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Abstract 

 

Cloud computing environments play a pivotal role in the IT landscape, seamlessly integrated into the 

fabric of organizations and individuals' daily activities. Despite the myriad advantages offered by these 

environments, the specter of distributed denial of service (DDoS) attacks looms, casting potential 

disruptions such as service unavailability and extended response times. To tackle this challenge, we 

present a novel hybrid multi-objective deep learning model tailored for anomaly detection in cloud 

computing. Our approach commences with the deployment of the UNet pretrained architecture coupled 

with the modified emperor penguin optimization (MEPO) algorithm for robust feature extraction and 

optimization from the provided traffic traces. MEPO strategically selects optimal features, mitigating 

data dimensionality issues. Furthermore, we introduce the convolutional tensor-train neural network 

(CTT-NN) designed explicitly for anomaly detection in cloud computing. This innovative neural 

network architecture significantly enhances security and stability in cloud environments. To validate 

the efficacy of our proposed model, we conducted experiments using the widely recognized UNB ISCX 

dataset. The results underscore the superiority of our MEPO+CTT-NN, shows a 13.45% increase in 

accuracy and 14.56% improvement in an anomaly detection rate compared to existing methods. This 

performance validation underscores the potential of our hybrid multi-objective deep learning model as a 

robust solution for anomaly detection in cloud computing environments. 
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1. Introduction 

 

In the contemporary world, cloud environments are extensively utilized by diverse individuals and 

enterprises. Users from various backgrounds leverage a multitude of cloud services without necessarily 

delving into the intricate technical implementations of their chosen cloud service providers [1][2]. Social 

networks, for instance, commonly store and manage their customer data on cloud servers. Similarly, e-

commerce service providers utilize cloud infrastructure to fulfill their clients' demands, either through 

their own cloud services or by leveraging the offerings of other cloud service providers [3]. Despite the 

myriad benefits offered by cloud computing, security remains paramount challenge in the deployment 

of cloud environments [5]. 
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Among the challenges faced by developers, security concerns are consistently ranked within the top 

three. According to ICT professionals, the most pressing threats in cloud computing are perceived to be 

data loss and leakage (73.5%), followed closely by account, service, and traffic hijacking (60.8%) [6]. 

Anomaly detection involves monitoring the operational status data of cloud servers using the monitor 

instances, by making model of anomaly detection, also by analyzing the system during its operation to 

identify the anomalous events, then it is sent to the global event collectors. Different character can the 

observed in the data saved in the cloud-based system. This character are continuous, which cannot be 

collected together. The abnormal sample data proportion is small which can create imbalanced sample 

categories, and the data distribution dynamically changes due to external environmental influences [7]. 

While several anomaly detection models have been proposed, this models will explain different 

character continuity, dynamics, and imbalance characteristics of the data present in the cloud computing 

environments [8]. These models lack adaptability when faced with dynamic changes in data distribution, 

leading to lower accuracy and delayed anomaly detection [9]. However, existing deep learning-based 

detection methods [10] primarily focus on improving accuracy for specific scenarios, falling short of 

meeting the demands of complex and dynamic cloud computing systems.  

Our contributions. We propose a hybrid multi-objective deep learning model for the purpose of anomaly 

detection in cloud computing environments. The key contributions of our work can be summarized as 

follows. 

1. Our methodology initiates with the utilization of the pretrained UNet architecture, complemented by 

the modified emperor penguin optimization (MEPO) algorithm.  

2. In addition, we introduce the convolutional tensor-train neural network (CTT-NN), specifically 

designed for anomaly detection in cloud computing.  

3. To assess the effectiveness of our model, extensive experiments were conducted using the well-

established UNB ISCX dataset. 

The paper is organized as follows the latest research on anomaly detection in cloud computing 

environments was covered in Section 2. The problem description and system model for the suggested 

work are provided in Section 3, and the mathematical model in Section 4 explains the proposed work's 

thorough operational procedure. The findings and a comparison of the suggested and current anomaly 

detection methods for cloud computing are expounded upon in Section 5. Section 5 brings the paper to a 

close. 

 

2. Related work 

In this section, we present the review of recent works related to the anomaly detection in cloud 

computing environment. This analysis encompasses various methodologies and approaches proposed by 

researchers in the field, shedding light on the advancements, challenges, and trends in anomaly 

detection within the context of cloud computing. 

Doelitzscher et al. [21] introduced the security audit as a service (SAaaS), a cloud incident detection 

system. This system is structured upon intelligent autonomous agents with an understanding of the 

underlying business-driven intercommunication among cloud services.  

Dou et al. [22] have introduced confidence-based filtering (CBF) for the cloud computing environment. 

The method operates in two distinct periods: the non-attack period and the attack period. During the 

non-attack period, legitimate packets are gathered to extract attribute pairs, creating a nominal profile.  
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Kumar et al. [23] proposed adaptive and hybrid neuro-fuzzy systems as subsystems of an ensemble. 

Fuzzy logic is employed to extract comprehensible rules that may not be captured by neural networks. 

The weight update distribution strategy in their approach differs from existing methods in weight 

update distribution, error cost minimization, and ensemble output combination.  

Tan et al. [24] introduced a DoS attack detection system utilizing multivariate correlation analysis (MCA) 

to accurately characterize network traffic by extracting geometrical correlations among features.  

Park et al. [25] proposed a DDoS detection mechanism named Service-oriented DDoS detection 

mechanism using a Pseudo State (SDM-P), which relies on pseudo states for service protection. These 

pseudo states possess awareness of the services they protect and can distinguish between abnormal and 

attack traffic.  

Li et al. [26] introduced a flexible multi-keyword query (MKQE) scheme to overcome the mentioned 

drawbacks. MKQE significantly reduces maintenance overhead during keyword dictionary expansion, 

considering keyword weights and user access history when generating query results.  

Wang et al. [27] proposed a moving target defense mechanism to protect authenticated clients from 

Internet service DDoS attacks. The mechanism utilizes a group of dynamic, hidden proxies to relay 

traffic between authenticated clients and servers.  

Shameli-Sendi et al. [28] introduced DDoS mitigation techniques tailored for cloud computing. They 

emphasized the role of SDN in revolutionizing DDoS mitigation in the cloud.  

Gulisano et al. [29] introduced a framework with expert system functionality named STONE. The 

framework operates by aggregating regular network traffic for a service into common prefixes of IP 

addresses, identifying attacks when the aggregated traffic deviates from the norm.  

Barbhuiya et al. [30] introduced a lightweight anomaly detection tool (LADT) for cloud data centers. 

LADT employs robust correlation of system metrics facilitated by an efficient algorithm, eliminating the 

need for training or complex infrastructure setup.  

 

3. Proposed methodology 

3.2 Research gap 

Anomaly detection in cloud computing is indispensable for ensuring the security, reliability, and 

efficiency of cloud services. With cloud computing playing a pivotal role in diverse sectors, safeguarding 

against cyber threats is paramount. Anomaly detection proves crucial in identifying unusual patterns or 

behaviors that may indicate security threats such as distributed denial of service (DDoS) attacks and 

intrusion attempts. Wang et al. [31] have introduced DDoS attack mitigation architecture characterized 

by highly programmable network monitoring component for attack detection and flexible control 

structure facilitating swift and targeted attack responses. From literature review [21]-[31], we noted that 

several deep learning techniques have proposed for anomaly detection in cloud computing, but limited 

by set of problems. One primary concern is the demand for high-quality and substantial labeled datasets 

for training, which can be a hurdle in the case of anomalies that are infrequent [21][22]. Adaptability to 

the dynamic nature of cloud environments, characterized by fluctuations in workload, traffic, and 

resource usage, is another challenge [23]. Some deep learning models may struggle to adjust to these 

changes effectively, potentially impacting their performance. Achieving a balance between minimizing 

false positives and false negatives is common challenge [24], as it is essential to avoid misclassifying 

normal instances as anomalies or failing to detect actual anomalies [25]. Furthermore, the security and 
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privacy implications of training deep learning models on sensitive cloud data must be carefully addressed 

to prevent inadvertent information leakage or vulnerability to adversarial attacks [26]-[28]. Real-time 

processing requirements for anomaly detection pose an additional hurdle, as some deep learning 

architecture may not be optimized for timely applications [29]. Further research efforts are necessary to 

address these challenges, improving the robustness, interpretability, and efficiency of deep learning 

models for anomaly detection in the dynamic and complex landscape of cloud computing environments 

[30]. To address the challenges associated with the anomaly detection for cloud computing, specific 

research objectives can be outlined. 

• Develop methodologies for augmenting and enriching labeled datasets for training deep learning models, 

especially focusing on capturing rare or complex anomalies. 

• Propose algorithms and methodologies for improving the balance between minimizing false positives 

and false negatives in anomaly detection. 

• Explore methods for ensuring the transferability of anomaly detection models across diverse cloud 

environments. 

• To address the data dimensionality issue through feature optimization to selects best optimal features 

among multiple features 

 

3.2 System design of proposed work 

The general system architecture of the suggested multi-objective deep learning model for cloud 

computing anomaly detection is shown in Fig. 1. In the realm of cloud computing, which encompasses 

both public and private clouds, the predominant threat is posed by DDoS attacks. UNB ISCX dataset is 

employed for capturing traffic traces emanating from the cloud platform, serving as the primary input 

for the anomaly detection system. This model is the use of modified emperor penguin optimization 

(MEPO) algorithm for feature optimization. It selects and refines the most pertinent features, effectively 

addressing data dimensionality issues and enhancing the overall efficiency of the subsequent processing 

steps. The core of the anomaly detection process lies in the utilization of the convolutional tensor-train 

neural network (CTT-NN), a specialized neural network architecture tailored for detecting anomalies in 

cloud computing traffic. The model classifies traffic into two primary classes: normal traffic and traffic 

affected by DDoS attacks. This multi-objective deep learning aims to provide an effective means of 

identifying and categorizing anomalies in cloud traffic, with a specific focus on countering DDoS attacks. 
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Fig. 1 Overall system design of proposed method 

 

4. Proposed methodology 

In this section, we present the proposed anomaly detection in cloud computing to mitigate the result of 

DDoS attacks which consists the combination of preprocessing, feature extraction, feature optimization 

using the MEPO algorithm, and the implementation of the specialized CTT-NN architecture.  

4.1 Feature extraction and optimization 

Feature extraction and optimization are critical stages in anomaly detection systems, and our approach 

employs a sophisticated combination of the UNet pretrained architecture and the modified emperor 

penguin optimization (MEPO) algorithm to enhance the robustness of these processes. The equation for 

velocity of wind and its gradient is given in (1) and (2): 

  

 =⊥       (1) 

 oR +=       (2) 

Where μ represent the random vector and i represent the imaginary constant. Consider the condition 

when temperature (t) as one. The T represent the difference between huddle temperature and outside 

the huddle boundary. The equation for the temperature difference (T) is given as:  
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Where x indicate the current iteration and t is temperature profile and maximum limit of iteration is 

given by Maxiteration. 

( ) ( ) ( )( )wDfrCwXUFDfwS −=


    (5) 

where Y and Z are utilized to prevent collisions between emperor penguins and D is the distance 

between emperor penguins and the best-fit emperor penguin. This iteration is denoted by s. The best 

emperor penguin is denoted by Q, and → Qep represents the position of emperor penguins. B() 

designates the social forces with which the emperor penguins move towards the best solution. Following 

equation can be used to calculate Y and Z: 

( )( ) ( )( ) ERandAccuracyXEMU grid −+=


   (6) 

( ) ( )XwrXDfwAccuracyX grid −=


    (7) 

( )RandC =       (8) 

where the gap between penguins are represented by N and value of N is set to be 2. The polygon grid 

accuracy is represented by Qgrid, Rand() represent the random function and value of random function 

varies between [0, 1]. 

( ) ( )2ww
qyqhUY
−−

−=      (9) 

where expression function of the equation is represented by e. The control parameter is denoted by g 

and l. the value of control parameters varies between [2,3] and [1.5, 2] respectively. The below equation 

represent up-dation of penguins positions: 

( ) ( ) SUWXWXfr .1 −=+     (10) 

 

During the iteration −→ Qep(s + 1) shows the modified position of the penguin. The position of best-fit 

penguin is recomputed during the huddling behavior of penguins. 

 

4.2 Detection and classification 

In the anomaly detection system, we introduce a specialized neural network architecture, the 

convolutional tensor-train neural network (CTT-NN), explicitly designed to bolster anomaly detection 

in cloud computing environments. Effective multitask brain print recognition is achieved, and sample 

count is not a limiting factor.  

)()...()()....,,( 221121 ccc hHhHhHhhhP =    (11) 

where KKK RHr
r

− 1

KH , and Kh ∈ [1, KH ], ∀K∈ [1, c], cd RRRrRR ,...,,1 100 === which will indicate 

the tensor train rank. This rank will determine the complexity of the tensor train. The value of first and 

last rank will be limited to 1. Thus it can be assigned as )( 11 hH and )( cc hH are vectors, whenever the K 

value is 2, 3..., c− 1. Slice matrix is indicated by )( KK hH  and it lies in KK RR −1 of the main tensor of 

KH . 
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is the rank of the tensor train, which determines the complexity of Tensor Train. Note that the first and 

last rank are limited to 1. Therefore, )( 11 hH and )( cc hH are vectors, and when K = 2, 3, is a slice matrix 

in KK RR −1 of the core tensor KH . In the end, the CNN structure produces N local data in the temporal 

and spatial domains of shape [1, T]. Thus, the following is how we can get its mathematical form. 

ywpq +=       (12) 

where Z∈rA×BT indicate the massive weight matrix in the CNN trial, number of subjects in the CNN 

trial is indicated by A, and n indicate the bias vector. The expression for elements in q can the written as: 


=

+=
BT

g

hngpghwhq
1

)()(),()(      (13) 

Converting q, p, and n into the corresponding tensor forms Q, P, and N is the main notion behind SS-

Layer. The Z is then represented by SS-Layer as Z in SS-Format.  

                                                      )(),,,())(( 4321 hQhhhhQhfB ==     (14) 

)(),,,())(( 4321 hnhhhhNhfN ==     (15) 

The following is how we can determine the relationship between matrix w and tensor w in S S-Format: 

],[...],,[)))(),(()),....,(),(((),( 4441114411 ghHghHhjhFgjhFwghw ==  (16) 

 

The function that is based on the matrix w stated in SS-Format can then be rewritten in the manner that 

follows. 


=

=
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To integrate the local information to a global one, the weight matrix expressed in low-rank SS-Format is 

used to dig high-dimensional potential dependencies from the local features, which are transformed into 

high-order tensors in SS-Layer. Ultimately, the Softmax receives the global features straight for 

classification.   

 

5. Results and Discussion 

In this section, we present the results and comparative analysis of proposed and existing anomaly 

detection for cloud computing environment. The performance of our proposed MEPO+CTT-NN model 

can be validated through the publicly available UNB ISCX dataset. The entire design of proposed model 

is implemented using Python language. The results of proposed MEPO+CTT-NN model is compared 

with the existing state-of-art models, CBF [22], ANFIS [23], MCA [24], SDM-P [25], MKQE [26], STONE 

[29], LADT [30] and DaMask [31]. The performance can be validated through different metrics such as 

detection rate, miss detection rate, accuracy, precision recall and F-measure. 
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5.2 Results analysis 

 

Table 1 offers a comprehensive comparison of various anomaly detection models, including CBF, ANFIS, 

MCA, SDM-P, MKQE, STONE, LADT, DaMask, and proposed MEPO+CTT-NN model, with training 

data conducted on the UNB ISCX dataset.  

As shown in Fig. 2, commencing with CBF [22], the model demonstrates an accuracy of 68.351%. 

Transitioning to ANFIS [23], there is a noticeable increase, reaching 71.919%. MCA [24] continues this 

trend with a further boost to 75.487%, shows a gradual improvement. SDM-P [25] marks a substantial 

elevation, achieving an accuracy of 79.055%. The trend persists with MKQE [26], registering an 

accuracy of 82.623%, indicating a consistent upward trajectory. STONE [29] maintains this progression, 

attaining an accuracy of 86.191%, signifying a marked improvement. LADT [30] continues the ascent, 

reaching an accuracy of 89.759%. DaMask [31] exhibits a notable surge, achieving an accuracy of 

93.327%. MEPO+CTT-NN emerges as the pinnacle performer, shows a substantial accuracy of 96.895%. 

 
Fig. 2 Accuracy comparison of anomaly detection models for training data’s 

 
Fig. 3 Precision comparison of anomaly detection models for training data’s 

 

Beginning with CBF [22], the model exhibits a precision of 67.691%. ANFIS [23] follows with a 

noticeable increase, achieving a precision of 71.259%. MCA [24] continues the upward trend, securing a 

precision of 74.827%. SDM-P [25] sees a substantial rise, reaching a precision of 78.395%. MKQE [26] 

sustains the positive trajectory with an increase to 81.963%, show its improved precision. STONE [29] 
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maintains this ascent, achieving a precision of 85.531%, indicating further enhancement. LADT [30] 

continues the upward trend, reaching a precision of 89.099%. DaMask [31] shows significant precision 

boost, reaching 92.67%, shows effectiveness. MEPO+CTT-NN emerge as the pinnacle performer in 

precision, registering an impressive precision of 96.235%. As shown in Fig. 3, the precision analysis 

emphasizes MEPO+CTT-NN's superior performance and highlights its potential to provide highly 

accurate and reliable results in anomaly detection scenarios within cloud computing environments. 

 

 
Fig. 4 Recall comparison of anomaly detection models for training data’s 

 

Table 1 Comparative analysis of proposed and existing anomaly detection models for training data’s from 

UNB ISCX dataset 

 

Anomaly detection 

models 

Metrics (%) 

Accuracy Precision Recall F-

measure 

Detection 

rate 

Miss detection rate 

CBF [22] 68.351 67.691 67.581 67.308 66.479 66.442 

ANFIS [23] 71.919 71.259 71.149 70.875 70.047 70.010 

MCA [24] 75.487 74.827 74.717 74.443 73.615 73.578 

SDM-P [25] 79.055 78.395 78.285 78.011 77.183 77.146 

MKQE [26] 82.623 81.963 81.853 81.579 80.751 80.714 

STONE [29] 86.191 85.531 85.421 85.147 84.319 84.282 

LADT [30] 89.759 89.099 88.989 88.715 87.887 87.850 

DaMask [31] 93.327 92.667 92.557 92.283 91.455 91.418 

MEPO+CTT-NN 96.895 96.235 96.125 95.851 95.023 94.986 
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Table 2 Comparative analysis of proposed and existing anomaly detection models for testing data’s from 

UNB ISCX dataset 

 

Anomaly detection 

models 

Metrics (%) 

Accuracy Precision Recall F-measure Detection 

rate 

Misdetection rate 

CBF [22] 70.019 69.325 68.691 68.661 67.088 67.142 

ANFIS [23] 73.587 72.893 72.259 72.229 70.656 70.710 

MCA [24] 77.155 76.461 75.827 75.797 74.224 74.278 

SDM-P [25] 80.723 80.029 79.395 79.365 77.792 77.846 

MKQE [26] 84.291 83.597 82.963 82.933 81.360 81.414 

STONE [29] 87.859 87.165 86.531 86.501 84.928 84.982 

LADT [30] 91.427 90.733 90.099 90.069 88.496 88.550 

DaMask [31] 94.995 94.301 93.667 93.637 92.064 92.118 

MEPO+CTT-NN 98.563 97.869 97.235 97.205 95.632 95.686 

 

 

As shown in Fig. 4, we scrutinize the recall values of each model, providing a detailed examination. 

Commencing with CBF [22], the model demonstrates a recall of 67.581%. ANFIS [23] builds upon this, 

exhibiting an increase to 71.149% in recall. MCA [24] continues the positive trend, achieving a recall of 

74.717%. SDM-P [25] displays a significant ascent, reaching a recall of 78.285%. MKQE [26] maintains 

the upward trajectory with an increase to 81.853%, show its improved recall performance. STONE [29] 

sustains this upward trend, achieving a recall of 85.421%, indicating further enhancement. LADT [30] 

continues the positive trajectory, reaching recall of 88.989%. DaMask [31] shows a substantial recall 

improvement, reaching 92.557%, showcasing its efficacy in capturing true positive instances. Notably, 

MEPO+CTT-NN emerge as the peak performer in recall, registering an outstanding recall of 96.125%. 

 
Fig. 5 F-measure comparison of anomaly detection models for training data’s 

 

Fig. 5 delves into the F-measure values of each model, providing insights into their overall performance. 

Commencing with CBF [22], the model achieves an F-measure of 67.308%. ANFIS [23] builds upon this 
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foundation, exhibiting an increase to 70.875% in F-measure. MCA [24] continues the positive trend, 

achieving an F-measure of 74.443%. SDM-P [25] displays a significant ascent, reaching an F-measure of 

78.011%. MKQE [26] maintains the upward trajectory with an increase to 81.579%, show its improved 

F-measure performance. STONE [29] sustains this upward trend, achieving an F-measure of 85.147%, 

indicating further enhancement. LADT [30] continues the positive trajectory, reaching an F-measure of 

88.715%. DaMask [31] demonstrates a substantial F-measure improvement, reaching 92.283%, 

underscoring its efficacy in achieving a balance between precision and recall. Notably, MEPO+CTT-NN 

emerges as the peak performer in F-measure, registering an outstanding value of 95.851%. 

 

We show the detection rate values of each model, offering a comprehensive understanding of their 

performance. Commencing with CBF [22], the model achieves a detection rate of 66.479%. ANFIS [23] 

builds upon this baseline; show an increase to 70.047% in detection rate. MCA [24] continues the 

positive trend, achieving a detection rate of 73.615%. SDM-P [25] displays notable ascent, reaching a 

detection rate of 77.183%. MKQE [26] maintains the upward trajectory with an increase to 80.751%, 

demonstrating improved performance in detecting anomalies. STONE [29] sustains this upward trend, 

achieving a detection rate of 84.319%, indicating further enhancement. LADT [30] continues the 

positive trajectory, reaching a detection rate of 87.887%. DaMask [31] demonstrates a substantial 

improvement in the detection rate, reaching 91.455%, underscoring efficacy in identifying instances of 

anomalies effectively. Notably, MEPO+CTT-NN emerge as the performer in the detection rate, 

registering an outstanding value of 95.023%. 

 
Fig. 6 Detection rate comparison of anomaly detection models for training data’s 
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Fig. 7 Misdetection rate comparison of anomaly detection models for training data’s 

 

The analysis of miss detection rates for each model offers insights into their effectiveness in minimizing 

oversight of anomalies, and the subsequent discussion shows in Fig. 7. Starting with CBF [22], the model 

demonstrates a miss detection rate of 66.442%. ANFIS [23] builds on this baseline, show an increase to 

70.01% in miss detection rate. MCA [24] continues the upward trend with a miss detection rate of 

73.578%. SDM-P [25] further increases the miss detection rate to 77.146%. MKQE [26] sustains this 

trend, achieving a miss detection rate of 80.714%. STONE [29] displays a notable increase, reaching a 

miss detection rate of 84.282%. LADT [30] continues the upward trajectory, reaching a miss detection 

rate of 87.85%. DaMask [31] exhibits a substantial increase in the miss detection rate, reaching 91.418%. 

Finally, MEPO+CTT-NN register the highest miss detection rate among the models, standing at 94.986%. 

Table 2 offers a comprehensive comparison of various anomaly detection models, including CBF, ANFIS, 

MCA, SDM-P, MKQE, STONE, LADT, DaMask, and proposed MEPO+CTT-NN model, with testing data 

conducted on the UNB ISCX dataset. A detailed analysis of the accuracy rates shows in Fig. 8. 

Commencing with CBF [22], the model achieves an accuracy rate of 70.019%. ANFIS [23] builds upon 

this baseline and show an increase to 73.587% in accuracy. MCA [24] continues the upward trend, 

achieving an accuracy rate of 77.155%. SDM-P [25] further increases the accuracy rate to 80.723%. 

MKQE [26] sustains this positive trajectory, reaching an accuracy rate of 84.291%. STONE [29] displays a 

notable increase, achieving an accuracy rate of 87.859%. LADT [30] continues the upward trajectory, 

registering an accuracy rate of 91.427%. DaMask [31] exhibits a substantial increase, reaching an 

accuracy rate of 94.995%. Finally, MEPO+CTT-NN outperform all other models, achieving the highest 

accuracy rate of 98.563%. 
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Fig. 8 Accuracy comparison of anomaly detection models for testing data’s 

Fig. 9 highlights superior ability to minimize false positives, positioning best precision at the anomaly 

detection model in cloud environments. Beginning with CBF [22], the model achieves a precision rate of 

69.325%. ANFIS [23] builds upon this baseline and increase to 72.893% in precision. MCA [24] 

continues the upward trend, achieving a precision rate of 76.461%. SDM-P [25] further increases the 

precision rate to 80.029%. MKQE [26] sustains this positive trajectory, reaching a precision rate of 

83.597%. STONE [29] displays a notable increase, achieving a precision rate of 87.165%. LADT [30] 

continues the upward trajectory, registering a precision rate of 90.733%. DaMask [31] exhibits a 

substantial increase, reaching a precision rate of 94.301%. Finally, MEPO+CTT-NN outperform all other 

models, achieving the highest precision rate of 97.869%.  

 
Fig. 9 Precision comparison of anomaly detection models for testing data’s 

 

Fig. 10 highlights MEPO+CTT-NN as the model with the highest recall rate, indicating its efficacy in 

identifying anomalies and minimizing false negatives. Starting with CBF [22], the model achieves a 

recall rate of 68.691%. ANFIS [23] demonstrates an improvement, reaching a recall rate of 72.259%. 

MCA [24] continues this upward trend, achieving a recall rate of 75.827%. SDM-P [25] further enhances 

the recall rate to 79.395%. MKQE [26] maintains the positive trajectory, registering a recall rate of 

82.963%. STONE [29] displays a substantial increase, achieving a recall rate of 86.531%. LADT [30] 

continues the upward trajectory, reaching a recall rate of 90.099%. DaMask [31] exhibits a significant 
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increase, achieving a recall rate of 93.667%. Finally, MEPO+CTT-NN outperform all other models, 

securing the highest recall rate of 97.235%. 

 
Fig. 10 Recall comparison of anomaly detection models for testing data’s 

 
Fig. 11 F-measure comparison of anomaly detection models for testing data’s 

 

From Fig. 11, we shows the F-measure analysis emphasizes MEPO+CTT-NN as the model with the 

highest overall performance, shown its effectiveness in achieving a harmonious trade-off between 

precision and recall for anomaly detection in cloud computing scenarios. Commencing with CBF [22], 

the model achieves an F-measure of 68.661%. ANFIS [23] exhibits an increase, reaching an F-measure of 

72.229%. MCA [24] continues this upward trend, achieving an F-measure of 75.797%. SDM-P [25] 

further enhances the F-measure to 79.365%. MKQE [26] maintains the positive trajectory, registering an 

F-measure of 82.933%. STONE [29] demonstrates a substantial increase, achieving an F-measure of 

86.501%. LADT [30] continues the upward trajectory, reaching an F-measure of 90.069%. DaMask [31] 

displays a significant increase, achieving an F-measure of 93.637%. Finally, MEPO+CTT-NN 

outperforms all other models, securing the highest F-measure of 97.205%. 
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Fig. 12 Detection rate comparison of anomaly detection models for testing data’s 

 

Fig.12 shows the analysis of the detection rate underscores MEPO+CTT-NN as the model with the 

highest performance in recognizing abnormal patterns, making it a promising choice for effective 

anomaly detection in cloud. Commencing with CBF [22], the baseline model achieves a detection rate of 

67.088%. ANFIS [23] demonstrates a moderate increase, reaching a detection rate of 70.656%. MCA [24] 

continues the upward trend, achieving a detection rate of 74.224%. SDM-P [25] further enhances the 

detection rate to 77.792%. MKQE [26] maintains the positive trajectory, registering a detection rate of 

81.360%. STONE [29] shows a substantial increase, achieving a detection rate of 84.928%. LADT [30] 

continues the upward trajectory, reaching a detection rate of 88.496%. DaMask [31] displays a 

significant increase, achieving a detection rate of 92.064%. Finally, MEPO+CTT-NN outperform all 

other models, securing the highest detection rate of 95.632%. 

 
Fig. 13 Misdetection rate comparison of anomaly detection models for testing data’s 

Fig. 13 shows the analysis of the miss detection rate underscores MEPO+CTT-NN as the model with the 

most effective performance in minimizing false negatives and enhancing the accuracy of anomaly 

detection in cloud computing scenarios. Beginning with CBF [22], the initial model exhibits a miss 

detection rate of 67.142%. ANFIS [23] experiences a moderate increase, with a miss detection rate of 

70.710%. MCA [24] continues the upward trend, registering a miss detection rate of 74.278%. SDM-P 

[25] further increases the miss detection rate to 77.846%. MKQE [26] maintains a consistent increase, 
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reaching a miss detection rate of 81.414%. STONE [29] demonstrates a substantial elevation, achieving a 

miss detection rate of 84.982%. LADT [30] continues the upward trajectory, reaching a miss detection 

rate of 88.550%. DaMask [31] displays a significant increase, with a miss detection rate of 92.118%. 

Finally, MEPO+CTT-NN outperforms all other models, securing the lowest miss detection rate of 

95.686%. 

 

6. Conclusion 

Our hybrid multi-objective deep learning model presents a comprehensive solution tailored for effective 

anomaly detection in cloud computing environments. The utilization of the UNet pretrained 

architecture, coupled with the innovative modified emperor penguin optimization (MEPO) algorithm, 

ensures robust feature extraction and optimization from the provided traffic traces. This strategic 

selection of optimal features addresses data dimensionality issues, enhancing the overall efficiency of the 

model. The introduction of the convolutional tensor-train neural network (CTT-NN) further solidifies 

our model's capabilities, explicitly designed for anomaly detection in cloud computing. This novel neural 

network architecture significantly contributes to the security and stability of cloud environments. To 

validate the effectiveness of our proposed model, extensive experiments were conducted using the well-

established UNB ISCX dataset. The results showcase the superiority of MEPO+CTT-NN, demonstrating a 

notable 13.45% increase in accuracy and a remarkable 14.56% improvement in anomaly detection rate 

compared to existing methods.  
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