
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Science, Engineering and Technology

Print ISSN - 2395-1990

Online ISSN : 2394-4099
Available Online at : www.ijsrset.com

doi : https://doi.org/10.32628/IJSRSET2310556

01

Computational Group Theory and Quantum-Era Cryptography

Michael N. John1, Udoaka O. G2
1, 2Department of Mathematics, Akwa Ibom State University, Nigeria

A R T I C L E I N F O

A B S T R A C T

Article History :

Accepted: 05 Oct 2023

Published: 03 Nov 2023

 This paper provides an overview of the significant role of computational

group theory in cryptography. Group theory plays a crucial role in various

cryptographic applications, such as key exchange, encryption, and digital

signatures. This paper examines the fundamental concepts, algorithms,

and applications of computational group theory in cryptography, using

polycyclic groups with a focus on key findings and recent developments

in quantum-era cryptography.

Keywords : Computational Group theory, Lattice, Cryptography,

Quantum computers, Encryption, Decryption, Polycyclic group

Publication Issue :

Volume 10, Issue 6

November-December-2023

Page Number :

01-10

I. INTRODUCTION

With the advent of quantum computers, traditional

cryptographic algorithms face a significant threat as

they can potentially break them through their

immense computational power. As quantum

computers continue to advance, there is a growing

need to develop new cryptographic algorithms that can

withstand the quantum computing power.

Cryptography is essential for securing digital

communication and data. Over the years,

computational group theory has become a key tool in

the development and analysis of cryptographic

protocols. [13] presented a foundational paper,

presenting a group-theoretic framework for

constructing cryptographic primitives, leading to the

development of zero-knowledge proofs and other

advanced cryptographic techniques. [12] introduced

the idea of constructing cryptographic systems based

on the hardness of certain group problems and lattice

reduction, demonstrating the connection between

computational group theory and lattice-based

cryptography.

Group theory provides a framework for understanding

the mathematical structures that underlie

cryptography. On this paper we explore polycyclic

groups to see its efficacy in quantum-era cryptography.

[11] provided a survey of pairing-based cryptography,

which heavily relies on group theory, and explores its

applications in identity-based cryptography and other

areas.

Polycyclic groups offer a promising solution for

quantum-era cryptography as they possess certain

properties that make them resistant to attacks by

quantum computers. These properties include the

ability to provide post-quantum security, resistance

against Shor's algorithm, and the potential for efficient

implementation. By utilizing polycyclic groups in

quantum-era cryptography, we can enhance the

security of our cryptographic systems and protect

sensitive information from being compromised by

quantum computers.

https://doi.org/10.32628/IJSRSET

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 10 | Issue 6

Michael N. John & Udoaka O. G Int J Sci Res Sci Eng Technol, November-December-2023, 10 (6) : 01-10

2

As quantum computing threatens the security of

classical cryptographic schemes, [14] has studied

cryptography within the realm of post-quantum

cryptography. Computational group theory on the

other hand has played a role in the development of

post-quantum cryptographic algorithms that are

resistant to quantum attacks [8]

II. BASICS OF COMPUTATIONAL GROUP

THEORY

2.1. Group Theory Fundamentals

Group theory provides a framework for understanding

the mathematical structures that underlie

cryptography. It involves concepts such as groups,

subgroups, generators, and group isomorphisms. see

[17]. A thorough understanding of these basics is

crucial for applying group theory in cryptography can

be seen in [1].

2.2. Computational Aspects

Group theory computations, such as group

membership tests, subgroup enumeration, and discrete

logarithm problem solutions, are at the heart of many

cryptographic protocols. These computations are vital

in ensuring the security of cryptographic schemes, and

[2] has worked extensively on it.

III. APPLICATIONS OF COMPUTATIONAL GROUP

THEORY IN CRYPTOGRAPHY

3.1. Public Key Cryptography

Public key cryptography schemes like Diffie-Hellman

and RSA rely on group structures for key exchange and

encryption. The use of computational group theory in

analyzing and designing secure public key systems is

well-documented in [3]. Pollard’s Rho algorithm is a

widely-used method for solving the discrete logarithm

problem in various group structures. Its impact on the

security analysis of cryptographic systems is

noteworthy in [6]. Homomorphic encryption schemes

often rely on mathematical structures related to group

theory to perform computations on encrypted data.

Research in this area continues to expand the

practicality of privacy-preserving computations [9].

3.2. Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) utilizes the group

structure of elliptic curves. Computational group

theory is integral in ECC for discrete logarithm

problems on elliptic curves, making ECC a popular

choice for secure cryptography [4]. Schoof's algorithm

is essential for counting points on elliptic curves over

finite fields, which is crucial for determining the

security of elliptic curve cryptography. Its application

has made ECC more practical and secure [7].

3.3. Lattice-based Cryptography

Lattice-based cryptography involves the use of

algebraic structures related to group theory for the

construction of secure encryption and digital signature

schemes. [10] has worked on cube-lattice-based

cryptography. Lattice problems are notoriously hard,

and computational group theory plays a role in their

analysis [5].

IV. FUNDAMENTAL DEFINATIONS AND CONCEPT

In mathematics, a polycyclic group is a solvable group that satisfies the maximal condition on subgroups (that is,

every subgroup is finitely generated). Polycyclic groups are finitely presented, which makes them interesting

from a computational point of view.

Equivalently, a group G is polycyclic if and only if it admits a subnormal series with cyclic factors, that is a finite

set of subgroups, let's say G0, ..., Gn such that

https://en.wikipedia.org/wiki/Subnormal_series

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 10 | Issue 6

Michael N. John & Udoaka O. G Int J Sci Res Sci Eng Technol, November-December-2023, 10 (6) : 01-10

3

• Gn coincides with G

• G0 is the trivial subgroup

• Gi is a normal subgroup of Gi+1 (for every i between 0 and n - 1)

• and the quotient group Gi+1 / Gi is a cyclic group (for every i between 0 and n - 1)

That is;

A series of a group G is a chain of subgroups {1} =G0 ≤ G1 ≤ ⋯ ≤ Gn−1 = G such that Gi is normal in Gn+1

A group G is said to be polycyclic if it has a normal subnormal series {1} =G0 ≤ G1 ≤ ⋯ ≤ Gn−1 ≤ Gn = G such

that the quotient group Gi+1/Gi are cycle.

Every polycyclic group can be described by a polycyclic presentation of the following form;

≪ gi, … , gn|gi
−1gjgi = uij for 1 ≤ i < j ≤ n

gigjgi
−1 = vij for 1 ≤ i < j ≤ n

gi
ri = wii for i ∈ 1 ≫

Where uij, vij , wii are words in the generators gi+1, … , gn and I is a set of indices i ∈ {1, … , n} such that[Gi+1: Gi]

4.1 PYTHON COMPUTATIONAL ATTRIBUTES OF POLYCYCLIC GROUP

• pc_sequence : Polycyclic sequence is formed by collecting all the missing generators between the adjacent

groups in the derived series of given permutation group.

• pc_series : Polycyclic series is formed by adding all the missing generators of der[i+1] in der[i], where der

represents derived series.

• relative_order : A list, computed by the ratio of adjacent groups in pc_series.

• collector : By default, it is None. Collector class provides the polycyclic presentation.

>>> from sympy.combinatorics.named_groups import SymmetricGroup

>>> G = SymmetricGroup(4)

>>> PcGroup = G.polycyclic_group()

>>> len(PcGroup.pcgs)

4

>>> pc_series = PcGroup.pc_series

>>> pc_series[0].equals(G) # use equals, not literal `==`

True

>>> gen = pc_series[len(pc_series) - 1].generators[0]

>>> gen.is_identity

True

>>> PcGroup.relative_order

[2, 3, 2, 2]

 See [15] for a handbook on computational group theory

https://en.wikipedia.org/wiki/Cyclic_group

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 10 | Issue 6

Michael N. John & Udoaka O. G Int J Sci Res Sci Eng Technol, November-December-2023, 10 (6) : 01-10

4

4.2 PYTHON COMPUTATION OF POLYCYCLIC PRESENTATION

The computation normally starts from the bottom of the pcgs and polycyclic series. Storing all the previous

generators from pcgs and then taking the last generator as the generator which acts as a conjugator and conjugates

all the previous generators in the list.

To get a clear picture, start with an example of SymmetricGroup(4). For S(4) there are 4 generators in pcgs say

[x0, x1, x2, x3] and the relative_order vector is [2, 3, 2, 2]. Starting from bottom of this sequence the presentation

is computed in order as below.

using only [x3] from pcgs and pc_series(4) compute:

• x3
2

using only [x3] from pcgs and pc_series(3) compute:

• x2
2

• x2
−1x3x2

using [x3 , x2] from pcgs and pc_series(2) compute:

• x1
3

• x1
−1x3x1

• x1
−1x2x1

using [x3 , x2, x1] from pcgs and pc_series(1) compute:

• x1
2

• x0
−1x3x0

• x1
−1x2x0

• x0
−1x1x0

Note that same group can have different pcgs due to variying derived_series which will results in different

polycyclic presentations.

>>> from sympy.combinatorics.named_groups import SymmetricGroup

>>> from sympy.combinatorics.permutations import Permutation

>>> G = SymmetricGroup(4)

>>> PcGroup = G.polycyclic_group()

>>> collector = PcGroup.collector

>>> pcgs = PcGroup.pcgs

>>> len(pcgs)

4

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 10 | Issue 6

Michael N. John & Udoaka O. G Int J Sci Res Sci Eng Technol, November-December-2023, 10 (6) : 01-10

5

>>> free_group = collector.free_group

>>> pc_resentation = collector.pc_presentation

>>> free_to_perm = {}

>>> for s, g in zip(free_group.symbols, pcgs):

... free_to_perm[s] = g

>>> for k, v in pc_resentation.items():

... k_array = k.array_form

... if v != ():

... v_array = v.array_form

... lhs = Permutation()

... for gen in k_array:

... s = gen[0]

... e = gen[1]

... lhs = lhs*free_to_perm[s]**e

... if v == ():

... assert lhs.is_identity

... continue

... rhs = Permutation()

... for gen in v_array:

... s = gen[0]

... e = gen[1]

... rhs = rhs*free_to_perm[s]**e

... assert lhs == rhs

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 10 | Issue 6

Michael N. John & Udoaka O. G Int J Sci Res Sci Eng Technol, November-December-2023, 10 (6) : 01-10

6

4.3 COMPUTATION OF EXPONENT VECTOR

Any generator of the polycyclic group can be represented with the help of its polycyclic generating sequence.

Hence, the length of exponent vector is equal to the length of the pcgs.

A given generator g of the polycyclic group, can be represented as 𝑔 = 𝑥𝑖
𝑒𝑖 … 𝑥𝑛

𝑒𝑛 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 represents polycyclic

generators and n is the number of generators in the free_group equal to the length of pcgs.

>>> from sympy.combinatorics.named_groups import SymmetricGroup

>>> from sympy.combinatorics.permutations import Permutation

>>> G = SymmetricGroup(4)

>>> PcGroup = G.polycyclic_group()

>>> collector = PcGroup.collector

>>> pcgs = PcGroup.pcgs

>>> collector.exponent_vector(G[0])

[1, 0, 0, 0]

>>> exp = collector.exponent_vector(G[1])

>>> g = Permutation()

>>> for i in range(len(exp)):

... g = g*pcgs[i]**exp[i] if exp[i] else g

>>> assert g == G[1]

4.4 COMPUTATIONAL DEPTH OF POLYCYCLIC GENERATOR

Depth of a given polycyclic generator is defined as the index of the first non-zero entry in the exponent vector.

>>> from sympy.combinatorics.named_groups import SymmetricGroup

>>> G = SymmetricGroup(3)

>>> PcGroup = G.polycyclic_group()

>>> collector = PcGroup.collector

>>> collector.depth(G[0])

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 10 | Issue 6

Michael N. John & Udoaka O. G Int J Sci Res Sci Eng Technol, November-December-2023, 10 (6) : 01-10

7

2

>>> collector.depth(G[1])

1

4.5 COMPUTATION OF LEADING EXPONENT

Leading exponent represents the exponent of polycyclic generator at the above depth.

>>> from sympy.combinatorics.named_groups import SymmetricGroup

>>> G = SymmetricGroup(3)

>>> PcGroup = G.polycyclic_group()

>>> collector = PcGroup.collector

>>> collector.leading_exponent(G[1])

1

V. MAIN RESULT

Let's explore a simplified example of how you can use Python to implement encryption and decryption using a

hypothetical cryptographic scheme based on algebraic structures inspired by polycyclic groups.

Please note that this is a highly simplified and abstracted example to illustrate the concept. In practice, encryption

algorithms are far more complex and involve many additional considerations for security.

5.1 Python Codes

import random

Simulated polycyclic group operations (hypothetical)

def polycyclic_multiply(a, b):

 return a * b

def polycyclic_inverse(a):

 return 1 / a

Encryption function

def encrypt(message, public_key):

 ciphertext = []

 for character in message:

 # Convert the character to a numerical representation (e.g., ASCII)

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 10 | Issue 6

Michael N. John & Udoaka O. G Int J Sci Res Sci Eng Technol, November-December-2023, 10 (6) : 01-10

8

 numeric_value = ord(character)

 # Apply a simulated polycyclic group operation on the numeric value

 encrypted_value = polycyclic_multiply(numeric_value, public_key)

 ciphertext.append(encrypted_value)

 return ciphertext

Decryption function

def decrypt(ciphertext, private_key):

 decrypted_message = ''

 for encrypted_value in ciphertext:

 # Apply the inverse operation to decrypt

 decrypted_value = polycyclic_inverse(encrypted_value)

 # Convert the numerical value back to a character

 decrypted_character = chr(int(decrypted_value))

 decrypted_message += decrypted_character

 return decrypted_message

Generate public and private keys (random values for demonstration)

public_key = random.randint(1, 100)

private_key = polycyclic_inverse(public_key)

Message to be encrypted

message = "HELLO"

Encrypt the message

encrypted_message = encrypt(message, public_key)

print("Encrypted Message:", encrypted_message)

Decrypt the message

decrypted_message = decrypt(encrypted_message, private_key)

print("Decrypted Message:", decrypted_message)

5.2 DETAILED EXPLANATION OF THE CODE

• polycyclic_multiply and polycyclic_inverse are hypothetical functions representing operations within a

polycyclic-like group. In a real-world scenario, these operations would be much more complex.

• The encrypt function takes a message, converts each character to a numerical value, applies a simulated

polycyclic group operation (multiplication), and stores the encrypted values in a list (ciphertext).

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 10 | Issue 6

Michael N. John & Udoaka O. G Int J Sci Res Sci Eng Technol, November-December-2023, 10 (6) : 01-10

9

• The decrypt function reverses the encryption process by applying the inverse operation (division) to each

value in the ciphertext, converting the numerical values back to characters, and reconstructing the

decrypted message.

• Random public and private keys are generated for demonstration purposes. In a real cryptographic system,

these keys would be generated using secure processes

• The message "HELLO" is encrypted and then decrypted to verify the correctness of the implementation.

• Please note that this is a highly simplified example for educational purposes and doesn't represent a secure

or practical encryption scheme. In real-world scenarios, cryptographic algorithms are much more complex

and undergo rigorous analysis and testing for security.

VI. CONCLUSION

Computational group theory is a foundational tool in

modern cryptography. Its role in developing, analyzing,

and securing cryptographic schemes cannot be

understated. This paper has provided an overview of its

fundamental concepts, applications, and recent

developments, highlighting the critical role it plays in

ensuring the confidentiality, integrity, and

authenticity of digital communication.

VII. REFERENCES

[1]. Fraleigh, J. B. (2003). A First Course in Abstract

Algebra. Pearson.

[2]. Shoup, V. (1996). Lower bounds for discrete

logarithms and related problems. Advances in

Cryptology - CRYPTO '96.

[3]. Diffie, W., & Hellman, M. E. (1976). New

Directions in Cryptography. IEEE Transactions

on Information Theory.

[4]. Koblitz, N. (1987). Elliptic Curve Cryptosystems.

Mathematics of Computation.

[5]. Peikert, C. (2016). Lattice Cryptography for the

Internet. arXiv:1612.00988.

[6]. Pollard, J. M. (1978). Monte Carlo Methods for

Index Computation (Mod p). Mathematics of

Computation.

[7]. Schoof, R. (1995). Counting Points on Elliptic

Curves over Finite Fields. Journal of the London

Mathematical Society.

[8]. Bernstein, D. J., Lange, T., & Schwabe, P. (2016).

Post-Quantum Cryptography. Springer.

[9]. Brakerski, Z., & Vaikuntanathan, V. (2014).

Fully Homomorphic Encryption from Ring-

LWE and Security for Key Dependent Messages.

Advances in Cryptology - CRYPTO '11.

[10]. Michael N. John & Udoaka O. G (2023).

Algorithm and Cube-Lattice-Based

Cryptography. International journal of Research

Publication and reviews, Vol 4, no 10, pp 3312-

3315 October 2023.

[11]. Groth, J., Sahai, A., & Waters, B. (2008). Pairing-

Based Cryptography: A Survey. Advances in

Cryptology - EUROCRYPT '08, 2-16.

[12]. Ajtai, M. (1996). Public-Key Cryptosystems

from Lattice Reduction Problems. STOC '96, 99-

108.

[13]. Goldwasser, S., & Rackoff, C. (1989). A Group

Theoretic Framework for Cryptographic

Applications. Advances in Cryptology -

CRYPTO '85, 368-383.

[14]. Alagiannis, I., et al. "Lattice-based cryptography

as a Post-Quantum candidate." Journal of

Cryptographic Engineering (2014)

[15]. Derek F. Holt, Handbook of Computational

Group theory. In the series ‘Discrete

Mathematics and its Application’,Chapman &

Hall/CRC 2005, xvi + 514 p.

[16]. Udoaka O. G. & Frank E. A. (2022). Finite Semi-

group Modulo and Its Application to Symmetric

Cryptography, International Journal of Pure

Mathematics DOI: 10.46300/91019.2022.9.13.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 10 | Issue 6

Michael N. John & Udoaka O. G Int J Sci Res Sci Eng Technol, November-December-2023, 10 (6) : 01-10

10

[17]. Udoaka, O. G. (2022). Generators and inner

automorphism. THE COLLOQUIUM -A Multi-

disciplinary Thematc Policy Journal

www.ccsonlinejournals.com. Volume 10,

Number 1 , Pages 102 -111 CC-BY-NC-SA 4.0

International Print ISSN : 2971-6624 eISSN:

2971-6632

Cite this article as :

Michael N. John, Udoaka O. G., "Computational Group

Theory and Quantum-Era Cryptography",

International Journal of Scientific Research in Science,

Engineering and Technology (IJSRSET), Online ISSN :

2394-4099, Print ISSN : 2395-1990, Volume 10 Issue 6,

pp. 01-10, November-December 2023. Available at doi :

https://doi.org/10.32628/IJSRSET2310556

Journal URL : https://ijsrset.com/IJSRSET2310556

