the autonomous vehicle will initiate 
a change in direction and proceed to explore alternative 
routes. In the event that the autonomous vehicle is unable 
to execute a turnaround maneuver due to the potential 
hazard of collision, it terminates its route planning and 
remains still while sending an error signal. 
The system that was designed has an average inaccuracy 
of 2.1 cm across tree rows, as shown during the 
localization tests conducted in the simulation 
environment. At the U-turns, the system is capable of 
ascertaining its position with an average deviation of 3.5 
cm. The maximum errors obtained in all three test 
configurations were considered outliers because they 
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were greater than 2.5 standard deviation (Table 3). The 
precision spraying applications are well-suited for this 
technology because to its ability to achieve a high level 
of location accuracy comparable to GPS standards [30]. 
Table 3. Localization error for different position update 

frequencies 
 
 

Localization Error (cm) 
Straight 

Row 
Movement 

Curved 
Row 

Movement 

U-turn 
Movement 

Mean 2.1 2.2 3.5 
Standard 
Deviation 

2.3 2.9 4.9 

Minimum 0.0 0.0 0.0 
Median 2.0 2.1 3.5 
Maximum 6.8 9.8 18.8 

 
Since the size and weight of the developed agricultural 
autonomous vehicle is less than conventional tractors, it 
will both provide maneuvering advantage and cause less 
soil compaction. The autonomous vehicle design can be 
used both without a driver and with a driver [31]. 

 
 

 
Figure 6. Movement of autonomous agricultural vehicle 

on a curved line  
 

The system utilizes solely LIDAR and odometry sensors 
to facilitate the navigation process within rows of trees in 
orchards. The implemented system possesses the 
capability to be extended to various differential drive 
vehicles in a modular fashion through the straightforward 
process of altering the robot's dimensions and the sensor 
placements within the software. Sensors such as real-time 
kinematic (RTK) GPS require a periodic fee for data 
reception, whereas the created system operates 
independently without reliance on external data sources. 
Due to this reason, in contrast to robots reliant on GPS 

technology, the robot in the study can be categorized as 
entirely autonomous since it exclusively relies on its 
internal sensors to determine its location and navigate 
towards its given goal. The primary objective of the 
designed system is to go along specified routes through 
orchards, switching between rows. In this context, the 
vehicle that has been designed can serve as a platform for 
the transportation or towing of agricultural machinery 
engaged in various agricultural activities, including but 
not limited to hoeing, spraying, and harvesting. 
Additionally, the orchard can be accurately mapped using 
the data collected by the robot's sensors. This enables the 
creation of an obstacle map that can be customized and 
organized as required, eliminating the necessity for a 
sophisticated geographic information system. 
The acquired results belong to the simulated environment. 
To enhance the convergence of simulation results with 
real-world scenarios, random errors were introduced to 
the sensors and a friction coefficient was applied to the 
simulated ground within the environment. The utilization 
of simulation environments plays a crucial role in 
facilitating the transition of these vehicles from a design 
stage to real-world implementation. When the results 
obtained in the prototype studies seen in the literature are 
examined, it shows that the designed system can easily 
converge to the simulation results after appropriate 
adaptations are made [32,33]. 
 

IV. CONCLUSION 
 

The outcome of this study has led to the development of 
an autonomous vehicle and software system that 
facilitates the independent execution of diverse tasks 
within orchards. The main goal of the established system 
is to navigate predetermined routes through orchards and 
effectively move between rows. Within this particular 
framework, the developed vehicle possesses the 
capability to function as a platform for the carriage or 
towing of agricultural machinery involved in diverse 
agricultural endeavors, encompassing, yet not restricted 
to, tasks such as hoeing, spraying, and harvesting. A 
software system has been developed that includes a 
mapping application, a localization application, and a 
route planning application. The mapping application 
displays the distances between obstacles in the 
environment. The localization application allows the 
autonomous vehicle to determine its own position on the 
map generated by the vehicle. The route planning 



International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 10 | Issue 5 

Eray Onler et al  Int J Sci Res Sci Eng Technol, September-October-2023, 10 (5) : 104-114 
 

 
 
 

8 

application facilitates reaching desired targets while 
avoiding obstacles. 
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