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I. INTRODUCTION 

 

With the advent of quantum computers, traditional 

cryptographic algorithms face a significant threat as 

they can potentially break them through their 

immense computational power. As quantum 

computers continue to advance, there is a growing 

need to develop new cryptographic algorithms that can 

withstand the quantum computing power.  

Cryptography is essential for securing digital 

communication and data. Over the years, 

computational group theory has become a key tool in 

the development and analysis of cryptographic 

protocols. [13] presented a foundational paper, 

presenting a group-theoretic framework for 

constructing cryptographic primitives, leading to the 

development of zero-knowledge proofs and other 

advanced cryptographic techniques. [12] introduced 

the idea of constructing cryptographic systems based 

on the hardness of certain group problems and lattice 

reduction, demonstrating the connection between 

computational group theory and lattice-based 

cryptography.  

Group theory provides a framework for understanding 

the mathematical structures that underlie 

cryptography. On this paper we explore polycyclic 

groups to see its efficacy in quantum-era cryptography. 

[11] provided a survey of pairing-based cryptography, 

which heavily relies on group theory, and explores its 

applications in identity-based cryptography and other 

areas. 

Polycyclic groups offer a promising solution for 

quantum-era cryptography as they possess certain 

properties that make them resistant to attacks by 

quantum computers. These properties include the 

ability to provide post-quantum security, resistance 

against Shor's algorithm, and the potential for efficient 

implementation. By utilizing polycyclic groups in 

quantum-era cryptography, we can enhance the 

security of our cryptographic systems and protect 

sensitive information from being compromised by 

quantum computers.  

https://doi.org/10.32628/IJSRSET
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As quantum computing threatens the security of 

classical cryptographic schemes, [14] has studied 

cryptography within the realm of post-quantum 

cryptography. Computational group theory on the 

other hand has played a role in the development of 

post-quantum cryptographic algorithms that are 

resistant to quantum attacks [8] 

 

II. BASICS OF COMPUTATIONAL GROUP 

THEORY 

 

2.1. Group Theory Fundamentals 

Group theory provides a framework for understanding 

the mathematical structures that underlie 

cryptography. It involves concepts such as groups, 

subgroups, generators, and group isomorphisms. see 

[17]. A thorough understanding of these basics is 

crucial for applying group theory in cryptography can 

be seen in [1]. 

2.2. Computational Aspects 

Group theory computations, such as group 

membership tests, subgroup enumeration, and discrete 

logarithm problem solutions, are at the heart of many 

cryptographic protocols. These computations are vital 

in ensuring the security of cryptographic schemes, and 

[2] has worked extensively on it. 

 

III. APPLICATIONS OF COMPUTATIONAL GROUP 

THEORY IN CRYPTOGRAPHY 

3.1. Public Key Cryptography 

Public key cryptography schemes like Diffie-Hellman 

and RSA rely on group structures for key exchange and 

encryption. The use of computational group theory in 

analyzing and designing secure public key systems is 

well-documented in [3]. Pollard’s Rho algorithm is a 

widely-used method for solving the discrete logarithm 

problem in various group structures. Its impact on the 

security analysis of cryptographic systems is 

noteworthy in [6]. Homomorphic encryption schemes 

often rely on mathematical structures related to group 

theory to perform computations on encrypted data. 

Research in this area continues to expand the 

practicality of privacy-preserving computations [9]. 

3.2. Elliptic Curve Cryptography 

Elliptic curve cryptography (ECC) utilizes the group 

structure of elliptic curves. Computational group 

theory is integral in ECC for discrete logarithm 

problems on elliptic curves, making ECC a popular 

choice for secure cryptography [4]. Schoof's algorithm 

is essential for counting points on elliptic curves over 

finite fields, which is crucial for determining the 

security of elliptic curve cryptography. Its application 

has made ECC more practical and secure [7]. 

3.3. Lattice-based Cryptography 

Lattice-based cryptography involves the use of 

algebraic structures related to group theory for the 

construction of secure encryption and digital signature 

schemes. [10] has worked on cube-lattice-based 

cryptography. Lattice problems are notoriously hard, 

and computational group theory plays a role in their 

analysis [5]. 

 

 

IV. FUNDAMENTAL DEFINATIONS AND CONCEPT 

 

In mathematics, a polycyclic group is a solvable group that satisfies the maximal condition on subgroups (that is, 

every subgroup is finitely generated). Polycyclic groups are finitely presented, which makes them interesting 

from a computational point of view. 

Equivalently, a group G is polycyclic if and only if it admits a subnormal series with cyclic factors, that is a finite 

set of subgroups, let's say G0, ..., Gn such that 

https://en.wikipedia.org/wiki/Subnormal_series
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• Gn coincides with G 

• G0 is the trivial subgroup 

• Gi is a normal subgroup of Gi+1 (for every i between 0 and n - 1) 

• and the quotient group Gi+1 / Gi is a cyclic group (for every i between 0 and n - 1) 

That is; 

 

A series of a group G is a chain of subgroups {1} =G0 ≤ G1 ≤ ⋯ ≤ Gn−1 = G such that Gi is normal in Gn+1  

A group G is said to be polycyclic if it has a normal subnormal series {1} =G0 ≤ G1 ≤ ⋯ ≤ Gn−1 ≤ Gn = G such 

that the quotient group  Gi+1/Gi are cycle. 

Every polycyclic group can be described by a polycyclic presentation of the following form; 

≪ gi, … , gn|gi
−1gjgi = uij for 1 ≤ i < j ≤ n 

gigjgi
−1 = vij for 1 ≤ i < j ≤ n 

gi
ri = wii for i ∈ 1 ≫ 

Where uij, vij , wii  are words in the generators gi+1, … , gn and I is a set of indices  i ∈ {1, … , n} such that[Gi+1: Gi] 

4.1 PYTHON COMPUTATIONAL ATTRIBUTES OF POLYCYCLIC GROUP 

• pc_sequence : Polycyclic sequence is formed by collecting all the missing generators between the adjacent 

groups in the derived series of given permutation group. 

• pc_series : Polycyclic series is formed by adding all the missing generators of der[i+1] in der[i], where der 

represents derived series. 

• relative_order : A list, computed by the ratio of adjacent groups in pc_series. 

• collector : By default, it is None. Collector class provides the polycyclic presentation. 

>>> from sympy.combinatorics.named_groups import SymmetricGroup 

>>> G = SymmetricGroup(4) 

>>> PcGroup = G.polycyclic_group() 

>>> len(PcGroup.pcgs) 

4 

>>> pc_series = PcGroup.pc_series 

>>> pc_series[0].equals(G)  # use equals, not literal `==` 

True 

>>> gen = pc_series[len(pc_series) - 1].generators[0] 

>>> gen.is_identity 

True 

>>> PcGroup.relative_order 

[2, 3, 2, 2] 

 See [15] for a handbook on computational group theory 

https://en.wikipedia.org/wiki/Cyclic_group
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4.2 PYTHON COMPUTATION OF POLYCYCLIC PRESENTATION 

The computation normally starts from the bottom of the pcgs and polycyclic series. Storing all the previous 

generators from pcgs and then taking the last generator as the generator which acts as a conjugator and conjugates 

all the previous generators in the list. 

To get a clear picture, start with an example of SymmetricGroup(4). For S(4) there are 4 generators in pcgs say 

[x0, x1, x2, x3]  and the relative_order vector is [2, 3, 2, 2]. Starting from bottom of this sequence the presentation 

is computed in order as below. 

using only [x3] from pcgs and pc_series(4) compute: 

• x3
2 

using only [x3] from pcgs and pc_series(3) compute: 

• x2
2 

• x2
−1x3x2 

using [x3 , x2] from pcgs and pc_series(2) compute: 

• x1
3 

• x1
−1x3x1 

• x1
−1x2x1 

using [x3 , x2, x1] from pcgs and pc_series(1) compute: 

• x1
2 

• x0
−1x3x0 

• x1
−1x2x0 

• x0
−1x1x0 

Note that same group can have different pcgs due to variying derived_series which will results in different 

polycyclic presentations. 

>>> from sympy.combinatorics.named_groups import SymmetricGroup 

>>> from sympy.combinatorics.permutations import Permutation 

>>> G = SymmetricGroup(4) 

>>> PcGroup = G.polycyclic_group() 

>>> collector = PcGroup.collector 

>>> pcgs = PcGroup.pcgs 

>>> len(pcgs) 

4 
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>>> free_group = collector.free_group 

>>> pc_resentation = collector.pc_presentation 

>>> free_to_perm = {} 

>>> for s, g in zip(free_group.symbols, pcgs): 

...     free_to_perm[s] = g 

>>> for k, v in pc_resentation.items(): 

...     k_array = k.array_form 

...     if v != (): 

...        v_array = v.array_form 

...     lhs = Permutation() 

...     for gen in k_array: 

...         s = gen[0] 

...         e = gen[1] 

...         lhs = lhs*free_to_perm[s]**e 

...     if v == (): 

...         assert lhs.is_identity 

...         continue 

...     rhs = Permutation() 

...     for gen in v_array: 

...         s = gen[0] 

...         e = gen[1] 

...         rhs = rhs*free_to_perm[s]**e 

...     assert lhs == rhs 
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4.3 COMPUTATION OF EXPONENT VECTOR 

 

Any generator of the polycyclic group can be represented with the help of its polycyclic generating sequence. 

Hence, the length of exponent vector is equal to the length of the pcgs. 

A given generator g of the polycyclic group, can be represented as 𝑔 = 𝑥𝑖
𝑒𝑖 … 𝑥𝑛

𝑒𝑛  𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 represents polycyclic 

generators and n is the number of generators in the free_group equal to the length of pcgs. 

>>> from sympy.combinatorics.named_groups import SymmetricGroup 

>>> from sympy.combinatorics.permutations import Permutation 

>>> G = SymmetricGroup(4) 

>>> PcGroup = G.polycyclic_group() 

>>> collector = PcGroup.collector 

>>> pcgs = PcGroup.pcgs 

>>> collector.exponent_vector(G[0]) 

[1, 0, 0, 0] 

>>> exp = collector.exponent_vector(G[1]) 

>>> g = Permutation() 

>>> for i in range(len(exp)): 

...     g = g*pcgs[i]**exp[i] if exp[i] else g 

>>> assert g == G[1] 

4.4 COMPUTATIONAL DEPTH OF POLYCYCLIC GENERATOR 

Depth of a given polycyclic generator is defined as the index of the first non-zero entry in the exponent vector. 

>>> from sympy.combinatorics.named_groups import SymmetricGroup 

>>> G = SymmetricGroup(3) 

>>> PcGroup = G.polycyclic_group() 

>>> collector = PcGroup.collector 

>>> collector.depth(G[0]) 
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2 

>>> collector.depth(G[1]) 

1 

4.5 COMPUTATION OF LEADING EXPONENT 

Leading exponent represents the exponent of polycyclic generator at the above depth. 

>>> from sympy.combinatorics.named_groups import SymmetricGroup 

>>> G = SymmetricGroup(3) 

>>> PcGroup = G.polycyclic_group() 

>>> collector = PcGroup.collector 

>>> collector.leading_exponent(G[1]) 

1 

  

V. MAIN RESULT 

Let's explore a simplified example of how you can use Python to implement encryption and decryption using a 

hypothetical cryptographic scheme based on algebraic structures inspired by polycyclic groups. 

Please note that this is a highly simplified and abstracted example to illustrate the concept. In practice, encryption 

algorithms are far more complex and involve many additional considerations for security. 

 

5.1 Python Codes 

import random 

# Simulated polycyclic group operations (hypothetical) 

def polycyclic_multiply(a, b): 

    return a * b 

def polycyclic_inverse(a): 

    return 1 / a 

# Encryption function 

def encrypt(message, public_key): 

    ciphertext = [] 

    for character in message: 

        # Convert the character to a numerical representation (e.g., ASCII) 
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        numeric_value = ord(character) 

        # Apply a simulated polycyclic group operation on the numeric value 

        encrypted_value = polycyclic_multiply(numeric_value, public_key) 

        ciphertext.append(encrypted_value) 

    return ciphertext 

# Decryption function 

def decrypt(ciphertext, private_key): 

    decrypted_message = '' 

    for encrypted_value in ciphertext: 

        # Apply the inverse operation to decrypt 

        decrypted_value = polycyclic_inverse(encrypted_value) 

        # Convert the numerical value back to a character 

        decrypted_character = chr(int(decrypted_value)) 

        decrypted_message += decrypted_character 

    return decrypted_message 

# Generate public and private keys (random values for demonstration) 

public_key = random.randint(1, 100) 

private_key = polycyclic_inverse(public_key) 

# Message to be encrypted 

message = "HELLO" 

# Encrypt the message 

encrypted_message = encrypt(message, public_key) 

print("Encrypted Message:", encrypted_message) 

# Decrypt the message 

decrypted_message = decrypt(encrypted_message, private_key) 

print("Decrypted Message:", decrypted_message) 

 

5.2 DETAILED EXPLANATION OF THE CODE 

• polycyclic_multiply and polycyclic_inverse are hypothetical functions representing operations within a 

polycyclic-like group. In a real-world scenario, these operations would be much more complex. 

• The encrypt function takes a message, converts each character to a numerical value, applies a simulated 

polycyclic group operation (multiplication), and stores the encrypted values in a list (ciphertext). 
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• The decrypt function reverses the encryption process by applying the inverse operation (division) to each 

value in the ciphertext, converting the numerical values back to characters, and reconstructing the 

decrypted message. 

• Random public and private keys are generated for demonstration purposes. In a real cryptographic system, 

these keys would be generated using secure processes 

• The message "HELLO" is encrypted and then decrypted to verify the correctness of the implementation. 

• Please note that this is a highly simplified example for educational purposes and doesn't represent a secure 

or practical encryption scheme. In real-world scenarios, cryptographic algorithms are much more complex 

and undergo rigorous analysis and testing for security.

 

VI. CONCLUSION 

 

Computational group theory is a foundational tool in 

modern cryptography. Its role in developing, analyzing, 

and securing cryptographic schemes cannot be 

understated. This paper has provided an overview of its 

fundamental concepts, applications, and recent 

developments, highlighting the critical role it plays in 

ensuring the confidentiality, integrity, and 

authenticity of digital communication. 
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